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Algorithm of emissivity spectrum and temperature separation
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Abstract: The retrieval and application of emissivity spectrum and temperature are key issues in thermal infrared remote sens-
ing. Thermal airborne hyperspectral imager has 32 bands from 8 pm to 11.5 pm, which can provide abundant useful information
for the retrieval of emissivity spectrum and temperature. This paper establishes regression between MMD and 8 min using 274
laboratory reflectance and field emissivity spectra, analyzes its accuracy using the data field measuring, and evaluates urban sur-
face diurnal temperature range. The result shows that: (1) the average absolute difference between the temperature of retrieval
and the measurement is 1.8 K, and the relative difference is 0.59%; (2) the mean difference between the broadband emissivity
and the mean emissivity from TASI is 0.036, and the standard error of difference is 0.032. Because of the effects of scale and
atmosphere, the predicted value does not equal to the laboratory measurement, but the pattern of predicts is similar to the labora-
tory measurement; (3) the result of diurnal temperature range is reasonable. Therefore, the accuracy of this method can satisfy
operational application and it is feasible to retrieve the emissivity spectrum and temperature for TASI data.
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1 INTRODUCTION

Although imaging spectral technique is a powerful tool in col-
lection, analysis, and modeling of environmental data, the appli-
cation and study on thermal infrared remote sensing are not well
developed. With the development of remote sensing, more and more
satellites with single or multispectral sensors were launched, and
more attention was paid to thermal infrared data. The emissivity
and temperature retrieved from thermal infrared data will have an
extremely important significance for scientific research and opera-
tional application. Surface emissivity is an important parameter, and
emissivity spectra are often used to distinguish objective and inter-
pret features. Land surface temperature is an important parameter
for understanding land surface processes. Through measurement of
surface temperatures as related to specific landscape and biophysical
components and then through relating surface temperatures with en-
ergy fluxes for specific landscape phenomena or processes (sobrino,
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et al., 2006). Therefore, temperature and emissivity separation are
the key variables of infrared remote sensing. However, because the
algorithms of temperature and emissivity separation from thermal
infrared data involves solving N+1 parameters with N equations,
one has to assume or educe a new empirical formulation so as to
make the equation complete. Generally, most algorithms vary with
different assumption of emissivity. Presently, many methods are es-
sentially successfully developed for multi-spectral thermal sensors,
including the reference channel method (REF) (Kahle, ef al., 1980),
Normalized emissivity method (NEM) (Gillespie, 1985), Alpha-
derived emissivity (ADE) (Kealy & Gabell, 1990), the maximum
and minimum difference method (Matsunaga, 1992), iterative spec-
tral smooth temperature and emissivity separation (ISSTES) (Borel,
1998), and TES method (Gillespie, et al., 1998). Among those
methods, TES method is composed by three modules: NEM, RAT,
and MMD. 1t is proved that the emissivity error is within +0.015
using the Aster simulated data (Yang, et al., 2010). The TES method
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was used to the thermal infrared multispectral data in HAPEX-Sahel
with an error of about 3 K. (Schmugge, ez al. 1998)

However, previous studies mainly focus on the single and mul-
tispectral thermal infrared data. With the development of sensor-
hardware technology, hyperspectral thermal infrared data has created
favorable conditions for studying on land surface emissivity and
temperature. High resolution spectra includes fine surface emissivity
characteristics, and aids to form more steady constraint conditions
and improves the retrieval accuracy. Thermal Airborne Hyperspectral
Imager (hereinafter referred to as the TASI) is one of the most ad-
vanced airborne thermal infrared imagers, which has 32 bands in the
thermal infrared region (8—11.5 pum) of the electromagnetic spec-
trum, with wavelength spacing of 0.1095 um, FWHM (Full width
at half maximum) of 0.0548 pm, and total fields of view of 40°.
Fig. 1 is the sensitivity of each TASI channel to radiance. This work
is to build a new empirical module based on the TASI band setting,
use the TES algorithm to TASI data, and validate the reliability of the
algorithm. On that basis, we further study and analyze the characteristics
of surface temperature and emissivity, and then discuss the probability of
identification using emissivity spectra.
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Fig. 1 The sensitivity of TASI each channel to radiance
2 DATA SOURCE

The experiment data is important to validate and test the algo-
rithms developed for temperature and emissivity separation using
the thermal airborne hyperspectral imager. The aircraft imagesand
the in situ data were acquired simultaneously in the framework of
field campaigns at Shijiazhuang, Hebei province in 2010. The fly
region lies in 38°0'10"N-38°6'20"N, 114°26'34.01"E-114°30'0.01"E,
with 30 km in north-south, and 5.03 km in east-west, covering
an area of 57.34 km”. The aircraft campaign was conducted from
2010-07-25-2010-08-15, and three time phase (morning, noon,
evening), two heights (0.5 km and 1 km) images of TASI were
acquired. The particular flight scheme is listed in Table 1. Vertical
earth observation reduces angle effect for each image. Fig. 2 is the
color image of study area.

Table 1 The time and height of airborne campaign

Time Height/km
Noon, 2010-07-25 0.5
Evening, 2010-07-25 0.5
Evening, 2010-07-27 1.0
Morning, 2010-07-29 0.5
Morning, 2010-08-07 1.0
Noon, 2010-08-15 1.0

Fig.2 The color map of selected study area

In the field campaign, the typical surface temperature and
emissivity were measured in step with the airborne campaign.
The temperature measurement time was within 5 min before or
after the covering time for plane. For each sample pixel, about
20—30 temperature values were read uniformity, whose average
was calculated to represent the true temperature for the sample
pixel, and the longitude-latitude coordinates were also recorded.
Temperature measurements were condcted using different
broadband and multiband field thermal radiometers. MINOLTA/
LAND infrared thermometer will response to broadband radiom-
eters, while model CIMEL CE312 is multiband radiometer. The
accuracy of the two instruments is about 0.1 K. Field measure-
ments include road (cement and asphaltum), crop (maze, pachy-
rhizus and peanut), building roof, water, and plaza efc.. These
measured data were used to precision analysis of temperature

and emissivity separation.

3 DATA PROCESSING
3.1 Data calibration

(1) Radiometric Calibration of TASI data

To acquire the objective radiance, radiance calibration of every
band is essential before measuring the objective radiance, indicat-
ing that the digital number values (DN) recorded by the thermal
infrared imaging spectrometer must be translated spectral radiance
values. The radiance calibration method of TASI data is based on
the assumption of a linear sensor response function, and is imple-
mented by the means of measuring two known temperature and
emissivity of standard blackbody. Firstly, it is assumed that the
digital number values the TASI recorded have linear relationship
with the radiance, and then radiance calibration band by band can
be calculated as:

L=c,xDN+c, @)
where ¢, and ¢, are gain and offset of instrument spectral response
function. This procedure can be implemented automatically by the
TASI data procession software.

(2) Calibration of Infrared thermometer
Compared with common water thermometer, infrared ther-
mometer has the defect of weak stability and is easily to attenu-
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ation. In order to acquire the accurate temperature, thermometer
calibration is a requisite before and after field experiment. The
thermometer calibration procedure uses cooling pure water in
lieu of low temperature blackbody and hot pure water in lieu
of high temperature blackbody. Generally, temperature of cool-
ing pure water is the same as the environmental temperature,
and temperature of hot pure water is above 45°C. It is consid-
ered that water temperature should be stable and homogeneous
when measuring, and the field of view should be full of water.
One should make records of the water temperature measured
by infrared thermometer and common thermometer separately.
When calibrating, cooling water temperature measured by com-
mon thermometer is regarded as true temperature, and denoted
as T ue)
mometer is denoted as T y; hot water temperature measured by

cooling water temperature measured by infrared ther-

common thermometer is denoted as T}, ; hot water temperature
measured by infrared thermometer is denoted as 7T,;. There is
linear relationship between radiant temperature and true tem-
perature:

Te=ky % Tty 2
In order to implement radiance temperature calibration one by one,
T iwues Tiro Toyree@and T, were substituted into Eq. (2), and then the

coefficients &, and k, were calculated.

rue

3.2 Atmospheric correction

Atmospheric correction transforms radiance acquired by sen-
sors into ground-leaving radiance. Assuming the land surface is
Lambertian, and combining with Kirchhoff law, surface radiance
acquired by TASI sensor can be expressed by the following formu-
lation:

L =t¢B(T)+7,(1- ‘("i)meJ,,f L, (3)

where L, is radiance of channel i measured by TASI sensor; ¢;
is surface emissivity of channel i; B(T,) is the Plank radiance at
surface temperature; 7; is the atmospheric transmittanceof chan-
nel i; L, is the up-welling path radiance; L, is the down-
welling sky radiance. According to the studied region, the up-
welling path radiance, the down-welling sky radiance, and the
atmospheric transmittanceconsisting with the TASI were ob-
tained by the MODTRAN software. The main preferences were
as following:

(1) Model atmosphere selection

In this paper, model atmosphere is Mid-Latitude Summer (45° N);
atmospheric path is slant path; vertical water vapor content uses
meteorological observation data; CO, mixing ratio is 330.0 ppmv;
multiple scattering parameter is Distort and number of Distort
stream equals to 8; the temperature at first boundary is based on
the atmospheric temperature observed simultaneously at near-
surface.

(2) Aerosol and cloud option

Aerosol model is set to URBAN extinction, default VIS = 5 km;
seasonal aerosol profile (ISEASN) is set to SPRING-SUMMER;
the wind speed is set to the value measured simultaneously at near-
surface; the weather is fine, and there is no cloud or rain. Fig. 3
is the up-welling path radiance and down-welling sky radiance
consisting with the TASI by the MODTRAN software. Fig. 4 is the

atmospheric spectral transmittance.
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Fig.3 The up-welling path radiance and down-welling sky
radiance by the MODTRAN software for TASI data
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Fig. 4 The atmospheric transmittance by the MODTRAN
software for TASI data
On the premise that the optimal objective temperature could be
estimated, the objective emissivity can be calculated by the follow-
ing equation:
L,—L

& = i atm i (4)
BA (Ts ) -L

atmd W

where L, =(L~L ;) / T

4 METHOD FOR TEMPERATURE AND EMISSIVITY
SEPARATION

4.1 The algorithm of temperature and emissivity
separation

Aster team developed a new algorithm of temperature and
emissivity separation (Gillespie, et al., 1998). The TES method is
composed by three basic modules: NEM, Ratio, MMD.

NEM module (normalized emissivity method): firstly the emis-
sivity of each channel is assumed to be 0.97, in order to calculate a
temperature and the other emissivities. These emissivities permit it-
erative correction for removing the effect of down-welling sky irra-
diance, and then an initial surface temperature 7’ can be estimated.

Ratio module: the relative spectral would be calculated by the
Eq. (5). An important advantage of the method is that the emissiv-
ity spectral shape would be kept during the process of iteration.

_ L/B/(T") ®)

()l )

o,
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where, L, is the radiance of channel i after atmospheric correction;
T? is the initial temperature calculated by the NEM module; ¢, is
surface emissivity of channel i; ¢ is the average emissivity; N is the
number of bands, for TASI data, N=32.

MMD module: the empirical relationship between ¢,;, and
MMD, where MMD = max(f) — min(f) is a key feature of the
TES algorithm. The ¢,;, is calculated by the empirical relation-
ship (Eq. (6)).

a—b*xMMD* (6)
where a, b, and c is the coefficients which depend on the analysis

Emin=
of laboratory emissivity spectra, and vary with different sensors. In
order to raising the accuracy, it is essential to build a new empirical
relationship based on the TASI band setting.

4.2 Surface broadband emissivity (8-12 pm)
measurement

Surface broadband emissivity is measured by the portable emis-
sivity apparatus developed and detailed descriptions can be found
in Zhang (2009). In this paper, the method can be briefly described
as follows:

The measuring principle of this method is the same as that of
sealing-cavity method. There are two equations under the condi-
tions of cooling and hot environments:

M, =e,Mpy +(1-¢,)M, (@)

M, =e,My, +(1= )M, (®)
where M ; is the objective radiance exitance under the condition of
cool environment; M, is the objective radiance exitance under the
condition of hot environment; M, is the objective radiance under
the condition of cool environment; M, is the objective radiance
under the condition of hot environment; M, is the atmospheric
down-welling irradiance; M, is irradiance within cavity; ¢, is the
objective emissivity. Among all the parameters, M, M_,, M ,,, and
M, can be measured directly, and M, =M ,,. There are hence two
unknown numbers. On the basis of Stefan-Boltzman law, the emis-
sivity can be calculated by the following equation:

_M.\"]_M;Z _ 1’:'4]_7;42

e=1 : e 9
ME]_MEZ TE4]_T!?2 ()

where T, T,,, Ty, and T}, is the temperature of a black body that
would have the same radiance as M,,, M,,, M,, and M ,, respec-
tively.

4.3 Establishment of the empirical relationship
between ¢,;, and MMD

min

The empirical relationship between ¢,,,, and MMD was estab-
lished by analysis of the 274 laboratory reflectance spectra supplied
by ASTER and MODIS spectral library, equivalent to emissivity
by Kirchhoff’s Law. Surface types include water, vegetation, soil,
minerals, building materials, and part artificial surface. Based on
these data, the empirical relationship consisting with TASI was es-
tablished. The main steps are as follows:

(1) These emissivities spectra were resampled into the emissivi-
ties consisting with TASI band setting.

(2) Calculation of ratio by the Eq. (5).

(3) Calculation of MMD by equation MMD = max(f3;) — min(j3,)
(i=1-32).

(4) The establishment of the empirical relationship. There is sig-

nificant exponential relationship between ¢, and MMD (Fig. 5):
€ min=0.9924—0.9174 xMMD"’"*

(r*=0.988, SD=0.0156)
The new empirical relationship will replace the original emis-

(10)

sivity module of TES algorithm, and then emissivity and tempera-
ture will be retrieved using the algorithm from TASI data. Fig. 6 is
the temperature image (left) and emissivity image (right) retrieved
by this method from TASI image acquired at noon on 2010-08-05.
12 ~
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Fig. 5 The exponential relationship between ¢,,;,, and MMD
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Fig. 6 The image retrieved by this method
(a) temperature; (b) emissivity



1246 Journal of Remote Sensing

#® R 2011, 15(6)

5 RESULTS AND ANALYSIS

There are two methods of data resources to evaluate the advan-
tage and disadvantage of algorithms: using both simulated and field
data. In this paper, the field data was used to analyze the retrieval
accuracy from the two sides of temperature and emissivity.

5.1 Analysis of temperature accuracy

Before the analysis of temperature accuracy, it is necessity to
calibrate the infrared temperature into true temperature which is
equivalent to be measured by mercury thermometer. The spatial
resolution of TASI images is 0.59 m when the flying height is 0.5
km, and the spatial resolution of TASI images is 1.19 m when the
flying height is 1 km. Therefore, it is easy to locate the pixel in the
TASI image according to the latitude and longitude coordinates
recorded during the field campaign, and compare the retrieved tem-
perature with the measured temperature (Table 2).

Table 2 Comparison of retrieved temperature and field-measured

temperature for samples

Surface type True T Retrieve T T deviation Re}:laFive
/K /K /K deviation/%
Bolin residential roof 302.6 306.4 3.8 1.26
Lianqiang residential roof 304.4 304.7 0.3 0.10
Cement plaza 305.0 306.3 13 0.42
Cement road 1 316.2 313.2 3.1 0.97
Cement road 2 304.0 306.4 2.5 0.81
Grass in field 304.0 303.0 1.0 0.34
Maze 295.7 293.8 2.0 0.66
Grass in park 295.8 2950 0.9 0.29
Granite pavement in park 297.1 296.8 0.3 0.11
Water in park 299.3 298.5 0.9 0.29
River-water 299.2 300.7 1.6 0.52
Black cloth 311.2 307.3 3.9 1.25
White cloth 307.9 305.8 2.1 0.68
mean of T deviation 1.8 0.59
Standard deviation of T deviation 1.2 0.39

As shown in Table 2, the temperature deviations between re-
trieved and measured temperature vary from 0.3 K to 3.9 K, and
the mean of absolute deviation is 1.8 K, and the mean of relative
deviation is 0.59%. The Liangiang residential roof has the highest
temperature accuracy, with a deviation is 0.3 K, but the Bolin resi-
dential roof has the lowest temperature accuracy. This is because
that there are many solar water heaters on the Bolin residential roof,
which seriously affects the temperature accuracy, but the Lianqiang
residential roof is more homogeneous. Both are cement, the tempera-
ture deviation of cement plaza is 1.3 K, while that of cement road is
2.5 K and 3.1 K. This is because that the plaza is broader than road,
and the road is seriously affected by the high buildings and tree. The
temperature deviation of water in park is 0.9 K, while the value of
river water is 1.6 K. The temperature deviation of black cloth is 3.9
K, a little larger, which is possibly because this black cloth is on the
slanting river bank with angle effect causeing greater influence to
temperature accuracy.

5.2 Analysis of emissivity accuracy

In order to analyze the surface emissivity accuracy, the surface
narrow-band emissivity of TASI was converted into the surface

broadband emissivity. Table 3 is the comparison of retrieved
emissivity and field-measured surface broadband emissivity. The
result shows that the mean difference between retrieved and field-
measured surface broadband emissivity is 0.036, with the standard
deviation of difference of 0.032.

As hyperspectral data of TASI, it is necessary to further analyze
the difference between the retrieved emissivity spectrum and the
true values. As illustrated in Fig. 7, for main building materials,
such as granite, brick, cement, and roof, the retrieved emissivity
value is different from the laboratory measured emissivity value,
but for the similar surface type, the shapes between the two are
similar. The main reason is that the scale of laboratory sample is
different from the pixel scale, and the emissivities at the two scales
have greater difference. It is important to effectively remove the
atmospheric effect for TASI data, and meanwhile considering the
sensitivity to surface roughness for laboratory measurement.

Table 3 Comparison of retrieved emissivity and field-measured

emissivity
Surface type True ¢ Retrieve ¢ |Aég|
Black asphalt felt with fine sand 0.948 0.953 0.005
Green asphalt felt with fine sand 0.928 0.882 0.046
Black roofing slate 0.953 0.904 0.049
Red plastic track 0.998 0.917 0.081
Cinder track 0.977 0.930 0.047
Asphalt road 0912 0.910 0.002
White cement road 0.910 0.917 0.007
Soil 0.959 0.957 0.002
Vegetable 0.981 0.951 0.030
Fake pasture 0.976 0.891 0.086
Mean 0.036
Standard deviation of |Ag| 0.032
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Fig. 7 Comparison of retrieved emissivity and lib-acquired emissivity
“ lab” indicates the labratory-measured data; “ measure” indicates the
retrieved data
(a) Emissivity of granite, brick; (b) Emissivity of cement and roof
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5.3 Application of urban surface temperature
variation

Diurnal temperature range is representations of both daily vari-
ation amplitude and a simple thermal inertia model, and thus has
very significant effect on urban microclimate. The data used in this
part were two temperature images, dated at 5 a.m. and 2:30 p.m.
Fig. 8 is the distribution of urban surface diurnal temperature range
after image registration. The result shows that metal roof on sum-
mer has the maximum diurnal temperature range of above 30°C;
the second are road, asphalt felt, and cement roof, whose diurnal
temperature range vary from 12°C to 20°C; the third is vegetation,
whose diurnal temperature range vary from 7°C to 10°C; the mini-
mum are water and shadow, whose diurnal temperature range are
less than 7°C. The reason for water is because of high heat capac-
ity, high thermal inertia, and strong heat storage capacity and the
temperature of shadow is lower for the same surface. So we can
draw several conclusions from above analysis: (1) manmade build-
ing materials, especially metal materials are one of major factors
of urban local heat island effect; water and urban landscaping can
relieve urban heat island effect on a certain degree; (2) thermal in-
ertia, as an inherent character, can be used as an effective index to
distinguish and classify.

Fig. 8 Distribution of urban surface diurnal temperature range

6 CONCLUSION

To apply the algorithm of temperature and emissivity separation
to thermal infrared airborne hyperspectral images, the new rela-
tionship between ¢,,;,, and MMD was rebuilt. The research results
show that for TASI data, there was very significant exponential
relationship between ¢, and MMD, and Eq. (10) shows that the
relationship is close to a linear relation. The comparison between
the retrieved emissivity of main building material and the labora-
tory measured emissivity demonstrates that the emissivity shapes
acquired by the two methods are very similar. Considering the dif-
ference of atmosphere condition and field angle between laboratory
and airborne experiment, the emissivity values of same surface type
and wavelength setting are not same. The computation results of
TASI broadband emissivity were in good agreement with field data

and the absolute difference was only 0.036, which shows that the
reasonable accuracy.

This study demonstrates that the temperature deviation between
retrieved and measured is within the scope. Because of the high
space resolution of TASI data as mentioned above, there are many
pure pixels in the images. So the evaluation of retrieval accuracy is
more correct, and the result of validation is reliable. In a word, the
TES algorithm could be applied to the study of thermal inertia, eva-
potranspiration and the urban energy balance. Finally, TES-derived
temperature was used to diurnal temperature range. The results
show that manmade building materials, especially metal materials
are one of major factors of urban local heat island effect; water and
urban landscaping can relieve urban heat island effect on a certain
degree; thermal inertia, as an inherent character, can be used as an
effective index to distinguish and classity.
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