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Short-term automatic forecast algorithm of severe convective
cloud identification using FY-2 IR images
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Abstract: The movement of clouds is qualitative analyzed by forecasters with satellite images currently, which is, however,
lack of objectivity and quantitativity. In this paper, based on the stationary satellite infrared (IR) channel (10.3—11.3 um) im-
ages of FY-2C and FY-2D with the time resolution of 15 minutes, brightness temperature (BT) and area threshold are selected to
identify the severe convective cloud (SCC). We then use the SCC matching algorithm of maximum correlation to track the short-
time automatic prediction of SCC systematically. The experiment results show that the tracking method proposed in this work
has higher matching accuracy and efficiency compared with the traditional cross-correlation approach. The cloud center of grav-
ity (CG) extrapolation is markedly superior to the minimum temperature, and the mean temperature, area and roundness all have
better indications to the cloud split and merge. Tested by contingency table, the automatic identification and tracking technology
has high prediction accuracy and timeliness. In addition, the research of this paper provides a scientific basis for the objective
and quantitative application of satellite images to SCC short-time prediction in operation.
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1 INTRODUCTION

Satellite images have become the critical information resources
in the weather forecast, which plays an important role in real-time
objective analysis and monitoring identification. The characteristics
of the meso-scale severe weather (e.g., storms and typhoons) are
of rapid occurrence and development, fast movement, and great
destructiveness, which show a huge demand for the weather moni-
toring and forecasting. Doppler radar could monitor the strong con-
vective activity effectively in real-time, but it is expensive, difficult
in selecting position, and limited in the monitoring range. While
geostationary meteorological satellite can provide all-weather and
all day satellite images in large scare, based on satellite images, it is
possible to track and warn of the severe convective cloud (SCC) by
monitoring the variation and movement of the clouds.

Nowadays, it has been achieved from manual to automatic
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tracking when using satellite data to identify the clouds. With the
area overlapped comparison method, we can realize the automatic
tracking for the low cloud top (CT) temperature of infrared (IR)
image (Arnaud, et al., 1992). The method of automatically tracking
and identifying the meso-scale convective system is achieved based
on the maximum spatial correlation tracking technique (Carvalho
& Jones, 2001). NCAR has built the Auto-Nowcast system (Mueller,
et al., 2003). Bai, et al. (1997) put forward a segment smoothing
filter algorithm and threshold algorithm to filter SCC in the infra-
red image preprocessing, then uses pattern recognition and pattern
match technique to trace the SCC. Li (1998) and Liu, et al. (2006)
achieved good results in short-term forecast of cloud motion with
slowly change using cross-correlation method. Two defects ex-
ist in the cross-correlation method: first is that the SCC is always
divided into several cells during model calculating, which affects
the completeness of the SCC and reduces the matching accuracy
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of the clouds; secondly, this model calculates the whole study area
no matter whether the clouds exists or not, which leads to high
computing capacity and low efficiency. In this paper, using high
temporal resolution satellite images of FY-2C and FY-2D, we put
forward an improved maximum correlation method based on the
cross-correlation method to realize the matching and tracking of
the SCC, and then predict the position, intensity, and location of the
SCC in the encounter time.

2 AUTOMATIC IDENTIFICATION, TRACKING
AND PREDICTION TECHNOLOGY

2.1 Identification approach

Besides SCC, there are usually other types of cloud clusters
or cloud systems mixed at the FY-2 IR images, which can cause
uncertainties for the identification and tracking of SCC. This paper
adopts the threshold of both BT and area to extract SCC from satel-
lite cloud pictures.

The determination of threshold will affect statistic parameters, such
as the life period, beginning position (Vila, et al., 2008). Combined
with former research and the characteristics of SCC in the midlatitude
region in our country, this paper selects the BT of 235 K as one thresh-
old of SCC (you need to give reference here to support you selec-
tion). At the same time, according to the time interval of consecutive
satellite images and the average movement speed of cloud clusters,
the pixel numbers of SCC at least reached 100 can be identified,
namely 2500 km® with a spatial resolution of 5 kmx5 km.

Parameters of cloud cluster mainly include space, radiation and
shape, which can describe the position, intensity and range of SCC.
With the evolution of weather, the position, intensity, shape, size
and texture feature of SCC change constantly. Through measuring
quantitatively the parameters above, the life period of SCC can be
determined, ensures the forecast the future state of SCC based on
these parameters.

2.1.1 Space parameters

(1) The location of SCC’s center of gravity (CG) (Xcg, Ycg) 18

defined as T-weighed average,

.
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where X,, and ¥, are the longitude and latitude of SCC pixel, respec-
tively; T} is the BT of SCC; N, is the number of all pixels in SCC.
(2) The location of SCC minimum BT (X, Y1) 1S defined as
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where X, and Y; are the longitude and latitude of SCC pixels, re-
is the minimum BT of pixels in the SCC. M, is the

mini

spectively; T,

number of all pixels equaling to 7.
We can identify the SCC location through both SCC CG and
minimum BT, and the deviation between them can be used to judge
the offset direction of temperature in SCC. For instance, if the posi-
tion of CG is located on the left of minimum BT, the temperature of
SCC at the east is higher than at the west.
2.1.2  Radiation parameters
(1) The mean temperature of SCC ( 7 ) is defined as the T} average:

P ] 3)

(2) The minimum temperature of SCC (7,,,) is defined as the
minimum BT of pixels in the SCC:
T = Min(T}) 4)
2.1.3  Shape parameters
(1) The area of SCC (S) is defined by
S=k*N, 5)
where £ is the side length of pixel.
(2) The circumference of SCC (L) is defined by
L=k'N, (6)
where N, is the number of boundary pixels of SCC.
(3) The standard deviation of cloud-top BT (o7):

/g(r&. -T)

A @

(4) The roundness of SCC (e) is defined as the ratio of area and
circumference:

e:4n><% ®)

which reflects the complexity of the cloud shape. If the shape is
closer to round, e is closer to 1; the more complex the shape, the
smaller the e.

As shown in Fig. 1, regions of all SCC are identified in IR im-
ages at the time ¢, and ¢, (¢,=t,+At, At means the time interval) ac-
cording to both the temperature and area threshold, and the number
of SCC identified are M and N, respectively. Regions that do not
meet the threshold criteria are set to null value.

Fig. 1 Schematic diagram of maximum correlation coefficient method
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2.2 Tracking algorithm

Based on the maximum correlation between two consecutive IR
images, we can judge the location of SCC at the next time. On the
basis of cross-correlation coefficient tracking algorithm, maximum
correlation coefficient is proposed, and its calculation procedures
are shown as below.

Step 1 Region of f™ SCC (1<f<M) is firstly identified ac-
cording to the threshold at time #,, and the CG o represents the center
of rectangle covering the SCC, which has a size of mxn, where m
and n are the number of pixels in longitude and latitude directions,
respectively. Based on the movement speed /' of SCC and the
time interval At of two consecutive IR images, the search range of
matching cloud in ¢, IR image is defined as PxQ (P=m, Q =n),

P=m+2-V-At
O0=n+2-V-At ©)
which is based on the hypothesis of isotropic movement of all SCC.

Step 2 The search rectangle mxn traverses N SCC in the
regions of PxQ at time #, IR image. The correlation coefficient be-
tween the f™ SCC at time ¢, and the hypothetical matching SCC at
time ¢, is given by
S3(160-1 (1.1,

=l j=1

r= 2 - (10)
E3(re-n ) ($3(nenT)

i=l j=1 =l j=1

where T;, and T; are the mean BT of the f™ SCC and hypothetical
matching SCC, respectively. Thus, the maximum correlation SCC
in search regions is chosen to be the matching SCC of /™ SCC.

Step 3 The Step 1 and Step 2 are repeated until to track all
SCC at time ¢,.

Compared with cross-correlation method, the maximum cor-
relation algorithm improves both the accuracy and the efficiency of
searching matching cloud.

2.3 Forecast method

The time of short-time forecast is defined as 2 hours, and the
time interval is 30 min. The forecast indices include location,
intensity and range. According to the movement trend of SCC in
short-term remaining unchanged in general, the linear least square
method is selected to fit a straight line, then forecast the location,
intensity and range of SCC in future on the basis of regression
equation. There is a reliable forecast result if the SCC has a flat tra-
jectory and keeps the regular movement speed.

3 ALGORITHM TEST

A case of heavy rainfall at the northeast of Hubei province on
July 1st, 2008 is chosen. According to the FY-2C images at the time
from 16:30 July 1st to 1:30 July 2nd and the FY-2D images from
16:45 July Ist to 1:45 July 2nd, the maximum correlation coeffi-
cient method is tested.

The SCC location at the test images must be adjusted before
computation due to the spatial matching errors between FY-2C and
FY-2D. The displacement deviation of two satellites is computed
according to the algorithm proposed by Liu and Wei (2009) to FY-
2C, which indicates that about 1—2 pixel errors can be decreased
after adjusted along the longitude direction. As shown in Fig. 2, at

Number of pixel deviation

0 p
50 60 70 8 90 100 110 120 130 140
Longitude/°E

FY-2C CT height 10 km FY-2D CT height 10 km

FY-2C CT height 12 km FY-2D CT height 12 km

FY-2C CT height 14 km FY-2D CT height 14 km

Fig.2 The displacement deviation curves at the different
cloud top (CT) heights along the longitude direction

least 1 pixel relative error can be decreased between FY-2C and
FY-2D along the latitude direction.

3.1 Parameters analysis

3.1.1 Space parameters analysis

As shown in Fig. 3 and Fig. 4, the CG of object clouds at FY-
2C and FY-2D IR images has a better fitting, and R* equal to 0.98
and 0.94, respectively. In contract, the 7,;, has a poor fitting with
R’ equal of 0.34 and 0.25, respectively. As a result, the CG position
of SCC can represent the movement trajectory well, thus the ex-

trapolation using the CG is superior to the 7,,, when predicting the

future position of SCC.
3.1.2 Radiation and shape parameters analysis

According to the splitting and merging process of SCC from
10:00 on July 1st to 01:45 on July 2nd, the evolution of object
cloud is divided into four stages, each corresponding to the begin-
ning, development, strengthening and weakening, respectively. As
shown in Fig. 5 (a), Fig. 5 (c) and Fig. 5 (d), the mean temperature
and area of object cloud are decreased greatly and the roundness
increased rapidly from the stage 1 to stage 2, which clearly indi-
cate the splitting process of cloud. The analysis above coincides
with the actual situation: the beginning stage the SCC is controlled
by two low-temperature centers, then suddenly splits two clouds
based on the defined threshold; the lower temperature center cloud
is selected to track on the basis of the maximum correlation co-
efficient, and another cloud is considered as a new cloud which
gradually disappears in the follow-up tracking process. At the stage
2, the mean temperature and area of object cloud manifests wide
fluctuations, which is consistent with the accumulation of instabil-
ity energy with the development of cloud. At the stage 3, the mean
BT gradually decreases, while at the same time the area increases,
which demonstrate the cloud feature of growing luxuriantly. At the
stage 4, the object cloud gradually becomes weakened for the rais-
ing mean temperature and reducing area. Therefore, in addition to

the minimum temperature, the mean temperature, area and round-
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ness can reflect the evolution of cloud, and have an indicative effect

to judge the various stage of cloud.

3.2 Verification of tracking

The tracking maps of rainstorm clouds are shown in Fig. 6 from
16:30 to 22:00 on July 1st, 2008. The SCC are identified firstly
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while the area increases, which demonstrate the clouds are becom-
ing stronger. Accordingly, the identification and tracking method in

this paper are convenient and effective.
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Fig. 6 Tracking maps of rainstorm cloud at the northeast of Hubei province on July 1%, 2008
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3.3 Verification of forecast

3.3.1 Testing intensity and range

The evolution of SCC mean temperature from the time of 17:45
to 21:00 is shown in Fig. 7 (a), where the solid line represents the true
value. The dotted line indicates the forecast on the basis of least square
method using FY-2C and FY-2D data at the interval of 15 min, and
the forecast time is 30 min, 60 min, 90 min and 120 min, respectively.
At the same time the true area evolution and the forecast of SCC are
shown in Fig. 7 (b). Accordingly, the forecast of cloud mean tempera-
ture and area are in accordance with the observation of satellite, and the

forecast results explain the cloud at the stage of strong development.
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Fig. 7 The forecast of intensity and range of SCC (The solid line
means the observation, and the dotted line means the forecast)

3.3.2 Testing location

The contingency table method is used to quantitatively as-
sess the forecast of SCC (Wilks, 1995). We consider the forecast
pixel as success if the predicted value and the observed value
are both lesser or equal to the threshold (7,,, <235 K, T <235

pre ™

K); consider as miss if 7,,,<235 K and 7, > 235 K; consider as

pre

fail if 7, > 235 K and T, <235 K. Thus, the probability of de-

P!
tection (POD), false alarm ratio (FAR) and critical success index

(CSI) are defined as:

POD = — e (11)
n

sucess + nmiss

n,..
FAR=— il (12)
nsuccn + nfail
n
CSI = success ( 13)
Agyecess + Piss + Ay

where POD, FAR and CSI are between 0—1. Higher POD and CSI
indicate more accurate of the forecast and smaller FAR also stands
better forecast.

Table 1 The nowcasting skill of FY-2C

Skill 30 min 60 min 90 min 120 min
POD 0.77 0.65 0.55 0.43
FAR 0.19 0.29 0.37 0.47
CSI 0.65 0.52 0.41 0.31
Table 2 The nowcasting skill of FY-2D
Skill 30 min 60 min 90 min 120 min
POD 0.80 0.67 0.58 0.49
FAR 0.17 0.26 0.33 0.41
CSI 0.69 0.55 0.45 0.37

As shown in Table 1 and Table 2, the forecasting POD of FY-
2C and FY-2D after 30 minutes reaches 0.77 and 0.88, respec-
tively, while FAR are only 0.19, 0.17. This indicates 80% pixels
are predicted rightly and 17% are incorrectly for FY-2D IR
images. Therefore, the nowcasting of SCC essentially achieves
the desired effect, but the precision gradually reduces with the
growth of time.

3.3.3 Relation between CT BT and precipitation

As shown in Fig. 8, CT BT has a good relationship with the 1 h
average precipitation measured by rain gauge, and lower CT BT is
corresponded to more precipitation. As a result, once automatic
identification, tracking and prediction methods meet the accuracy
of operation need, we can predict the basic characteristics of heavy
rainfall in future by taking account of the result of SCC forecast.
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Fig. 8 The relation between the observation of rain gauge and the
corresponded BT. (The histogram means the precipitation, and the line
means the BT of CT) July 1, 2008 UTC (Stn 57398)
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4 CONCLUSIONS

Based on high temporal resolution satellite images provided
by FY-2C and FY-2D satellites, maximum correlation coefficient
method is proposed to achieve the identification, matching, track-
ing and prediction of SCC. Tested by the contingency table method,
our method shows satisfied forecast results and higher matching
accuracy and efficiency than cross correlation coefficient method.
Studies have demonstrate that using CG of cloud to predict the
location of clouds can be superior to the minimum BT method
while combining the average BT, area and circularity can play good
instruction in determining the development stage of cloud. This pa-
per provides the basic theory and methods to identifying, tracking,
matching and quantitative predicting high intensity cloud by using
satellite imageries.

Acknowledgements: Thanks to Hubei Meteorological Bureau
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Meteorological Center offer the FY-2C and FY-2D IR images at the
service network of Fengyun satellite remote sensing data.
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