# 指数曲线模型预测基坑周边地面沉降

# 熊春宝,李法超

(天津大学建筑工程学院,天津 300072)

摘 要:结合天津富裕广场三期工程基坑周围地面沉降观测的工作实践,利用指数曲线法对该工程的地面沉降 过程进行了预测,得出实际观测值与预测值之间的拟合曲线,并通过比较得出该预测方法的优劣。 关键词:沉降预测;指数曲线;模型 中图分类号:TU196 文献标识码:B 文章编号:1672 - 5867(2011)04 - 0004 - 03

# The Exponential Curve Method Model for Predicting Foundation Settlement in the Base Pit Vicinity

XIONG Chun – bao ,LI Fa – chao

(School of Civil Engineering , Tianjin University , Tianjin 300072 , China)

**Abstract**: Based on the practice of observing surface subsidence around the foundation of the third period project of Tianjin Fuyu Square this paper carried on a prediction of the surface subsidence process of the project applying exponential curve method and obtained a fitting curve between actual observation value and prediction value and the advantages and disadvantages of this method. **Key words**: foundation settlement prediction; exponential curve method; model

# 1 沉降预测机理

众所周知,建筑物的最终沉降量是经过3个过程完成 的 即瞬时沉降、固结沉降和次固结沉降三部分<sup>[1-3]</sup>。

瞬时沉降由于是在很短的时间内完成的,所以可以 假定瞬时沉降与时间无关。对于非饱和土体来讲,由于 土体中充满着空气和水,有很大的变形空间,在荷载施加 后,土体中的气体立即被压缩,土体的骨架也随之发生变 形。对于饱和土体来讲,在荷载作用下立即发生瞬时沉 降,该变形主要是由于在体积不变的情况下负载区域下 方的土体变化引起的。在负荷区域的正下方同时发生的 两个方向的变形,即垂直压缩变形和侧向压缩变形,所以 说可以讲此过程看成是土体的侧向屈服。这一过程表现 在全过程沉降的 *S* 与 *t* 的曲线图(如图 1 所示)上的 0 点 到 *a* 点的过程,此过程就是瞬时沉降。

我们可以将固结沉降与次固结沉降看作一个过程来 进行分析,如图1的  $a \cong e$  的过程所示。首先对于直线段 a - b 来说,由于刚刚施加上的荷载不大,且时间也不是很 长,在较短的时间和较小的荷载的情况下,土体处于弹性 或近似弹性的状态下,所以时间t与沉降值S是直线的关 系。对于 b - c段来说S 与t 是成曲线的关系,这是由于



图 1 全过程沉降的 S-t 曲线 Fig. 1 The S-t curve of whole procedure settlement

随着荷载的不断增加,土体逐渐进入了弹塑性阶段,这就标志着S与t的关系由直线变为了曲线,进入弹塑性阶段的土体在荷载的不断作用下逐渐扩大范围,并且沉降速率ds/dt不断增大,直到荷载不再增加。对于c-d段来讲,到达c点时荷载已不再增加,但是由于固结还没有完全完成以及土体流变的影响,土体的沉降会继续进行,只是沉降速率ds/dt会逐渐减小。对于d-e段来讲,沉降量S与时间t又恢复成直线的关系,这是由于随着时间的无限推移,土体的固结逐渐的趋于稳定,也就是说沉降已经达到极限状态,此时沉降将不会随时间而发生变化。因此全过程沉降量S与时间t的关系就是如图 1 所示的不

收稿日期:2010-06-21

作者简介:熊春宝(1964 - ) ,男 ,湖北人 教授 ,博士 ,1998 年毕业于天津大学精密仪器与光电子工程专业 ,主要从事防灾减灾与岩土 工程监测等方面的研究与教学工作。

a b 为待定系数。

过原点的"S"型曲线。这种 S - t 曲线特征吻合指数曲线 模型。

# 2 指数曲线预测模型的计算步骤<sup>[4-5]</sup>

指数曲线预测模型的基本方程为:

 $S_{t} = S_{x} - ae^{-bt}$ (1) 式(1) 中  $S_{t}$  为第 t 时刻的沉降预测值; t 为沉降观测日期;

选择 3 个时间点  $t_1$   $t_2$   $t_3$  使得  $t_2 - t_1 = t_3 - t_2 = \Delta t$  且使  $\Delta t$  尽可能的大  $S_1$   $S_2$   $S_3$  分别为对应时间的沉降值 即:

 $S_1 = S_{\infty} - ae^{-b(t_2 - \Delta t)}$  $S_2 = S_{\infty} - aet^{-b\Delta t}$  $S_3 = S_{\infty} - ae^{-b(t_2 + \Delta t)}$ 

联立以上3个式子可得:

$$S_{\infty} = \frac{S_{3}(S_{2} - S_{1}) - S_{2}(S_{3} - S_{2})}{(S_{2} - S_{1}) - (S_{3} - S_{2})}$$
  
$$b = \frac{1}{\Delta t} \ln \frac{S_{2} - S_{1}}{S_{3} - S_{2}}$$
  
$$a = \frac{1}{3} \left[ (S_{\infty} - S_{1})^{e^{it}} + (S_{\infty} - S_{2}) e^{bt_{2}} + (S_{\infty} - S_{1}) e^{bt_{3}} \right]$$
  
(2)

求出以上的 3 个参数,代入式(1),就可以得到该模型的预测方程。

# 3 工程实例介绍

天津富裕广场三期工程位于天津市河西区解放南路 旁,该工程基坑由天津市建筑设计院设计,天津富裕房地 产开发有限公司开发。基坑地下3层,有两道帽梁和支撑 组成,基坑深约14m。由于地质条件不明确,前期的基坑 开挖工作无法有条有理地进行,必须有专业的测绘团队 在基坑开挖过程中时刻对基坑周围的土体进行监测,以 免在基坑开挖过程中出现基坑中某一土体大范围塌陷的 工程事故,以影响工程人员的人身安全和工程的顺利进 行。所以天津富裕房地产开发有限公司委任天津市陆海 测绘有限公司对该工程进行了严格的岩土工程勘察工 作,并且负责监测基坑开挖过程中基坑周围监测点的沉 降情况。监测点的布置情况如图2所示。

从该工程的沉降观测数据中,选取15组具有代表性的数据进行计算,数据见表1。

| 表1 | 1号点的沉降观测数据表(单位:毫米) |
|----|--------------------|
| 衣I | 1亏点的沉降观测数据衣(单位,笔木  |

 Tab. 1
 The settlement observations of

|              | point No.1 (Unit: mm) |        |  |  |  |
|--------------|-----------------------|--------|--|--|--|
| 沉降观测日期       | 建筑物沉降差                | 建筑物沉降量 |  |  |  |
| 2008 - 8 - 1 | 0.99                  | 0.99   |  |  |  |
| 2008 - 8 - 2 | 0.68                  | 1.67   |  |  |  |
| 2008 - 8 - 3 | 0.54                  | 2.21   |  |  |  |
| 2008 - 8 - 4 | 1.26                  | 3.47   |  |  |  |
| 2008 - 8 - 5 | 0.40                  | 3.87   |  |  |  |

| ,             | Tab.1(Continued) |        |
|---------------|------------------|--------|
| 沉降观测日期        | 建筑物沉降差           | 建筑物沉降量 |
| 2008 - 8 - 6  | 0.94             | 4.81   |
| 2008 - 8 - 7  | 0.86             | 5.67   |
| 2008 - 8 - 8  | 0.30             | 5.97   |
| 2008 - 8 - 9  | 0.38             | 6.35   |
| 2008 - 8 - 10 | 0.23             | 6.58   |
| 2008 - 8 - 11 | 0.30             | 6.88   |
| 2008 - 8 - 12 | 0.16             | 7.04   |
| 2008 - 8 - 13 | 0.32             | 7.36   |
| 2008 - 8 - 14 | 0.20             | 7.56   |
| 2008 - 8 - 15 | 0.14             | 7.70   |

续表1



图 2 基坑周围建筑物及地下管线沉降 监测点位置示意图

Fig. 2 The position map of settlement monitoring points for buildings in the base pit vicinity and underground pipeline

# 4 指数曲线模型的沉降计算与分析

从中选取 3 个时间点的观测数据,分别为 2008 – 8 – 1 2008 – 8 – 8 和 2008 – 8 – 15 作为基础的计算数据,利 用式(1) 和式(2) 计算得到该预测模型的方程为:

S<sub>t</sub> = S<sub>x</sub> - ae<sup>-bt</sup> = 8.62 - 8.80e<sup>-0.15t</sup>
 利用该方程和 Excel 表可以得到表 2 的预测结果。
 为了更清晰地看到预测模型的预测精度情况,作出
 观测值与模型计算值的对比曲线,如图 3 所示。

Tab. 2 The relative errors of settlement observations and calculation values by model of point No.1(Unit:mm)

| 沉降观测日期        | 模型计算值 | 观测值  | 相对误差/%    |
|---------------|-------|------|-----------|
| 2008 - 8 - 1  | 1.04  | 0.99 | 5.05.     |
| 2008 - 8 - 2  | 2.10  | 1.67 | . 25. 74. |
| 2008 - 8 - 3  | 3.00  | 2.21 | 35.74     |
| 2008 - 8 - 4  | 3.79  | 3.47 | 9.22      |
| 2008 - 8 - 5  | 4.46  | 3.87 | 15.24     |
| 2008 - 8 - 6  | 5.04  | 4.81 | 4.78      |
| 2008 - 8 - 7  | 5.54  | 5.67 | 2.29      |
| 2008 - 8 - 8  | 5.96  | 5.97 | 0.16      |
| 2008 - 8 - 9  | 6.34  | 6.35 | 0.15      |
| 2008 - 8 - 10 | 6.65  | 6.58 | 1.06      |
| 2008 - 8 - 11 | 6.92  | 6.88 | 0.58      |
| 2008 - 8 - 12 | 7.16  | 7.04 | 1.70      |
| 2008 - 8 - 13 | 7.36  | 7.36 | 0         |
| 2008 - 8 - 14 | 7.54  | 7.56 | 0.26      |
| 2008 - 8 - 15 | 7.69  | 7.70 | 0.13      |

#### 结束语 5

通过图 2 的拟合曲线可以明显看出:

1) 指数预测模型的前期预测能力较差,中后期的预 测能力较好。所以指数曲线预测模型比较适合于中长期 的沉降预测。

2) 表 2 中的 8 - 2 ~ 8 - 5 几个点的相对误差较其他点 出现了较大的波动,可以看出指数曲线预测模型样本点 的波动性较大 整体预测能力较差。

3) 当预测模型样本点的波动性较大时,应该利用带

# (上接第3页)

# 参考文献:

- [1] 李志林 朱庆·数字高程模型[M]. 武汉: 武汉大学出版 社 2001.
- [2] Zhu Changqing et al. Estimation of average DEM accuracy under linear interpolation considering random error at the nodes of TIN model [J]. International Journal of Remote Sensing 2005 26(24): 5509 - 5523.
- [3] 胡鹏.新数字高程模型理论、方法、标准和应用[M].北 京:测绘出版社 2007.
- [4] 汤国安 龚健雅 成燕辉 等 数字高程模型地形描述精 度量化模拟研究 [J]. 测绘学报, 2001, 30(4): 361 - 365.
- [5] 王光霞 朱长青 史文中 ,等. 数字高程模型地形描述精 度的研究[J]. 测绘学报 2004 33(2): 168-173.
- [6] Mikhail E. M. 观测与最小二乘法 [M]. 唐昌先, 邹笃醇 译.北京:测绘出版社 1984.



# Fig. 3 The comparison curves between calculation values by exponential curve prediction model and observations of point No. 1

有残差的预测模型进行修正 减少外界不利因素对模型 的影响。

### 参考文献:

- [1] 李广信. 高等土力学[M]. 北京: 清华大学出版社 2004.
- [2] 罗战友 龚晓男 杨晓军. 全过程沉降量的灰色 Verhulst 预测方法[J].水利学报 2003(3):29-32.
- [3] 宰金珉 梅国维. 全过程的沉降量预测方法研究 [J]. 岩 土力学 2000 21(4): 322-325.
- [4] 马国亮,方宝君.基于沉降监测的预测模型的选取[J]. 矿山测量 2009 8(4):38-40.
- [5] 王锦山,孟德光.基与实测数据软土地基沉降预测方法 及工程实例分析 [J]. 河南理工大学学报 ,2006 A(2): 151 - 155.

### [责任编辑:王丽欣]

- [7] Kubik ,K. and Botman ,A. Interpolation accuracy for topographic and geological surfaces [J]. ITC Journal ,1976 2: 236 - 274.
- [8] Frederoksen , P. Jacobi , O. Kubic K. Optimum sampling spaceing in digital elevation models [J]. International archives of photogrammetry and Remote Sensing ,1986 ,26 (3): 252 - 259.
- [9] 周世健,曾绍炳.测量误差的概括分布[J]. 计量技术, 2001(10):48-49.
- [10] Weng Q. Quantifying uncertainty of digital elevation models derived from topographic maps [C] // Advances in Spatial Data Handling ,edited by D. Richardson and P. van Oosterom , Springer - Verlag , New York , 2002: p. 403 -418
- [11] 王耀革,王志伟,朱长青,DEM 误差的空间自相关特征 分析[J]. 武汉大学学报(信息科学版) 2008 34(12): 1259 - 1262.

### [责任编辑:王丽欣]