文章编号: 1001-1595 (2000) 01-0052-07

中图分类号: P208

文献标识码: A

GIS 中一般曲线的不确定性模型*

史文中¹, 童小华^{1,2}, 刘大杰²

(1. 香港理工大学土地测量与地理资讯学系, 香港; 2. 同济大学测量与国土信息工程系, 上海, 200092)

An Approach for Modeling Error of Generic Curve Features in GIS

SH IW en-zhong¹, TON G X iao-hua^{1, 2}, L U Da-jie²

(1. Dept of L and Surveying and Geo⁻informatics, The HongKong Polytechnic University, HongKong;
2 Dept of Surveying and Geomatics, Tongji University, Shanghai, 200092)

Abstract This paper presents a study on a generic approach for modeling error of curve features in GIS Error of curve features is determined by the error of the points that constitute the curve The error is described by weighted average variance-covariance of (a) root mean square error in curve normal direction (ϵ_{σ}), and (b) error in the direction with maximum error (ϵ_{α}) respectively. Taking the three-order basic Spline curve as an example, the implementation of model is illustrated This result is visualized and further compared with the results based on line segment and circular curve-line error models

Keywords: G IS; curve; uncertainty; error; model

摘 要:本文对 GIS 中一般曲线的误差进行了研究。曲线的误差由构成该曲线的任意点之误 差描述。曲线上任意点的误差由端点及距离误差传播导出的误差之加权平均值的协方差表示。 本文分别给出了垂直方向误差(G)及最大方向误差(G)的计算模型。以三次B 样条曲线为例, 给出了其建模及可视化结果,进一步地将该结果与折线及圆曲线的情况进行了比较。 关键词: GIS; 曲线; 不确定性; 误差; 模型

1 引 言

现实世界中曲线型目标在 G IS 中可以用三 种线的形式来表达,即(I)折线逼近,(II)规则 曲线和(III)不规则曲线,其中,规则曲线能够用解 析函数来表达,例如圆曲线,椭圆曲线等可用解析 函数表示。而大量的是不规则曲线,它一般是通过 选取各种不同的插值函数来逼近,例如多项式光 滑曲线 *B* 样条曲线等。在 G IS 空间数据库中,这 两类曲线(II 和III)的存贮结构与直线是一样的, 即矢量坐标是一系列点串(称为特征点),拓扑结 构上表现为由一系列折线来描述。理论上,其不确 定性仍然可以采用线段的误差带的组合来评价和 表达。但是,这是一种近似处理方法,特别是在现 实中,存在大量的曲线目标,如海岸线、行政分界 线、等高线等,在对这些曲线的分析,特别是在显 示、输出等方面,仍然表现为在GIS空间数据库 的特征点坐标和拓扑信息的基础上,以各种光滑 曲线的形式来处理。美国数字地图标准委员会 (National Committee for Digital Cartographic Data Standard,简称NCDCDS)在空间数据目标 的定义中,将由数学方程定义的由系列离散点所

^{*} 收稿日期: 1999-01-18, 截稿日期: 1999-10-26, 史文中, 男, 37 岁, 博士。研究方向为GIS, GIS-T 的空间数据误差处理和质量控制。 国家自然科学基金(编号: 49671065)及香港特别行政区政府大学资助委员会基金(编号: Polyu593)资助。

组成的曲线弧段,以及由弧段所围成的曲线环归 类为一维和二维对象之中^[1]。在"我国空间数据交 换格式 '中将圆(圆弧)曲线 椭圆曲线 多项式光 滑曲线以及 *B* 样条曲线等曲线类型作为空间数 据交换的基本要素。因此,严格地来说,对这些曲 线的不确定性建模,以其曲线而不是以折线为基 础来进行度量,是有意义的。

对于折线(即(I)曲线)的误差模型已经经历 了较长时间的研究。Perkal^[2,3]提出了"e带(Epsilon B and)"模型。Chrism an^[4]及B lakemore^[5]等 人进一步发展了该模型。史文中^[6]用联合置信区 间的方法对误差带给予了理论上的证明,并推广 至三维目标及N 维目标^[7]。

童小华、刘大杰、史文中^[8,9]讨论了典型的规则曲线(即曲线(II)),如圆曲线及特定工程上的常见曲线,如道路曲线——缓和曲线的位置不确 定性模型,更进一步探讨了该误差模型的最大方 向误差问题。

Huang & L iu¹¹⁰采用时间序列模型估计地图 曲线数字化的精度,给出了一组衡量曲线复杂性 的指标,但该估计方法与曲线的复杂程度有密切 关系。Goodchild & Hunter¹¹¹提出了一种估计曲 线特征位置精度的简单指标——概率区间,即:数 字化曲线落在以参考曲线为核心的一定宽度内的 长度占曲线总长的比例,并应用于一段实际海岸 线的位置不确定性的分析评价。

本文拟对 GIS 中一般曲线(即(III)曲线)的 不确定性进行探讨,建立描述曲线位置误差在垂 直方向及最大方向的误差模型,给出了这两种模 型的计算方法,并以常用的三次*B* 样条曲线为 例,具体地进行阐述。

2 一般曲线不确定性的 & 模型

设一般曲线的方程(函数方程或拟合方程)为

$$f(x, y, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0 \tag{1}$$

其中

α= [α₁ α₂...]^T 和 β= [β₁ β₂]^T 为曲线的参 数。

对于曲线上两点 k1, k2 及它们之间的任意一 点 i, 有

对点 $k_1 \cong i$ 的观测距离 S_{1i} , 有

$$\begin{cases} f(x_1, y_1, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0\\ f(x_2, y_2, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0 \end{cases}$$
(2)

$$f(x_i, y_i, \boldsymbol{\alpha}, \boldsymbol{\beta}) = 0$$
(3)

$$S_{1i}^{2} = (x_{i} - x_{1})^{2} + (y_{i} - y_{1})^{2}$$
 (4)
(4)

由式(2)、(3)、(4) 微分并消去 dβ, 可得到

$$\begin{bmatrix} dx \\ dx \end{bmatrix} \begin{bmatrix} A \\ dx \end{bmatrix} \begin{bmatrix} a \\ dx \end{bmatrix} \begin{bmatrix} a \\ dx \end{bmatrix}$$

$$\begin{bmatrix} dx_i \\ dy_i \end{bmatrix} = \begin{bmatrix} A_x & A_{xs} & 0 \\ A_y & A_{ys} & 0 \end{bmatrix} \begin{bmatrix} ds_{1i} \\ ds_{2r} \end{bmatrix} = A d\zeta$$
(5)

为下面的推导方便,在上式中将 dx 、 dy i 记 为 dx i、dy i, 且

dζ= $[dx_1 \quad dy_1 \quad dx_2 \quad dy_2 \quad \delta \alpha \quad ds_{1i} \quad ds_{2i}]^T$ 对点 $k_2 \cong i$ 的观测距离 S_{2i} , 类似地, 可得

$$\begin{bmatrix} dx_i \\ dy_i \end{bmatrix} = \begin{bmatrix} B_x & 0 & B_{xs} \\ B_y & 0 & B_{ys} \end{bmatrix} \begin{bmatrix} d\eta \\ ds_{1i} \\ ds_{2r} \end{bmatrix} = B d\zeta \quad (6)$$

曲线上点 k1, k2 之间的任意一点 i 的不确定 性用其坐标的方差表示。将由式(5)、(6)得到的微 分关系式取加权平均值,其权为之和之,可得

$$\begin{bmatrix} dx_i \\ dy_i \end{bmatrix} = (1 - r_1) \begin{bmatrix} dx_i \\ dy_i \end{bmatrix} + r_1 \begin{bmatrix} dx_i \\ dy_i \end{bmatrix} = (A - r_1A + r_1B) d\zeta$$
(7)

式中, $r_1 = \frac{S_{1i}}{S_{12}}$

如果点 k_1 、 k_2 为一条直线, 则有 $r_1 = \frac{S_{11}}{S_{12}}$, 不考 虑距离量测误差, (7) 式便退化为

$$\begin{cases} dx_{i} = \frac{S_{2i}}{S_{12}} dx_{i} + \frac{S_{1i}}{S_{12}} dx_{i} = (1 - r_{1}) dx_{1} + r_{1} dx_{2} \\ dy_{i} = \frac{S_{2i}}{S_{12}} dy_{i} + \frac{S_{1i}}{S_{12}} dy_{i} = (1 - r_{1}) dy_{1} + r_{1} dy_{2} \end{cases}$$
(8)

上式作用误差传播定律即为熟知的 G IS 线元不确定性的一般模型^[6,12]。

由此可得到
$$D_i = \begin{bmatrix} \sigma_{x_i}^2 & \sigma_{x_i y_i} \\ \sigma_{x_i y_i} & \sigma_{y_i}^2 \end{bmatrix} =$$

 $(A - r_i A + r_i B) D ζ (A - r_i A + r_i B)^T$ (9) 式中 $α_i^2$ 和 a_i^3 , 是 *i* 点坐标的方差, D ζ 表示 ζ 的方差 阵。若以曲线上 *i* 点法线方向上的中误差 α 表示 误差带宽, 设法线方向的方位角为 θ 因为

$$u = x \cos \theta + y \sin \theta \tag{10}$$

所以

 $\sigma \theta = \sigma_{x_i}^2 \cos^2 \theta + \sigma_{y_i}^2 \sin^2 \theta + \sigma_{x_i y_i}^2 \sin^2 \theta \qquad (11)$

我们称以 ශ 为误差带宽的模型为 & 模型, 曲 线上各点 & 的轨迹就构成了曲线的精度范围, 称 之为 & 带。

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 一般曲线不确定性的 Gn 带宽模型 曲线的法线方向的中误差 Gr 是 i (x_i, y_i) 点中 误差曲线与曲线之法线交点 Gr 至 i 的距离, 而 Gr 并不是误差曲线上至曲线的最大距离的点(如图 1), 因此, 用 Gr 来作为曲线的不确定性的度量是 不严格的, 而应取曲线的误差曲线上至曲线的最 大距离的点所对应的中误差值来表征。设误差曲 线上距离最大的点为 Grg 由 Gr 向曲线作法线与 曲线交于 Gλ, 则 |Gr Gλ | 即为所求的不确定性值。 下面来讨论求定 Gr Gλ 之值和 Gr 点的方法。

图 1 一般曲线上 i 点的法线方向误差和最大误差

Fig. 1 The error in the normal direction and maximum error for point i on the curve

设 *iG*φ的方位角为 𝔅,有

$$\sigma_{\Psi}^{2} = \sigma_{x_{i}}^{2} \cos^{2} \varphi_{Y_{i}} \sigma_{y_{i}}^{2} \sin^{2} \varphi_{Y_{i}} \sigma_{x_{i}y_{i}} \sin^{2} \varphi \qquad (12)$$

$$\begin{cases} x \varphi = x_i + G \cos \varphi \\ y \varphi = y_i + G \sin \varphi \end{cases}$$
(13)

而过点G_λ(x_λ, y_λ)的曲线的法线方程为

$$\frac{x - x_{\lambda}}{f_{x_{\lambda}}} - \frac{y - y_{\lambda}}{f_{y_{\lambda}}} = 0$$
(14)

式中

$$f_{x_{\lambda}} = \frac{\partial f}{\partial x} |_{(x_{\lambda}, y_{\lambda})}; f_{y_{\lambda}} = \frac{\partial f}{\partial y} |_{(x_{\lambda}, y_{\lambda})}$$

因为点 *G*₉(*x*₉, *y*₉)在法线上, 故有

$$(x_{i} - x_{\lambda} + \sigma_{i} \cos g \Re f_{y_{\lambda}} - (y_{i} - y_{\lambda} + \sigma_{i} \sin \Re f_{x_{\lambda}} = 0$$
(15)

设 G of G λ 的距离为 S on, 有 S $_{\phi}^{2} = (x \varphi x \lambda)^{2} + (y \varphi y \lambda)^{2} = (x_{i} - x_{\lambda} + \sigma_{x} \cos 9)^{2} + (y_{i} - y_{\lambda} + \sigma_{x} \sin 9)^{2}$ (16)

为了求得 *S* α的最大值及相应的 *Q* 将 *Q* σν 和 *x* λ y λ 作为参数, 而将式(1)、(12)、(15) 作为参数 应满足的条件, 分别对 *Q* σ_Q *x* λ y λ 取近似值 *Q* σ^Φ 和 *x* ⁰ λ y⁰, 将式(1)、(12) 和(15) 用泰勒级数展开,

并仅取一次项,构成如下的条件式

$$\alpha_{PR} \partial P_{+} \alpha_{\sigma_{1}} \delta \sigma_{P^{+}} w_{1} = 0$$

 $\alpha_{P2} \partial P_{+} \alpha_{\sigma_{2}} \delta \sigma_{P^{+}} \alpha_{\kappa_{\lambda^{2}}} \delta_{x_{\lambda^{+}}} \alpha_{y_{\lambda^{2}}} \delta_{y_{\lambda^{+}}} w_{2} = 0$ (17)
 $\alpha_{\kappa_{\lambda^{3}}} \delta_{x_{\lambda^{+}}} \alpha_{y_{\lambda^{3}}} \delta_{y_{\lambda^{+}}} w_{3} = 0$
式中
 $\alpha_{P} = \sigma^{2} \sin 2\theta^{2} - \sigma^{2} \sin 2\theta^{2} - 2\sigma - \cos 2\theta^{2}$

$$\begin{aligned} & \operatorname{cdr} = \sigma_{x_{i}} \sin 2 \varphi - \sigma_{y_{i}} \sin 2 \varphi - 2 \sigma_{x_{i}y_{i}} \cos 2 \varphi \\ & \operatorname{cdr} = 2 \sigma_{\varphi}^{\varphi} \\ & w_{1} = (\sigma_{\varphi}^{\varphi})^{2} - (\sigma_{x_{i}}^{2} \cos^{2} \varphi + \sigma_{y_{i}}^{2} \sin^{2} \varphi + \sigma_{x_{i}y_{i}} \sin 2 \varphi) \\ & \operatorname{cdr} = - \sigma_{\varphi}^{\varphi} (f_{y_{\lambda}})^{0} \sin \varphi - \sigma_{\varphi}^{\varphi} (f_{x_{\lambda}})^{0} \cos \varphi \\ & \operatorname{cdr} = (f_{y_{\lambda}})^{0} \cos \varphi + (f_{x_{\lambda}})^{0} \sin \varphi \\ & \operatorname{cdr} = - (f_{y_{\lambda}})^{0} + (x_{i} - x_{\lambda}^{0} + \sigma_{x}^{0} \cos \varphi) (f_{y_{\lambda}})^{0} - \\ & (y_{i} - y_{\lambda}^{0} + \sigma_{x}^{0} \sin \varphi) (f_{x_{\lambda}})^{0} \\ & \operatorname{cdr} = (x_{i} - x_{\lambda}^{0} + \sigma_{x}^{0} \cos \varphi) (f_{y_{\lambda}})^{0} - \\ & (y_{i} - y_{\lambda}^{0} + \sigma_{x}^{0} \cos \varphi) (f_{y_{\lambda}})^{0} - \\ & (y_{i} - y_{\lambda}^{0} + \sigma_{x}^{0} \cos \varphi) (f_{y_{\lambda}})^{0} - \\ & (y_{i} - y_{\lambda}^{0} + \sigma_{x}^{0} \cos \varphi) (f_{y_{\lambda}})^{0} - (y_{i} - y_{\lambda}^{0} + \sigma_{x}^{0} \sin \varphi) (f_{x_{\lambda}})^{0} \\ & w_{2} = (x_{i} - x_{\lambda}^{0} + \sigma_{x}^{0} \cos \varphi) (f_{y_{\lambda}})^{0} - (y_{i} - y_{\lambda}^{0} + \sigma_{x}^{0} \sin \varphi) (f_{x_{\lambda}})^{0} \\ & \operatorname{cdr} = (f_{x_{\lambda}})^{0} \\ & \operatorname{cdr} = (f_{y_{\lambda}})^{0} \\ & w_{3} = (f_{y_{\lambda}})^{0} \end{aligned}$$

Ŷ

$$u_{1} = x_{i} - x_{\lambda} + \sigma_{HCO} s \varphi$$

$$u_{2} = y_{i} - y_{\lambda} + \sigma_{HS} in \varphi$$
(18)

展开得

$$\begin{cases} u_1 = u_1^0 + \cos \varphi \delta \sigma_{\mathcal{P}} & \sigma_{\mathcal{P}}^0 \sin \varphi \delta \varphi & \delta_{X_\lambda} \\ u_2 = u_2^0 + \sin \varphi \delta \sigma_{\mathcal{P}} + \sigma_{\mathcal{P}}^0 \cos \varphi \delta \varphi & \delta_{Y_\lambda} \end{cases}$$
(19)

按求条件极值的方法构成目标函数 $\Omega = u_1^2 + u_2^2 + 2k_1 (\alpha_H \delta \mathcal{P} + \alpha_\pi \delta \sigma_{\mathcal{P}} + w_2)$

$$P = u_1^{-1} + u_2^{-1} + 2k_1 (\alpha_{P1} \partial P + \alpha_{r1} \partial \sigma P + w_1) + 2k_2 (\alpha_{P2} \partial P + \alpha_{r2} \partial \sigma P + \alpha_{r_{\lambda^2}} \partial_{x_{\lambda}} + \alpha_{y_{\lambda^2}} \partial_{y_{\lambda}} + w_2) + 2k_3 (\alpha_{r_{\lambda^3}} \partial_{x_{\lambda}} + \alpha_{y_{\lambda^3}} \partial_{y_{\lambda}} + w_3)$$
(20)

由

$$\frac{\partial \Omega}{\partial \delta \varphi} = -2u_1 \partial_{\varphi \sin} \varphi + 2u_2 \partial_{\varphi \cos} s \varphi + 2k_1 \alpha_{\Re} + 2k_2 \alpha_{\Re} = 0$$

$$\frac{\partial \Omega}{\partial \delta \sigma_{\varphi}} = 2u_1 \cos s \varphi + 2u_2 \sin \varphi + 2k_1 \alpha_{\sigma 1} + 2k_2 \alpha_{\sigma 2} = 0$$

$$\frac{\partial \Omega}{\partial \delta_{\chi_{\lambda}}} = -2u_1 + 2k_2 \alpha_{\chi_{\lambda}^2} + 2k_3 \alpha_{\chi_{\lambda}^3} = 0$$

$$\frac{\partial \Omega}{\partial \delta_{\chi_{\lambda}}} = -2u_2 + 2k_2 \alpha_{\chi_{\lambda}^2} + 2k_3 \alpha_{\chi_{\lambda}^3} = 0$$
整理可得方程组

 $(\sigma_{P}^{0})^{2} \delta_{P}^{0} \sigma_{P}^{0} \sin \varphi \delta_{X \lambda^{-}} \sigma_{P}^{0} \cos \varphi \delta_{Y \lambda^{+}} \alpha_{P} k_{1} + \alpha_{P} k_{2} + (-u_{1}^{0} \sigma_{P}^{0} \sin \varphi + u_{2}^{0} \sigma_{P}^{0} \cos \varphi) = 0$ $\delta \sigma_{P} \cos \varphi \delta_{X \lambda^{-}} \sin \varphi \delta_{Y \lambda^{+}} \alpha_{n} k_{1} + \alpha_{n} k_{2} + (u_{1}^{0} \cos \varphi + u_{2}^{0} \sin \varphi) = 0$ $\sin \varphi \sigma_{P} \delta_{P} \cos \varphi \delta \sigma_{P} \delta_{P} \delta_{X \lambda^{+}} \alpha_{k} \lambda^{2} k_{2} + \alpha_{k} \lambda^{3} k_{3} - u_{1}^{0} = 0$ $-\cos \varphi \sigma_{P} \delta_{P} \delta_{P} \sin \varphi \delta \sigma_{P} \delta_{Y \lambda^{+}} \alpha_{y} \lambda^{2} k_{2} + \alpha_{y} \lambda^{3} k_{3} - u_{2}^{0} = 0$ $\delta m \delta_{P} \delta_{P} \delta_{P} \delta_{P} m_{1} = 0$ $\delta m \delta_{P} \delta_{P} \delta_{P} \delta_{P} m_{1} = 0$ $\delta m \delta_{P} \delta_{P} \delta_{P} \delta_{P} \delta_{P} \delta_{X \lambda^{+}} \delta_{y} \lambda^{2} \delta_{Y \lambda^{+}} m_{2} = 0$ $\delta m \delta_{P} \delta_{$

取初值 $\mathcal{O}_{P=} \alpha_{e}, \mathcal{O}_{P=} \theta, x_{\lambda}^{0} = x_{i}, y_{\lambda}^{0} = y_{i}$ 对方程 组(21)迭代求解可得到 $\partial \mathcal{Q} \delta \alpha_{P} \pi \delta x_{\lambda} \delta y_{\lambda}$ 进而 可求得曲线最大误差的方位角 $\mathcal{Q} \pi s_{A}$,并以 sa的 最大值表示曲线不确定性的带宽,称之为 ϵ_{μ} 模 型, ϵ_{μ} 的轨迹所构成曲线的精度范围称为 ϵ_{μ} 带。

4 三次 B 样条曲线的不确定性模型

B 样条曲线是 G IS 中常用的曲线形式。下面 以三次 B 样条曲线为例来讨论建立一般曲线不 确定性模型的方法。

对于B 样条曲线上两个节点 k1 和 k2= k1+ 1 之间的任意一点 i, 其函数表达式为

$$\varphi(x) = c_j \Omega_j(x)$$
 (22)

式中, Q_i和 c_i 分别为所对应的基函数和插值系 数。

由于三次 B 样条的基函数为

$$\Omega(x) = \begin{cases} -\frac{1}{6} |x|^3 + x^2 - 2|x| + \frac{4}{3} & 1 < |x| < 2\\ \frac{1}{2} |x|^3 - x^2 + \frac{2}{3} & |x| & 1\\ 0 & |x| & 2 \end{cases}$$
(23)

因此, 对点 *i*, 其函数值由 *x* = *x*_{k1}-1, *x*_{k1}, *x*_{k1}+1, *x*_{k1+2}处的基函数与相应的系数所确定, 即

$$y_{i} = c_{k_{1}-1}\Omega_{-1}(z_{i}) + c_{k_{1}}\Omega_{0}(z_{i}) + c_{k_{1}+1}\Omega_{1}(z_{i}) + c_{k_{1}+2}\Omega_{2}(z_{i}) = c_{k_{1}-1}\frac{1}{6}(1-z_{i})^{3} + c_{k_{i}}[\frac{1}{6}(2-z_{i})^{3} - \frac{4}{6}(1-z_{i})^{3}] + c_{k_{1}+1}[\frac{1}{6}(1+z_{i})^{3} - \frac{4}{6}z_{i}^{3}] + c_{k_{1}+2}\frac{1}{6}z_{i}^{3}$$
(24)

式中,
$$\Omega_k(x) = \Omega(x - k); z_i = \frac{x_i - x_k}{x_{k_2} - x_k}$$

这里, *x_{k1}< x_i< x_{k2}*, 而 *x_{k1}x_{k2}*为节点 *k*₁ 和 *k*₂ 的纵 坐标值, 间距 Δ*x_{k12}= x_{k2}- x_{k1}一般是不相等的*。 对(24) 式微分, 得

$$dy_{i} = a_{x_{i}} dx_{i} + a_{-1i} dc_{k_{1}-1} + a_{0i} dc_{k_{1}} + a_{1i} dc_{k_{1}+1} + a_{2i} dc_{k_{1}+2} + a_{x_{1}} dx_{k_{1}+2} + a_{x_{2}} dx_{k_{2}}$$
(25)

其中

$$a_{x_{i}} = \begin{bmatrix} -\frac{1}{2}c_{k_{1}-1}(1-z_{i})^{2} - \frac{1}{2}c_{k_{1}}\left[(2-z_{i})^{2} - 4(1-z_{i})^{2}\right] + \frac{1}{2}c_{k_{1}+1}\left[(1+z_{i})^{2} - 4z_{i}^{2}\right] + \frac{1}{2}c_{k_{2}+2}z_{i}^{2}\left]\frac{1}{\Delta x_{k_{12}}}$$

$$a_{-1i} = \frac{1}{6}(1-z_{i})^{3}$$

$$a_{0i} = \frac{1}{6}(2-z_{i})^{3} - \frac{2}{3}(1-z_{i})^{3}$$

$$a_{1i} = \frac{1}{6}(1+z_{i})^{3} - \frac{2}{3}z_{i}^{3}, a_{2i} = \frac{1}{6}z_{i}^{3}$$

$$a_{k_{1}} = (z_{i}-1)a_{x_{i}}, a_{k_{2}} = -z_{i}a_{x_{i}}$$

考虑在节点 k1 和 k2= k1+ 1 之间取任意点, 则对节点 k1 和 k2, 因 zk1= 0, zk2= 1, 所以有

$$\begin{cases} dy_{k_1} = \frac{1}{6} (dc_{k_1-1} + 4dc_{k_1} + dc_{k_2+1}) \\ dy_{k_2} = \frac{1}{6} (dc_{k_1} + 4dc_{k_1+1} + dc_{k_1+2}) \end{cases}$$
(26)

其中

对

$$a_{x_{1}} = \left(-\frac{1}{2}c_{k_{1}-1} + \frac{1}{2}c_{k_{1}+1}\right)\frac{1}{\Delta x_{k_{12}}}$$

$$a_{x_{2}} = \left(-\frac{1}{2}c_{k_{1}} + \frac{1}{2}c_{k_{1}+2}\right)\frac{1}{\Delta x_{k_{12}}}$$

$$interpretent in the second sec$$

$$\begin{cases} s_{1i}^{2} = (x_{i} - x_{k_{1}})^{2} + (y_{i} - y_{k_{1}})^{2} \\ s_{1i} ds_{1i} = \Delta x_{1i} (dx_{i} - dx_{k_{1}}) + \Delta y_{1i} (dy_{i} - dy_{k_{1}}) \end{cases}$$
(27)

C 1177

由式(25)、(26)和(27),可得到

$$\begin{bmatrix} dx_i \\ dy_i \end{bmatrix} = \begin{bmatrix} -a_{x_i} & 1 \\ \Delta x_{1i} & \Delta y_{1r} \end{bmatrix}^{-1} \begin{bmatrix} A_x & A_c & 0 & 0 \\ A_{sx} & 0 & s_{li} & 0 \end{bmatrix} \begin{bmatrix} dx \\ dc \\ ds_{1i} \\ ds_{2r} \end{bmatrix}$$

式中

$$dX = \begin{bmatrix} dx_{k_1} & dy_{k_1} & dx_{k_2} & dy_{k_2} \end{bmatrix}^{T}$$

$$dc = \begin{bmatrix} dc_{k_1} & dc_{k_1+1} \end{bmatrix}^{T}$$

$$A_{x} = \begin{bmatrix} a_{x_{k_1}} & 6a_{-1i} & a_{x_{k_2}} & 6a_{2i} \end{bmatrix}$$

$$A_{c} = \begin{bmatrix} a_{0i} - 4a_{-1i} - a_{2i} & a_{1i} - a_{-1i} - 4a_{2i} \end{bmatrix}$$

$$A_{sx} = \begin{bmatrix} \Delta x_{1i} & \Delta y_{1i} & 0 & 0 \end{bmatrix}$$

类似地、由 s_{2i} 可得到

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$\begin{bmatrix} dx_i \\ dy_i \end{bmatrix} = \begin{bmatrix} -a_{x_i} & 1 \\ \Delta x_{2i} & \Delta y_{2r} \end{bmatrix}^{-1} \begin{bmatrix} A_x & A_c & 0 & 0 \\ B_{sx} & 0 & 0 & s_{2r} \end{bmatrix} \begin{bmatrix} dX \\ dc \\ ds_{1i} \\ ds_{2r} \end{bmatrix}$$

式中

56

 $B_{sx} = \begin{bmatrix} 0 & 0 & \Delta x_{2i} & \Delta y_{2i} \end{bmatrix}$

$$\begin{cases} x = x (z_i) \\ y = y (z_i) \end{cases}$$
(28)

则过曲线上点 G_λ(x_λ, y_λ)的曲线的法线方程为

$$\lambda(x - x\lambda) + y\lambda(y - y\lambda) = 0$$
 (29)

其中

$$\begin{cases} x_{\lambda}^{\circ} = \left(\frac{dx}{dz}\right) \Big|_{z=z_{\lambda}} = x_{k_{2}} - x_{k_{1}} \\ y_{\lambda}^{\circ} = \left(\frac{dy}{dz}\right) \Big|_{z=z_{\lambda}} = -\frac{1}{2}c_{k_{1}-1}\left(1 - z_{\lambda}\right)^{2} - \\ \frac{1}{2}c_{k_{1}}\left[\left(2 - z_{\lambda}\right)^{2} - 4\left(1 - z_{\lambda}\right)^{2}\right] + \\ \frac{1}{2}c_{k_{1}+1}\left[\left(1 + z_{\lambda}\right)^{2} - 4z_{\lambda}^{2}\right] + \frac{1}{2}c_{k_{2}+2}z_{\lambda}^{2} \end{cases}$$

因此,为了求得最大方向误差带宽值及相应 的 9;将 9 0%和 z λ 这三个量作为参数,从而构成条 件极值函数,采用前面所讨论的类似于条件平差 的迭代求解方法得到各参数的改正值,由此可求 6,带宽值,并得出由 6,模型所决定的三次 B 样 条曲线的不确定性域。

5 算例分析

进行数字化模拟实验, 共采集 10 个点, 包括 各点的(*x* _& *y* _i) (*i*= 1, 2, ..., 10) 坐标, 例如表 1。实 际中多采用分段方法对曲线进行拟合, 故总能得 到分段的单值曲线, 设其边界条件为起点, 终点的 二阶导数为零, 即

$y_1 = y_{10} = 0_0$

采用三次 B 样条拟合出这条曲线^[13],其中在区间 [1.0,2.0]上,函数的表达式中求得的插值系数为

*c*₀= 268 8, *c*₁= 244 0, *c*₂= 219 2, *c*₃= 205 2 代入式(24)即得在区间[1.0,20]上的任意一点的表达式。在该区间上的曲线形状如图1所示。考虑区间端点坐标的精度的两种情况: 端点等精 度并且不相关, $\sigma_{11}^{2} = \sigma_{21}^{2} = \sigma_{22}^{2} = 18\ 71\ m^{2}$, $\sigma_{11y_{1}} = \sigma_{22y_{2}} = 0$, 一般情况, $\sigma_{11}^{2} = \sigma_{22}^{2} = 18\ 71\ m^{2}$, $\sigma_{12y_{2}} = -8\ 83\ m^{2}$, $\sigma_{12y_{2}} = -8\ 83\ m^{2}$, 并且距离量测和插值系数的方 差值均为 1 m²。

从该区间的样条曲线形状看, 它非常接近于 一条直线。从表 2 和表 3 的计算结果可以看到, 曲 线的 6 和 6 模型在端点等精度的情况下, 相差不 大, 而在一般情况下, 如情况 下, 6 比 6 的值要 大。同时, 从表 2 中 8 样条曲线和直线的误差带 的比较, 可以看到, 在同一邻界点处, 8 样条曲线 的误差带宽值大于直线。图 2(c)是该区间上 8 样 条曲线的误差椭圆和误差带的可视化。

表1 数字化坐标数据

Tab 1 The digitized coordinate data										
x ∕m	1.0	2 0	30	4 0	5 0	60	7.0	8 0	9.0	10 0
v/m	244 0	211.0	208 0	208 0	211.5	216 0	219 0	221.0	221.5	220 (

表 2 第 种情况下 B 样条曲线误差参数 及与直线误差带宽的比较

Tab 2 Error parameters and error bands of the Bspline curve on the first assumption and compared with line segment

^r 1	$\sigma_{x_i}^2 / m^2$	$\sigma_{y_i}^2 / m^2$	σ _{x i} y i/ m ²	A 1/ m	<i>B</i> 1∕ m	Φ _i / (°)	€σ∕ m	€n / m	€σ∕ m	
0 10	15. 333	15 919	- 0.118	3 993	3 913	100-58-21	3. 915 7	3 915 9	3 879 0	
0 20	12 710	13 055	- 0 196	3 625	3 553	114-16-58	3. 565 1	3 565 2	3 505 5	
0 30	10 837	11. 112	- 0 246	3 355	3 270	120-26-32	3. 292 0	3 292 8	3 250 8	
0 40	9 714	10 068	- 0 279	3 197	3 092	118-48-57	3. 116 8	3 117 0	3 088 4	
0 50	9. 373	9.854	- 0 294	3 161	3 039	115-21-56	3. 061 6	3 061 6	3 061 0	
0 60	9 713	10 522	- 0.304	3 259	3 100	108-28-51	3. 116 6	3 118 0	3 107 7	
0 70	10 835	11 904	- 0 291	3 461	3 280	104-17-11	3. 291 6	3 291 6	3 272 0	
0 80	12 706	13 956	- 0 248	3 742	3 558	100-49-52	3. 564 5	3 565 3	3 535 8	
Q 90	15. 329	16 592	- 0.159	4 076	3 913	97-05-22	3. 915 3	3 915 5	3 878 9	

* A 1, B 1, 4; 分别为误差椭圆的长, 短半轴和主轴方向, 下同

表 3 第 种情况下B 样条曲线误差参数 及误差带宽计算值

Tab 3 Error parameters and error bands of the Bspline curve on the second assumption

	B 样条曲线										
r_1	$\sigma_{x_i}^2/$	$/ \sigma_{y_i}^2 / \sigma_{x_i y_i} /$		A 1/	B 1/	$\Phi_i/$	<i>€</i> σ/	6 n /			
	m 2	m ²	m ²	m	m	(*)	m	m			
0 10	15. 792	7. 303	6 594	4 403	1. 925	28-36-58	3 973 9	4 156 4			
0 20	12 998	6 045	4 792	3 930	1. 898	27-01-08	3 605 3	3 743 5			
0 30	11. 004	5. 241	2 989	3 503	1. 993	23-01-32	3 317 2	3 389 7			
0 40	9.790	4 881	1. 187	3 172	2 147	12-54-31	3 128 9	3 143 9			
0 50	9. 339	4 948	- 0 610	3 070	2 206	172-14-01	3 056 0	3 059 9			
0 60	9.632	5.418	- 2 399	3 274	$2\ 081$	155-28-32	3 103 5	3 164 9			
0 70	10 648	6 262	- 4.173	3 629	1. 934	148-51-39	3 263 1	3 411 0			
0 80	12 363	7.442	- 5.922	4 039	1. 868	146-16-50	3 516 1	3 740 7			
0 90	14.750	8 918	- 7. 635	4 473	1.913	145-27-05	3 840 6	4.1189			

若以直线代替区间[1.0,20]上的B 样条曲 线(即以直线连接两个端点),以相同的假设,可以 得到该直线的误差带(如图2(a)),以及相同端点 的圆曲线(即以两个端点为弦,拟合得与该弦十分 接近的弧段,如图2(b))。从以上计算结果可知, 在对曲线目标的误差建模时,采用本文所提出的 模型和方法比以折线(直线)为基础来进行度量更 加严格。

图 2 直线 圆曲线和 B 样条曲线的误差带的可视化

Fig 2 The error band visualization for straight line, circular curve line and B-sp line curve

6 结束语

本文分析了现实曲线型目标在 GIS 中的三 种表达形式, 即折线逼近, 规则曲线和不规则曲线 描述, 综述了其相应的不确定性处理模型和方法, 提出了 GIS 中一般曲线的位置误差模型, 即以曲 线法线方向的中误差表示误差带宽的 & 模型, 即以 及理论上更为严密的以最大方向误差表示带宽的 & 模型。理论上, 本文所提出的 & 带模型及 & -带 模型是对传统的 e 带的进一步发展与完善。同时, 以三次 B 样条曲线为例, 具体地阐述了一般曲线 位置不确定性模型的实现方法, 并与折线, 圆曲线 等进行了比较, 认为本文所提出的模型和方法比 以折线(直线)为基础来进行度量更加严格。

References:

 NCDCDS The Proposed Standards for Digital Cartographic Data [J] The American Cartographer, 1988, 15(1): 9**-**140

- [2] PERKAL J. On Epsilon Length [J] Bulletin de i'A cadem ie Polonaise des Sciences, 1956, 4: 399-403
- [3] PERKAL J. On the Empirical Curves: Discussion Paper 10[R]. Ann Arbor M I: M ichigan Inter-University Community of M athematical Cartographer, 1966
- [4] CHR ISMAN N R. A Theory of Cartographic Error and ItsM easurement in DigitalDataBase[A] Proceedings of Auto-Carto 5 [M] Bethesda, MD: American Congress on Surveying and Mapping, 1982 158-159
- [5] BLAKEMORE M. Generalization and Error in Spatial Databases [J] Cartographica, 1984, 21 (2): 131-139.
- [6] SH IW en-zhong Modeling Positional and Thematic Uncertainties in Integration of Remote Sensing and Geographic Information Systems[D] Holland: ΠC Publication, 1994
- [7] SH IW en-zhong A Generic Statistical Approach for Modeling Errors of Geometric Features in GIS[J] International Journal of Geographical Information Science, 1998, 12(2): 131-143
- [8] TONG Xiao-hua, SHIW en-zhong, LU Da-jie Uncertainty Model of Circular Curve Features in GIS[J] A cta Geodaetica et Cartographica Sinica, 1999, 28(4): 38-43 (in chinese)
- [9] TONG Xiao-hua, SHIW en-zhong, LU Da-jie Development of Error Models for Transition Curves in GIS [A] Proceedings of the International Symposium on Spatial Data Quality [C] HongKong: The HongKong Polytechnic University, 1999, 299-307.
- [10] HUANG You-cai, L U Wen-bao. Building the Estimation Model of Digitizing Error [J] Photogrammetric Engineering and Remote Seneing, 1997, 63 (10): 1203-1209.
- [11] GOODCH LD M F, Hunter G J. A Simple Positional A ccuracy M easure for L inear Features [J]. International Journal of Geographical Information Science, 1997, 11 (3): 299-306
- [12] CA SPARYW, SCHEURNGR. PositionalA ccuracy in SpatialDatabases[J] Computer, Environment and U rban System, 1993, 17(2): 103-110
- The Editing Group for Handbook of M athematics
 The Handbook of M athematics [M]. Beijing: The
 Higher Education Publishing House, 1979 (in

Chinese)

58

2

- [14] GON G Jian-ya, HUAN G Jun-tao, et al The Spatial Data Transform Format of China [A]. Proceedings of CA G IS, CPG IS 1998 Annual Conference [C]. Beijing: Chinese Association of G IS, 1998 201-217. (in Chinese)
- [15] L U Da-jie, TONG Xiao-hua Research on the Uncertainty models for Line and Curve Prini-

tives in GIS [A] Proceedings of 17 th Research and Application of Surveying and Mapping [C] Taiwan: ChengGong University, 1998 1263-1270 (in Chinese)

 [16] L U Da-Jie, HUA Hui The More Discussion to the Modeling Uncertainty of Line Primitives in G IS [J] A cta Geodaetica et Cartographica Sinica, 1998, 27(1): 45-49. (in Chinese)

《测绘学报》撰稿要求及格式

1. 论文内容应论点明确, 层次清楚, 结构严谨, 术语准确, 语句精炼, 数据可靠, 图表清晰, 不涉及国家政治、经济及技术秘密。

2 论文摘要应反映新内容、作者强调的观点及论文的主要结论。中文摘要字数在 200 左右, 英文摘要可尽量详写,字数不超过半页(今后本刊不计收英文摘要的版面费)。关键词应中英文对 照,可列出 3~ 5 个。

3 分类号应根据论文内容按中国图书馆图书分类法进行编号。

4 论文的章节标题不超过 3 级, 一级用"1", 二级用"1.1", 三级用"1.1.1", 顶格书写。注解 标在同页下部, 并划一横线与正文隔开。数字、量和单位应符合国家标准(用规定的符号)。外文 字母应用铅笔标明文种, 大小写, 正斜体, 上下标。表格尽可能用三(横)线表。

5. 论文中的图名、表注请同时用中、英文标注。

6 文章前言务必简要介绍该论文的科研背景、国内外同类课题研究进展评述等内容。文章 中引用他人成果时只介绍其结论,并详细标明其出处(包括文献页码)。

7. 为便于对外进行测绘科技交流,本刊今后将提供一定比例的版面刊登全稿以英文文种撰写的论文,欢迎国内外测绘专家向本刊寄投英文稿件。来稿的内容、格式、篇幅等与中文相应(英文稿请附 2000 字以内的详细中文摘要)。

8 论文格式为"标题/作者及单位,地点,邮编/英文(标题,作者及单位,摘要及关键词)/摘要及关键词、分类号/正文/参考文献"。

9. 参考文献按正文引用先后排序,必须是公开发表的资料,中外文文献书写格式均为

|期刊: 作者: 论文题目[文献类型标识]] 刊名, 年份, 卷号(期号): 起止页码

图书: 作者或原作者(译者). 书名[文献类型标识] 出版地: 出版社, 年份. 起讫页码 中文参考文献请附英文译名。

10 来稿一式两份。打印稿或用钢笔、圆珠笔单面横写在 16 开方格稿纸上,字迹要清楚、规范,请在随稿信件中务必写清作者姓名、单位(大学应列出下属院系名或研究所名)、邮政编码、详细地址、电话号码,以及第一作者个人信息(性别、年龄、职称、学位、是否博导等)。

11. 请注明科研课题项目所属资助基金及编号。

12 本刊《博士论文摘要》栏目继续征稿, 欢迎广大测绘及其相关学科的博士毕业生投稿, 要求中英文标题, 字数 800 字左右, 并附简短个人信息和指导教师姓名。