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Abstract: This paper analyzes parallel ICA algorithm in symmetrical multi-processing (SMP) cluster architecture. Based on our
proposed single-level share memory model parallel ICA algorithm, two-level synchronous and asynchronous parallel ICA algo-
rithms are presented, respectively, in the manner of synchronous and asynchronous parallel iteration for computing fixed-point
function. By the use of these algorithms, two-level grouping parallel ICA algorithm is also proposed. In experiment with real
hyperspectral remote sensing image, synchronous and grouping parallel ICA algorithms maintenance the endmember extraction
accuracy with respect to the original algorithm. Meanwhile, they also demonstrate high parallel performance and greatly improve
the performance of ICA endmember extraction. Asynchronous parallel ICA algorithm is suitable for the case of small number of
nodes in cluster.
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1 INTRODUCTION

Spectral unmixing is the key technique in hyperspectral remote
sensing analysis. Endmember extraction (EE) is the most important
and complicated procedure in spectral unmixing (Chang, 2007).
Over the last decade, many endmember extraction algorithms
(EEAs) have been developed, which can be categorized into three
types, i.e. geometry based EEAs, statistics based EEAs and spatial
information incorporating EEAs. Geometry based EEAs made a
fast development in the early periods. Classic algorithms include
the pixel purity index (PPI) (Boardman, 1995), the N-FINDR al-
gorithm, unsupervised target generation process (ATGP) (Chang,
2003), vertex component analysis (VCA) (Nascimento, 2005).
These algorithms are convenient for computation and have been
widespread today. Iterative error analysis (IEA) (Neville, 1999) is
a statistics based EEA that extracts endmembers by lease squares
error. Recently, the techniques of blind signal separation (BSS)
and projection pursuit (PP) are introduced into EE and enriched
statistics based EEAs. Independent component analysis (ICA) is
a classic spectral unmixing BSS algorithm (Bayliss, 1997; Chang,
2002; Nascimento, 2005), which is also used in EE (Wang, 2006).
Spatial information incorporating EEAs, aiming at including the
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spatial information in the process of endmember extraction, have
been widely developed, such as automated morphological endmem-
ber extraction (AMEE) (Plaza, 2002), spatial-spectral endmember
extraction (SSEE) (Rogge, 2006) and spatial preprocessing (SPP)
method (Zortea & Plaza, 2009).

However, most of EEAs consume a large amount of time when
are applied to the large volume hyperspectral remote sensing im-
ages. It is a data intensive and computation intensive task which
becomes a serious bottle-neck in many applications with time-crit-
ical constrains. High performance computing (HPC) technique has
necessarily become a requirement in hyperspectral remote sensing
image analysis. It has been a hot-spot research field in remote sens-
ing image processing (Plaza, 2009). Recently, many state-of-the-art
parallel EEAs have been developed, including parallel nonnegative
matrix factorization (NMF) algorithms (Stefan, 2006; Dong, 2010),
parallel endmember extraction algorithms and parallel automated
morphological endmember extraction (P-AMEE) (Plaza, 2006). Du
(2006) developed a parallel ICA algorithm in single process mul-
tiple data (SPMD), which estimated different independent compo-
nents in each partitioning and then used internal decorrelation and
external decorrelation to generate independent components. And its
hardware implementation was also discussed (Du, 2004).
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Since the performance of personal computer (PC) and com-
puter network has been greatly improved, cluster of workstation
(COW) has been a widespread parallel architecture (Chen, et al.,
2002). Nowadays, in the multi-core CPU era, symmetrical multi-
processing (SMP) cluster becomes one of the most popular parallel
architecture (Chai, et al., 2002).

By taking advantage of share memory and distribution memory
parallel model provided by SMP cluster, this paper considers two-
level parallel implementations for ICA EEA in SMP cluster envi-
ronment. We first develop synchronous parallel ICA EEA in the
share memory parallel model. And then two-level synchronous
parallel ICA EEA is developed in SMP cluster environment. Based
our proposed spatial domain random sub-image partitioning algo-
rithm for data partitioning and our accelerated cascading algorithm
for endmember reduction, two-level asynchronous parallel ICA
EEA is further developed. Based on the performance of two-level
synchronous and asynchronous parallel ICA EEA, two-level group-
ing parallel ICA EEA is presented. It achieves better scalability and
provides higher computing performance for endmember extraction.
Finally, we show an experiment for evaluating and comparing the
performance of our proposed algorithms by using real hyperspec-
tral remote sensing image.

2 BASIC ALGORITHM

Let hyperspectral image after having subtracted its mean be
X=[x(1), x(2),---, x(n)] (1
where x(i), i=1, 2,---, n is the vector of a spectral pixel and # is the
total number of the image. According to the inear spectral mixture

model, all spectra x(i), i=1, 2, ---, n can be expressed by
x(D) =Y ea,(i) 6)
j=1

where e, j=1, 2,---, m is the endmember in the image, and a,i) is
the abundance fraction corresponding to ¢; in the spectral pixel x(i).
The abundance fractions in x(i/) compose of an abundance vector
denoted by
a(i)=[a,@i), - a,(D)]' 3)
To simplify the procedure of BSS, ICA first applies principal
components analysis (PCA) to the observed variables, i.e. the spec-
tral pixels in the image, so that the components are uncorrelated
and their variances acquire equal unity. Then ICA finds a separation
matrix W by nongaussianity, satisfying
a(i) = WZx, 4)
()] is the estimation of a(i), and Z is the
transformation matrix defined by PCA. Denote
Y=7ZX (5)
FastICA algorithm (Hyvérinen, 1999) is based on a fixed-point

where a(7)=[4,(i), ---, 4

m

iteration scheme to find the maximum of the nongaussianity meas-
ured by the high order statistics and the approximation of negen-
tropy, which the convergence is fast and reliable. W is given by

W =E{rg (WY -EL(WITNERY ()
where W **? denotes the new matrix of W ® in the (k+1)" iteration.
The definitions of g and g’ can be referred to the previous work of
Hyvirinen (1999). To prevent different vectors from converging to

(k+1

the same maxima, W “" should be decorrelated and renormalized

after each iteration.

In each of the selected p FastICA-generated independent
component(IC) images, endmembers can be extracted by finding
a pixel with the maximum absolute value (Wang, 2006). The ICA-
based endmember extraction algorithm (ICA-EEA) is summarized
as follows.

Step 1 Use PCA to uncorrelated the image and then obtain a
new image Y;

Step 2 Initialize W ©;

Step 3 Calculate W " by Eq. (6);

Step 4 To prevent from converging to the same maxima, decor-
relate and renormalize W “'” and go to step 3 until satisfy FastiICA
convergence condition;

Step 5 After terminating the procedure of iteration, estimate the
abundance d=w," ¥, i=1,---, m where w, is the i-th IC;

Step 6 Select the endmembers by

e:=x,and k, = av(]g max(|al (]')‘) 7
= jen

Step 7 Return all endmembers.

3 TWO-LEVEL SYNCHRONOUS PARALLEL
ICA ALGORITHM

Step 3 in ICA-EEA occupies the majority time of the serial pro-
gram. Therefore, how to improve the speed of calculating W is
the key of designing a parallel algorithm.

3.1 Share memory model parallel ICA

SMP processors share the memory in the parallel model. The
efficiency can be improved by attaching threads, called thread ele-
ments (TEs), to each processor (Quinn, 2002).

Let the number of TEs be a, the image ¥ is decomposed into {¥,,
Y,, ---, Y.} by using the partitioning rule of successive 1/O access.
The j-th TE contains the partitioning Y, /=1, 2, ---, a and calculates
Eq. (6) as follows.

W(j)(km -E {Y/g (W“‘)TY/)}—E {g' (W(“T Y, )}W(k) ®)
Obviously
Wit w () ©)
aZs_/ =
j=1
where S; denotes the total number of samples in.Y; Therefore, share
memory model parallel ICA (SMM-PICA) algorithm is summa-
rized as follows.
Step 1 Decompose Yinto {Y, V,, -+, ¥V,};
Step 2 Initialize W ;
Step 3 For each TE, calculate Eq. (8);
Step 4 Wait for all TEs and reduce W “'" by Eq. (9);
Step 5 Decorrelate and renormalize W **" and go to step 3 until
satisfy the FastICA convergence condition;
Step 6 The i-th TE, j=1, ---, a, estimate the abundance as
a, 7w Y i=1, -, m (10)
Step 7 And extract a candidate endmember by

e, =x,  and k, = avgmax(|a,4/,(l)|) 11)
' l=l=n

Step 8 The master wait for e, ; i=1, -+, m, j=1, ---, a from all
TEs. Reduce the maximal abundance and yield e, i=1, ---, a;
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Step 9 Return all endmembers.

Step 3 and step 6 are parallel segments of the algorithm, in which
the majority computation are processed by all TEs concurrently. Step 4,
step 5 and step 8 contain barrier and reduction operations, where step 4
and step 5 execute once in each iteration and step 8 executes only once
during the whole procedure in the algorithm. The computation of the
reduction operations in these steps is much less than calculation in
step 3 and step 6.

3.2 Two-level synchronous parallel ICA EEA

The parallel capability can be scaled to the SMP nodes in SMP
cluster, where the processes run by each SMP nodes provide a scal-
able inter-node parallelism. These executive inter-node processes
are called process elements (PEs). Within a PE, there are TEs which
provide intra-node parallelism. A commonly used method in SMP
cluster is that coarse-grained parallelism is achieved among PEs,
while fine-grained parallelism is obtained by TEs (Nakajima, 2007).

Two levels data partitioning strategy is presented as follows.
Suppose there are b PEs in the SMP cluster and every PE contains
a TEs. In the first level of data partitioning, ¥ is decomposed into
row blocks (Plaza, 2002){Y,, ¥,, -
to every PE. In the second level of data partitioning, for the p-th
PE, p=1,---b, decompose ¥, into {¥,;, ¥,,, -+, ¥, ,} by step 1 of
SMM-PICA in fine grain and attach to each TEs in the p-th PE.

According to two levels data partitioning, two-level synchro-
nous parallel ICA ( SynPICA-2L) EEA is given in the following:

Step 1 Apply two levels data partitioning strategy to the hyper-

-, ¥,} in coarse grain and attach

spectral remote sensing image;

Step 2 The master initialize W © and broadcast it to all PEs, i.e.
workers;

Step 3 For the p-th PE, Vp=1, ---, b, execute Step 3 and Step 4
of SMM-PICA and obtain W(p)*'";

Step 4 The master collect all W(p)(k”), p=1,---, b and reduce
w Y by Eq. (9);

Step 5 The master decorrelate and renormalize W*'", broadcast it
to all PEs and go to Step 3 until satisfy the convergence condition;

Step 6 All PEs execute Step 6 and Step 8 of SMM-PICA with-
in their own data partitioning;

Step 7 The master execute the maximal reduction operation
from the results collecting from all PEs and then obtain endmem-
bers e, i=1, -+, a;

Step 8 Return all endmembers.

In Step 4 and Step 5 of SynPICA-2L EEA, all PEs calculate
w %V simultaneously in every synchronous iteration. And a maxi-
mal reduction operation in Step 7 executes only once, while other
operations are optimized for parallel execution by SMM-PICA and
obtain two levels of parallelism, which make full use of the compu-
tation resource of SMP cluster.

The PCA transformation in Step 1 of ICA EEA can be parallel-
ism in the similar manner as FastICA.

4 TWO-LEVEL ASYNCHRONOUS PARALLEL
ICA ALGORITHM

In asynchronous parallel ICA algorithm, all PEs execute SMM-
PICA independently. However, data partitioning and endmember
reduction should be considered.

4.1 Random subimage partitioning algorithm

Since the nature substance is usually continuous and homogene-
ous in local area, the data partitioning in a PE would only contain a
small number of substance types in local area when using the data
partitioning strategy in SynPICA-2L. Therefore, the samples at-
tached to each PE cannot present the global features of the image.
To avoid this embarrassment, random subimage partitioning (RSP)
algorithm is proposed as follows.

Suppose there are b PEs.

Step 1 The master randomize a group of numbers ranged from
1 to p with uniformed distribution;

Step 2 Map these numbers into each pixel in the image, yeilds
map(s,?) e {1, 2, ---, b} where (s,¢) is the coordinate of the pixel ;

Step 3 The master partition the image by

Y={y(s.0)\wy(s,t) € Yand map(s,t)=i}, i=1,---, b (12)

Step 4 The master transfer the data partitioning to the corre-
sponding PE.

Since we use the uniformed distribution in Step 1, RSP can
obtain good load balance only when performed in a homogeneous
parallel environment where the hardware performance of every
SMP nodes is identical.

4.2 Accelerated cascading-endmember reduction
algorithm

In the reduction step, the master collects candidate endmembers
from all PEs and finally determines the endmembers. In this case, the
growing number of the candidate endmembers, which is proportionate
to the PEs, degrades the performance of parallel algorithm. Accord-
ing to the idea of the accelerated cascading algorithm (Chen, 2009),
a fast EEA can be used in the reduction step. Accelerated cascading-
endmember reduction (AC-ER) algorithm is given in the following:

Step 1 The master collects candidate endmembers, denoted by
E_, from all PEs;

Step 2 Input E, , use a fast EEA to output the final endmember set E;

Step 3 Return E...

A fast EEA in Step 2 should be implenmentd by a low-compu-
tation EEA including VCA, ATGP or IEA, except for the spatial
information incorporating EEAs such as AMEE.

4.3 Two-level asynchronous parallel ICA algorithm

Incorporating with RSP and AC-ER, two-level asynchronous
parallel ICA (AsyPICA-2L) algorithm is summarized as follows.

Step 1 The master executes RSP to generate data partitioning
{Y,, Y,, ---, ¥,} and transform to corresponding PEs;

Step 2 Every PEs execute SMM-PICA independently;

Step 3 The master waits for all PEs and executes AC-ER to ob-
tain the final endmember set E;

Step 4 Return E.

AsyPICA-2L avoids the synchronous communication in each it-
eration. There is only one collective communication in the AC-ER.
But there is additional serial computation in RSP and AC-ER.

5 TWO-LEVEL GROUPING PARALLEL ICA
ALGORITHM

AsyPICA-2L should wait for the slowest PE before endmember
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reduction, resulting in idle time of other PEs, which degrades the
efficiency substantially. Even RSP maintains the load balance for
AsyPICA-2L because too much data partitioning would decrease
the number of samples attaching to PEs and degrade the the con-
vergence of SMM-PICA in every PEs. Two-level grouping parallel
ICA ( GrpPICA-2L) algorithm avoids asynchronous data partition-
ing and takes adavancetage of the SynPICA-2L and AsyPICA-2L.

GrpPICA-2L devides the PEs into several groups {G), G, -**, G, }.

Let 7, be the first serial number for PE in group G,, and i, be the
last one. Then

G={PE,, j=iy, iy, i}, Vi<l -, q (13)
The intra-group PEs should be topologically neighbor in network.
And make each i,—i, Vi=1, ---, g identical with maintain load bal-
ance. GrpPICA-2L is summarized as follows.

Step 1 Devide PEs into ¢ groups by Eq. (13) ;

Step 2 The master executes RSP to generate data partitioning
for every groups ;

Step 3 For every group, decompose their data partitioning uni-
formly for every PEs ;

Step 4 For the i-th group G, Vi=l,---, ¢, execute intra-group
SynPICA-2L to generate candidate endmembers;

Step 5 The master waits for all groups and execute AC-ER to
obtain the final endmember set E;

Step 6 Return E.

GrpPICA-2L balances the convergence and efficiency by the pa-
rameter g. Asynchronous parallel computation resides in ¢ intergroups,
while synchronous communication can be resisted on every intragroup.
Therefore the efficiency is improved. Especially, it is equivalent to
SynPICA-2L when g=1 and to AsyPICA-2L when ¢=b.

6 EXPERIMENT

We use 614x512 pixels real hyperspectral remote sensing image
of the June 19, 1997 Cuprite Nevada (Fig. 1), collected by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Af-
ter removing the atmospheric absorption bands, 184 bands are used.
The total size of the sub-image is 113 MB. The virtual dimension
of this image is 20 (Kruse, ef al., 2003 ). The number of endmem-
bers to be extracted is set to 20 since ICA can not determined all
endmembers in hyperspectral remote sensing image (Nascimento,
2005). VCA is used in AC-ER.

Fig. I AVIRIS image in Cuprite Nevada (648 nm)

The testing platform consists of 20 nodes connected by Gigabit
Ethernet. Each node has 1.6 GHz Intel Core 2 Duo CPU, a 1 GB
memory and an 80 GB hard drive. The system runs on Windows
XP SP2 operating system and uses MPICH2 message passing li-
brary and Visual C++ 2008 OpenMP supported compiler for SMP
cluster environment.

The executive time of the original serial algorithm is 1701485
ms (about 30 mins). And the executive time of SMM-PICA is
1307953 ms, which is 1.3 times faster than original algorithm.

SynPICA-2L, AsyPICA-2L and GrpPICA-2L are applied in the
image respectively, where the parameter q of GrpPICA-2L is set to
2. The number of the nodes of the cluster ranges from 2 to 20. The
comparison of executive time among these algorithms and a PE-
based single level synchronous parallel algorithm in coarse grain is
shown in Fig. 2. Obviously, SynPICA-2L obtains better perform-
ance than PE-based single level synchronous parallel algorithm.
As the number of nodes increasing, the executive time decreases.
When it reaches 20, the executive time of SynPICA-2L and GrpPI-
CA-2L are less than 78000 ms.

774000 [ -
674000 +
574000 [ i\ :
Y . 134000
£ 474000 114000
o
é 374000 F y #009
74000
274000 - 10 12 14 16 18 20
174000
74000 S .
1 3 5 7 9 11 13 15 17 19 21
The number of nodes
—SynPICA-2L - - - AsyPICA-2L ---=- GrpPICA-2L - PE-based

Fig. 2 Executive time of parallel ICA algorithms

The endmember extraction error of these parallel algorithms
is compared to the original algorithm by the root mean square er-
ror (RMSE) of spectral angle distance (SAD) (Chang, 2003). The
results demonstrate that the endmember extracted by SynPICA-2L
are consistent with the original algorithm. The SAD RMSE of Grp-
PICA-2L is about 0.04, while that of AsyPICA-2L greatly increases
as the number of nodes increasing (See Fig. 3) and it reaches 0.13
when the number of nodes is 20.

0.14 r
0.12
0.10 r
0.08 r
0.06

SADRMSE

0.04
0.02

2 4 6 8 10 12 14 16 18 20
The number of nodes

Fig.3 The SAD RMSE curve of AsyPICA-2L
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Fig. 4 The speedup radio curves of parallel ICA EEAs

Fig. 4 compares the speedup radio curves of our proposed
algorithms. The result indicates that the speedup radio of
AsyPICA-2L is higher than SynPICA-2L and GrpPICA-2L.
When the number of nodes is larger than 8, the performance of
AsyPICA-2L degrades and presents to be unstable. SynPICA-
2L and GrpPICA-2L approximate to linear speedup radio. The
performance of GrpPICA-2L is better than SynPICA-2L when
the number of nodes is odd. In other cases, similar performance
are observed for both GrpPICA-2L and SynPICA-2L.

7 CONCLUSION

This paper presented three parallel ICA EEAs, namely Syn-
PICA-2L, AsyPICA-2L and GrpPICA-2L in SMP cluster envi-
ronment. The conclusion is summarized as follows.

(1) SynPICA-2L and GrpPICA-2L maintain the accuracy
of endmember extraction, while AsyPICA-2L degrades the
accuracy as the number of nodes increasing; (2) SynPICA-2L
approximates to the performance of linear speedup radio and
has highly scalability; (3) The performance of AsyPICA-2L
is higher than SynPICA-2L when there is a small number of
nodes in the cluster, while with low scalability; (4) GrpPICA-
2L has the best performance among these two-level parallel
ICA EEAs.

As future work, we will improve our algorithm by (1) optimiz-
ing the parallel code in SMM-PICA since the speedup radio is only
1.3 in dual-core CPU; (2) optimizing the load balance of GrpPICA-
2L; (3) further evaluating on the parameter ¢ to obtain the best
value for GrpPICA-2L.
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Luo W F and Gao L R. 2011. Two-level parallel independent component analysis endmember extraction algorithms.

Journal of Remote Sensing, 15(6): 1202-1214

1 5 5

IREGBIT AR OGEMRR )2 m i k
FIE 3 HT 1 58 (Chang,, 2007), HApimoci BUZ L
R R RE N REZSN MR, B2
R ERET REMREE, EBAG NIRRT FAIL
fRFIE Ao TR, | SR GETHRRIE Y o e PR B
LA RS G M AEE B oo Us g, Hodr, FIH]
JUAAT R A 14 9 70 i BBURE 12 B 40 U e e PR 00
BB 2 MU AN 25 T HE £ (Pixel Purity Index,
PPI)(Boardman %5, 1995), N-FINDR#.7%(Winter,
1999). JENE H b5k g 2 (Unsupervised Target
Generation Process, ATGP)(Chang, 2003)L) K 1015 i
443 W35 (Vertex Component Analysis, VCA)(Nas-
cimentoflIDias, 2005)%, XAEH L HA A
fERRES, AR Tz BT HRER
B R RO AR 22 FT (Iterative Error Analysis,
IEA)(Neville, 1999)if 1481 1fe/N T 15 22 h $E B v
JG. BR S BEHEARSEE FEEANTIA, 55

WimBEI: 2010-09-28; EITHHE: 2011-01-10

THRHE B i T PR U AR 3] T 2T A &, s i
4343 #M1(Independent component analysis, ICA)J&—7Ff
HIR AR TR B (Bay liss, 1997; Chang, 2003;
NascimentoFl1Dias, 2005), [f]ifts 523 T i T 4 HL
(WangFliChang, 2006). ICAl, Z545 28 (01465 B Y i
JCIRBUAETE IR J AR A e, $8H T A B 0
JCHEH (Automated Morphological Endmember Extrac-
tion, AMEE)Jyi%(Plaza, 2002). 2%[A]/tiE4E B0 i
JCHERUHT 1 (Spatial-Spectral Endmember Extraction,
SSEE)(Rogge 4, 2006). 75 [H]fikb#(Spatial Pre-
processing, SPP)Jiik(ZorteafIPlaza, 2009).

SR, BERHECHE 5 B R s s i iR E R, A
DR SR i AR R) 3k e [ e e i
SEARVFI A R TAE, BOh T i ign FH )
JEEERRE, IR HAT B R BRI A O 5.
PERBIFA TR AR T SRR 2] T Rl R e, Rk — D4
e e DGR B EMEI HR RCR S TAREF B 2L, JF
AR v 8 B PEG A BT B0 B 1 I S AR A 5 A AR
M(Plaza 4%, 2009). JTJLAE4EN TADIFATRIE,

EeWE: FEEHARRERESTH @S : 40901232/D010702 , 40901225/D010702);  [F 5 i AWFIE & JEHR1(86311K]) (45 2008AA12Z113);

| 5 S ERIIFST & 1973 H41) (95 2009CB723902)
F—EEEN: PCE979— ),
FEHE T 5T TAE. E-mail: luowenfei@irsa.ac.cn.

B, BB, 20084 Bl T b R AL B N ISR T, H AT R SR R AR A B L
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WIFATAE U B 43 #5301 (RobilaFllMaciak , 2006
Dong#, 2010). JiATumcfE HUA % (Plaza %%,
2006a). FfTAMEE® k(Plaza %, 2006b)%:, Du%:
AN (2006)48 i T —Fh7E 5484 Z 50 (Single Process
Multiple Data, SPMD)& %t FIHFFATICATL, %5
TRTEASIR A USRI 43 rR RS F ST 4y, it R
W5 R EANSE M I AR BRI AR, IR TH
KRELESEI (DU %5, 2004).

RS AL ) 26 4% i 1 1 BE 45 21 K IR 32
e, LTAEu4ERE(Cluster of Workstation, COW)
CAEFFATI LR G 38 7712 1 1 H (R
R 4, 2002), [FHF, BE#HCPUSEAZEEL, *I
R AL BEER (Symmetrical Multi-Processing, SMP)4E
TR T BRG] Z R T R RS Z —
(Chai 4§, 2007).

SMPAERFIITATIR REEM, MRS TN
VLKA A s A P AR A T LB R A 3. A X
— A, AR e SMPRERE IR BT h AT A TR
5o FEICATIRIRE S, M AT 5 AR ok
B, E RIS N R T () — R WP ICA T T
Bk, P ESMPAERE R R ICATFATE
o TEEURRN S Somoc AR L, 40 2 () 5]
BEHLT RS 43 5 R T A 50, ZE LAl
PTG FLICAT TR, WA RL S R
BVERHY, R TR HICAIATE Y, 7RI
PARCR IR R TR AR A B AT i R . e, i
S EUGAG S0 3R A TIA MR

2 EerbAEL

A — i G B EHR (R R BRI E P 3
SRS H

X=[x(1), x(2), -, x(n)] (1)

K, x(), i=1, 2, -, n HBOOGIERR, o HRITE

B, B—MEIOEE x@), i=1, 2, -, n¥HRITL IR
%ﬁﬁﬁi

x(i)=iejaj(i) @)

K, e, /=1, 2, -, m HEBSRICHE, m A%HITE
B, a(i) Fod i Mot BENIT e IR
i, dUNFE .

a(i)=[a,(@), -, a,(D)]' 3)

ICATR W B Seid ok 3 L4378 4 (Principal Compo-
nents Analysis, PCA)Z [ EMGULINAE 2 2 1] i AH S P
KFACEE PGS . BRI A N, S
T— A ER B R W, GG A5 5 TC Y
FREEAbTT

a(i) = Wix, 4)
JRNT RE I F B fta(), 2UrhaGy=[a,G), -, 4,()]"
TR R ), 22 T e T A A AR R .
AR, 2 E RS
Y=2ZX (5)

PR ICA(FastICA)& v (Hyvarinen, 1999)E.A4 %
PREYCSGE I, RS TR AR Al B DL RSt
i TR . e (6) A

W =g{rg(WOY N -E{L (WYY (6)

X, WO RRGER I B RSE, gfg PRI
UL Hyvirinen(1999) /) TAE . R 1k S AN ] 19 o3
WST Rl —A I 10, e w2 i — AR LA &
XIFRIEREAL, (R ATy R B ), A
TR

TEICATHRZE R M 25 i b, WA R 32 B Ak 1t
F14) 246 X R /NP IO IO 432 114 3t 7T )6 1% ) 2 (Wang Al
Chang, 2006), MZEICANICHEEUE E(ICA-EEA)S
BT .

FB1 FHPCAZE NS EUS AT A AL B,
SR Y

SE2 WAL B,

FE3 A (ORI TR

S]A ST WA, AR E
W DT IH— R L B R IE S AR 5

HB,E AR, A R R A
a=w,'Y, i=1, -, m, w W ESEIA AT 53

PB6 MR, BERGHIT:

e;=x, H k=ag {naX(’ai ) (7)

HIR7

SRR T, T,
3 TR FEIHICAI TR
R, R SR,

ARG C0 FE, e R
SEIATEILG BRI CHE
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3.1 HENFRETHHTEE

SMPAL B 28 2Z [ AL 2 N A7, AE X — iRl
ANFEAT AL B BTG R LR AR T DL AR 5 S PR AT IR
(Quinn, 2003), Ik, Fk A~ H iRy
ZE P FI0(Thread Element, TE),

BIEEANTE, EEUGYRIT LY, Y, -, V),
R 43 U] 5 A 8 b ik 7 1) B AT ke, )
ANTERTY L5, j=1, 2, -, a. TEICA-EEAZHE(3)
H, SATEX (6T AT

W(j)(k+l) —E {ng (W(k)T Yj)} _E {g’ (W(k)T Yj )}W(k)(g)

W(k+1)::+ist(j)(k+1) )

Jj=1
azsf
=

L, s AV RIREA BAL

H I T = AR J T4 FICA SR 7 (Share Mem-
ory Model Parallel ICA, SMM-PICA):

B XEUR YR ALY, Yy, -, X}

S| VR B A O,

YB3 X TH—ATE, HEK®);

$BA FRHEETER RS, RO W
HEATRLZY 5

H|,S X WP I — 1 DL R IE S
b, I =

FIe LMEME, HYADTE, j=1,-, aitfrF
JEAhTE, 3

a, 7w Y, i=1,...,m (10)
SB7 PR IT
e, =x, , Hk=ayg max(‘ai’j (1)\) (11)
l=l=n

|8 FRSTEMEZBMEIGITE, e i=
1, =, m; =1, e, a, DRI A 32 BE R R A X R TR
4y, 193RLe, i=1, -, a;

H|,O REFITA MG, Bk,
Hp, $S],3, 6NFIENIATE Y, RN
ERHIR A ZATEIA T T, $B4. 5M8HIT
BEB/NFEE R EAE, SBRA. SERERMT
—IK, SBRSAF LT HHIT i,

32 —HESHITHEE
TESMPEEREH , HIFATRE S vl 9 2 44151y

SUZIE], AT S AR SRR AT S A Y AT
A, HPATLARFR A P2 H 0 (Process Element,
PE). fERPENTE, RHZATEHTIFTIHH.
I, HURLEE 4740 AT S PEARAS , AWK ATk )
18 33 TEZ) A5 (Nakajima, 2007).

RGN b, R BRI s . Rk
WA DAFR TR A, BIBAPE, BEASTFAAY H
YHANTE, BB PESEC G 43 ¥Y={Y,,
Y, -, Y, b, RGN ] SR A (A T 1) it A TR
J3(Plaza %, 2002), X THpPPE, p=1, -, b, ik
TR Y={Y, Y, 0, ¥, TR RS 44 TE,
FESLIEAL 1 RT A5 LR 1) R RIP ICATHATH 2 (2-level
Synchronous Parallel ICA, SynPICA-2L), &R - M
B it

FB EPEX RGNS, IHERI TR
kw5 MPE,  MPEMRESAG 1T KR AT 4040 735

SB|2  EPEWIR S BEEREW ', WO
#5245 M PE ;

T3 X THpMMPE, vp=1, =, b, P47
SMM-PICAIH S, 4, HKEW(P)* ™", Fss Rk
Hn4h FPE;

S|4 EPEFRW ()Y, P=1, -, b PIESEHE
Jei, IOy W,

H],S  FEPEX R WV AT — L L SRR IE
Ak, IR R4 PESE T R — 41518

$I6  ERTERG, £ MNPEIRTG AN 5 B
i, I TSMM-PICAT L1 5 BE6—8;

HB,7  FPEMIEA MPE: i K4 S (L 7EA T
TAERLLy, FHUWCHEFra B e, 15331 RA i Tte,
=1, a;

HE],8 R A RYIIG, AL

SynPICA-2LF A AE R UGE AR P R A 4 R 41
BRI BB, 5, BT T K
(HHLZY, HHAYH 8 13 SMM-PICA B 2 45 — 4 It
s, s R T RBE R

T34, JRICA-EES TR AR AL FAL B, ]
SRR LI, RRCR, AU RR,

4 ZHSABICATHTRIL

S I AT R A PEAT 7 $f T SMM-PICA i#F
Tk, T BT R EE R 4 ST R 24 [t
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4.1 RBENFEGRSEZE

TE = G E R B b, BT A AR B 43 A il
W B 8 W SRR R D, RSk HISynPI-
CA- LRI 71, 455 S BPERL - B i+ EHZ AN
L R X D E b W REAS, HAREAR S AN HA 4
JaARFE . IR LT B BENL - E 5 4] 43 (Random
Subimage Partitioning, RSPYH.1:, RiXILAH»1PE.

YW1 FPEM A —AH 515 ockk HAHIR B BEHL
B, SBEECR 51 o BN A de A i, 224k
FREE N ESlZERELS i @

T2 UYL B ot 15
map(s, ) € {1,2, -, by, Hrr, (s, ) WEURBITAR;

H],3  EPESAL

Y={y(s, O)\wy(s, ) € YHmap(s, 6)=i} (12)

K, =1, -, b;

S} EPEIIIMEHIEI 5 APE,

RSPHE I HATERIM I T, RIS PEIZH g
FEAHARIB R, ARG A T, X
BT T REALECR X 50 73 An AR ™ A= S IS

4.2 fNEREE-IHTMAEE

TEHATIRANY, FPEMNASPEIAE LS GIC, I
E AW . TEMAERA e, koo H
SPEAHMUEL, EWERARTERESHEZ T %,
1, MR IH SR R (R R, 2009)FIEAE, TERLZY
FRAE bR TR et i oA U2 RE A% A A5 i
vt TCHE A, IR C AR 2 5 (Accelerated
Cascading-Endmember Reduction, AC-ER)}#IRUNT :

$B1 FEPERAS NPESR R TS, TRt
UL RE, ;

FB/2 VDEAFNMAGY, RH—FRE T
PERURE, AR A R ITE R E;

W3 RMIE, FILEH,
Hrp, SR s o AL, AR &
B TR U O SE I, BIINVCA . ATGPE;
IEAREL, (HRRRIEZE G 25 [ 4E 5 B 0 v oo $2 UA
%, WAMEE#® %,

43 ZHBRSHTHEE

ZiARSPHAC-ERF L, “HmLICAHAT
(2-level Asynchronous Parallel ICA, AsyPICA-2L)#.7%

iR T .

W1 EPEPUTRSPHLL, AR Y, Y, -,
Y}, FFERI L 4 4 A PE ;

B2 XA PEM S $U1 TSMM-PICA T ;

$B|I GRS PEMITER )R, EPEITAC-ER
L, P RAIUERGE;

$B,4 REE, Bk
5SynPICA-2LH LA L, AsyPICA-2LA kb | 1%
R =AM RIE RS, ALAC-ERFE 7 2 —IK W]
A5EAE, (AR T RSPHIAC-ERSE I H Y44 R A7
NG

5 TAMAICAITATE

AsyPICA-2L 145 PEXT 45 (1 G0 43 204 740 57
TR, AR WA G — D PESE G A T AT
UHIC LYY, AR T RSP L4 sk iy, (H
it 2 B G X A AT5 AR 23 R K80 PERY 43 I A A A %L
i, M £ PERYI SR B, ERRIL T #2225
REPERE . /A ICAIFATH % (2-1evel Grouping
Parallel ICA, GrpPICA-2L)M&5A T[R4 575wk
MRS, RIS AR D R it 2 10 S 2005

ZAPANPER 3 A T4 4G, G, -+, G}
FEPES 5 AR, ARl NPE#E S, I
LN GAHNE—ANPERG S, i NG —

G={PE, j=iy, i1y, i,}, Vi=l, -+, q (13)
1L N PETE M2 gl b i BT AR AR, IR
fdii~i, vi=1, -, gHHESUL A REIER , DIRAF 2R
fif. GrpPICA-2LS AR ANT

B WASEg, JHH(13)NPEH#TT/M4 ;

HB]2  FPEMHRSPHEE A4l r k)

W3 KU PETI N IREAR ;

HBA  XTHENMAG, Yi=l, -, q, WHNE
PE[HJ#ATSynPICA-2LE M, 7 AE45r A msi e e &

FI|S  FPERIP ARSI AHPITRE RS, T
AC-ERF:, HAHmZuitEGE;

$B6 RINE, FkLEH,

GrpPICA-2Lif it g ZHBORIH 15 5k 1R e PRI
1303, TEq ARl T A0, R AE T
WM KL, P TREEEGENRECE, FERlr, 4
g=10F, 16 A SynPICA-2LE v ; Mg=bi}, fAifk N
AsyPICA- 21579,
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¥

6 SLE

152 EM% K F T Cuprite Nevada#fi X [ AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) = it
Kl (614 x 5124890, 1997461 19H &A1), MWE 1)
TR SEEHRBERE T 429-2470 nm 184N BE(EIR T K
AW B, EER/NA113 MB, BHE ik TC e
Fa [ REAUAE R 2 20(Kruse 45, 2003), B TICATE
IO BT 1Y c(NascimentoDias, 2005), 7K
SRICHECE H H20, AC-ERFJH T VCAE

\}

1  Cuprite Nevadahh[X AVIRIS[F{£ (648 nmif Ef)

WCF- B aAE 720N A, B
fid'® 1.6 GHz Intel Core 2 Duo CPU. 1 GNAFLI K
80 GREALAYTAIL, THE A TIRLIRM B % . RH]
MPICH2LA K Visual C++2008 OpenMP#4T -4 7H2 )%
weit, Fes i BLAS/LAPACK .

AR S b, ZUGSTT IR B T AR A
SEREE] A 1701485 ms(2930 min), SMM — PICAE.v:
HYIHE] 41307953 ms, ML A1.3,

774000 [ .
674000 +
574000 | ‘.
134000 %
£ 474000 1 A 114000
= 94000
= 374000 |
3‘5 74000
1§ 274000 ¢ 10 121416 18 20
174000 T
74000 Lo T e
1 3 5 7 9 11 13 15 17 19 21
FFEEA AR

——SynPICA-2L. - - - AsyPICA-2L. ----- GrpPICA-21, - HETPE
K2 ICAFFATHE BT T A

G390 R FH 3 Z G A7 B3R N R 34T i o
B, HHGrpPICA-2LIMgH 2, THET S A BN 258 1
220, SADLMBITHIEWME 2R Ah, Edik
A T AR TR BE A T B R 20 I E T30,
BRI AT 0L, R 047 Bk e AR A5 T S 80K
IR, B TR SR, 25 Rk A B AT i )
b, ME K204 BT S, SynPICA-2LAI
GrpPICA-2LIHA T[] 3475 F-78000 ms.,

PR L, B3 I B e s R S IR A Y
SERBATICES, ARV SR F OGS fA B2 B 5 (Spectral
Angle Distance, SAD)(Chang, 2003) ARz J5i%
ZEATE R, SynPICA-2L 5 R Bl s S —%k
GrpPICA-2L KR Z ) 40.04, AsyPICA-2LIRZ N
K3, BEE TR R3S 2R 25 Mg, Yy
RECH208T, $2221550.13,

0.14
0.12
0.10
0.08
0.06
0.04
0.02

SAD A

2 4 6 8 10 12 14 16 18 20
TR AL
€13 AsyPICA-2LIWSAD.EARIR2E LK

1 3 5 7 9 11 13 15 17 19
T A
—=— SynPICA-2L --a-- AsyPICA-2L - - GrpPICA-2L —— £ PRk L

El4  ICAFATEILAIINEE b

B4 H T 3R ARE b, TR I, BT
SAEUGREAN, AsyPICA-2LAYHINE HEAS i SynPICA-
2LMIGrpPICA-2L, 471 R85, AsyPICA-
2L e - THRNE, IR AR E . A SynPICA-
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2LFIGrpPICA-2L, PEB BRI . 21t
B ONABUN, GrpPICA-2LBS T SynPICA-2L,
HAE B A HEREA Y

7 45 1B

A SCTESMPAE BE IR 43 il 42t T SynPICA-
2L . AsyPICA-2LVI K GrpPICA-2L 3FICAFFAT
B AT

()KSBEEJ5 1T, SynPICA-2L5GrpPICA-2LfESR
I PR R RS, MR RS 2R, AsyP-
ICA-2LKGFEZ M TR (2)SynPICA- 2L T2
M, BAEETY RN (3)AsyPICA-2LTET 4
TSI ST HEREL T SynPICA-2L, {HA[P &
PR (4)GrpPICA-2LAEAT T AsyPICA-2L#K i (11
REFISynPICA-2LEUF v P I, 76338 ksl i i
LrR I TPERE

A TG TAES R, LLR LA A s ek . (1)78
BT R SMM-PICAT L, THE IR R AT5 AR
AN, SMZCPURMEE e k1.3, F7 e s LA
s (2) B IR GrpPICA-2L ELA #1347
e, 4l mm B A Rl s (3)GrpPICA-
2L g AE SR TR T BUE 21 L, (Agid s
BUE R Z /DA W Rk B, eGSR M
A TR 5

F i BMJet Propulsion Laboratory(JPL)3# 4%
89 AVIRIS 5 3o R4
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