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Forest above ground biomass estimation methodology based on
polarization coherence tomography
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Abstract: Forest above ground biomass (AGB) estimation using microwave backscattering coefficient is normally limited to
low level AGB because of the “saturation” problem in backscattering coefficient. In addition, forest height may be used to esti-
mate AGB by allometric equation, but the changing conditions of the forest in terms of density, tree species composition efc. limit
the accuracy and performance of the method. In order to overcome the above disadvantages and improve the estimation accuracy,
a method for AGB estimation is proposed in this paper, which is based on polarization coherence tomography (PCT) technology.
Using repeat pass ESAR L-band PolInSAR data collected by DLR at the Traunstein test site, the radar relative reflectivity func-
tion of each pixel is reconstructed using PCT, from which the average relative reflectivity profiles for the 20 validation stands are
computed. Then 9 profile characteristic parameters closely related to biomass are defined and extracted for each forest stand. The
natural logarithms of these 9 profile parameters are taken as independent variables for multivariate linear regression analysis with
the natural logarithm of the field-measured AGB as dependent variable using stepwise regression method. Forest AGB estima-
tion model is established and evaluated, and the factors possibly affecting the performance of the AGB estimation model are also
analyzed. The results show that these parameters, which are extracted from the average relative reflectivity function inversed
with PCT, are sensitive to forest AGB. The accuracy of AGB estimation can be improved if we make full use of the information
contained in the relative reflectivity function.

Key words: polorimetric interferometric SAR, polarization coherence tomography, stepwise regression analysis method, forest
above ground biomass

CLC number: TN957.51 Document code: A

Citation format: Luo H M, Chen E X, Li Z Y and Cao C X. 2011. Forest above ground biomass estimation methodology based on

polarization coherence tomography. Journal of Remote Sensing, 15(6): 1138-1155

1 INTRODUCTION et al., 1995; Ranson, et al., 1997; Steininger, 2000; Wang, et al.,
2006). In recent years polarimetric interferometric SAR (PolInSAR)
Large scale forest above ground biomass (AGB) mapping with and LiDAR technology have been developed rapidly. Tree height

high accuracy is of great significance for global carbon cycle and extracted from PolInSAR or LiDAR data can be converted to AGB

climate change research. Many scholars have carried out forest
biomass estimation research by remote sensing technology (Chen,
1999; Yang, et al., 2005; Xu, et al., 2008; Lu, et al., 2006). One
commonly used method is based on empirical or semi-empirical
models fitted between radar backscatter power or optical reflect-
ance and field-measured biomass. However, when biomass level
is high, the signal “saturation” phenomenon will occur (Dobson,
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by tree height to biomass allometric equations. The method solves,

112,121
s

to some extent, the signal saturated problem (Mette, 2007)
but the changing conditions of the forest in terms of density, tree
species composition etc. limit the accuracy and performance of the
method due to their close relationships with AGB. Therefore, we
can speculate that the forest AGB estimation accuracy should be
further improved if the stand vertical structure information is con-
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sidered comprehensively in the AGB estimation model.

However, we know that for forest vertical structure information,
there are always different descriptions and ground-based observa-
tion methods from different scholars and research fields (such as
forest management, forest ecology, efc.). The parameter M , which
is used to describe forest vertical structure information has a com-
mon characteristic, namely M changes with height denoted by z
and can be abstracted as a function M(z). If M(z) can be accurately
measured, forest volume (V), AGB and other parameters represent-
ing integrated structure of forest should be accurately estimated.
With the advanced remote sensing techniques such as LiDAR and
PolInSAR, the vertical distribution of a certain physical parameter,
denoted as E(z), can be inversed. However, £(z) is not equivalent to
M(z). Only by establishing the relationship between E(z) and M(z)
or V, AGB, can thematic information of interest to the user such as
M(z), V, AGB, and so on be obtained.

Relative reflectivity function f(z) based on SAR data is a specif-
ic form of E(z) as described above. There are two classes of meth-
ods in the literatures for inversing f{z). One class is proposed by
Treuhaft, et al. (2009a, 2009b) which uses C-band multi-baseline
InSAR data to estimate f(z). The method is based on invertible co-
herent scattering model containing the vertical structure function.
Profile is estimated by adjusting structure parameters until the dif-
ference between vectors of InNSAR coherence and phase measured
by multi-baseline InSAR observation with different flying height
and the corresponding vectors of model estimated coherence and
phase is minimum. The other is suggested by Cloude (2006) that
uses PolinSAR data to estimate f(z) by polarization coherence
tomography technology. Based on the dependence of coherence
on vertical structure variations in forest scene, PCT can be used to
estimate arbitrary vertical profile via a Fourier-Legendre series ex-
pansion of the unknown vertical profile followed by the estimation
of the parameters of this series from interferometric coherence data
for each pixel. However, this approach is different from the first
method in assuming that f(z) is of Gaussian distribution function.

In case of the estimation of M(z) and AGB from f{(z) derived
by the C-band multi-baseline InSAR, Treuhaft, et al. (2002, 2003)
combined f(z) from InSAR data and LAI from hyperspectral data
to estimate the forest leaf area density (LAD) which is the vertical
distribution of LAI and similar to M(z) described previously. LAD
was compared with the ground measured value and a good agree-
ment was found. Treuhaft (2003) further applied LAD to estimate
the AGB, and achieved good results. Although Cloude (2006)
already pointed out that f{z) inversed by PCT had great potential
in AGB estimation, and was supported by later studies (Cloude &
Papathanassiou, 2008; Praks, et al., 2008; Chen, et al., 2009; Luo,
et al., 2010). At present there is still a lack of researches applying it
to forest AGB estimation. Therefore, here we investigate the poten-
tial and limitations of forest relative reflectivity function for forest
AGB estimation using PCT from forest inventory data of 20 forest
stands and corresponding repeat pass ESAR L-band PolInSAR data
collected by DLR at the Traunstein test site.

2 TEST SITE AND DATA SETS

The test site is located near the Traunstein in southern German
and mainly is covered by agricultural fields, pasture, forests and

some urban areas in the western area. The topography is flat with
elevation varying from 600 to 650 m. The dominant tree species
of this site are composed of spruce, beech and fir. On October 11,
2003, repeat pass L-band airborne PolInSAR data covering the site
was obtained onboard DLR ESAR sensor. The flight altitude was
3000 m above the ground; the nominal spatial baseline was 5 m and
the temporal baseline was 20 min. The incidence angle increased
from 25° in near range to 60° in far range. The data were processed
for 1.5 m range resolution and 3.0 m resolution in azimuth. Master
and slave images were provided as coregistered InSAR pairs. The
plat earth phase image and the effective wave number image were
also provided. The polarization color composite image is shown in
Fig. 1. The color scheme is based on the Pauli vector by assigning
[HH-VV|, |HV|, and [HH+VV]| as Red, Green and Blue channel,
respectively. It can be seen that the forests possess a comparably
strong cross-polarization response (volume scattering) and signifi-
cant double bounce (|HH-VV]) can only be noted over parts of the
city of Traunstein. The red line shown in Fig. 1 is along the azimuth
direction from top to bottom. The detailed forest inventory data
for the 20 validation stands as shown in Fig. 1 were collected. The
mean dominant heights of forest stand, denoted as h,, (the mean
height of the 100 highest trees per hectare) of 20 validation stands
were estimated from the inventory data. Then the AGB of each
forest stands was calculated by height to biomass allometric equa-
tion and taken as ground measured forest stand average AGB (Mette,
2007)***. The AGB of the forest stands ranges from 38.7 t / hm” to
4452t/ hm’.
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Fig. 1 RGB composite image of the polarimetric
SAR data of the Traunstein scene in the Pauli basis

3 PRINCIPLES AND METHODS

3.1 Reconstruction of the vertical structure function
by PCT

Cloude (2006)* discussed the PCT algorithm in detai with the
main processes described as below. The complex interferometric
coherence for the two complex signals s, and s, which are collected
at ends 1 and 2 of a spatial baseline of InSAR system can be for-
mulated as follows:
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wave number, 6 is the incidence angle A @ is the apparent angular
separation of the baseline from the scattering point, 4 is the SAR

where ¢, is the ground topography phase, &, =

wavelength in free space, £, is the average tree height within a
pixel and referred to as the tree height in the following text, f(w, z)
that changs with height z is the radar relative reflectivity function
in a certain polarization state w. The minimum value of z is 0, cor-
responding to the position of the bottom of the vegetation layer.
The maximum value of z is 4,. By applying the PCT algorithm to
PolInSAR data, the f(w, z) can be estimated from Eq. (2)

sz (w,2) = hﬂi(l —djy (W) +ayy (w)+
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where 0<z<h,, ]A”Lz(w, z) is the second-order approximation of

Legendre series of f(w, z), For easy description, the subscript will
be omitted in the following text. h:, is the estimation of /,. The Leg-
endre polynomial coefficients a,,(w) and d,,(w) can be calculated
from Eq. (3).
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It can be seen that as long as the tree height };v and the ground
topography phase ;50 are estimated, and the complex coherence J(w)
for the polarization state w is calculated, &, and 7, can be gotten.
Then The Legendre polynomial coefficients d,,(w) and d,,(w) can
be obtained. Thus the relative reflectance function f(w, z) of each
pixel in the corresponding polarization state can be reconstructed
from Eq. (2).

We can see from the above description that the tree height and
the ground topography phase are the two key input parameters for
the reconstruction of radar relative reflectivity function. The estima-
tion errors of them have direct impacts on the estimation accuracy
of the relative reflectivity function. There are many ways (Cloude
& Papathanassiou, 2003; Bai, et al., 2010) to extract the tree height
from PolInSAR data. For L-band PolInSAR data of the Traunstein
test site, the difference of complex coherence phases between
polarization channels is small and there is non-volumetric related
decorrelation in complex coherence. So in the process of estimation
of tree height, if coherence phase information alone is used it will
lead to underestimation, while if coherence amplitude information
alone is used it will lead to overestimation. In order to improve

the accuracy of tree height estimation, in this paper a hybrid inver-

sion method based on fusion of the coherence amplitude and phase
information is used, which combines interferometric coherence
optimization and compensation of non-volumetric scattering decor-
relation (Luo, ef al., 2010). After the process of co-registration, fil-
tering, flat earth phase removal and multi-look operation, the phase
diversity (PD) interferometric coherence optimization method
(Tabb, et al., 2002) was used to obtain the coherences J(w,) and y(w,)
in polarization channels dominated by volume and surface scatter-
ing, respectively. Then we can find that the ground phase (Cloude,
2006) and estimate tree height by hybrid inversion method based
on fusion of the coherence amplitude and phase information (Luo,
et al., 2010)""**. The inversed tree heights of all the pixels in each
forest stand, whose boundary is shown as the red polygons in Fig. 1,
are arithmetic averaged as the estimated forest stand heights. The
estimated heights are plotted against ground measured forest stand
average heights in Fig. 2. The coefficient of determination (R?) is
up to 0.8630 with the average error of 0.90 m and RMSE of 3.11 m.
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Fig. 2 Scatter diagram of ground measured average forest stand
height with that estimated by the phase and amplitude hybrid
inversion method based on interferometric coherence optimization
and non-volumetric decorrelation compensation

The relative reflectivity function ]} (w, z) of each pixel in the
area covered by forest is obtained from PCT in polarization chan-
nel dominated by volume scattering. Fig. 3 shows the f’(w, z) sliced
along the red line shown in Fig. 1, on which the horizontal direc-
tion represents pixel along the red line, the vertical one represents
vertical height and the color reflects the relative reflectivity of radar
backscattering. Here we constrain color mapping only for the pix-
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Fig. 3 Vertical profile of the relative reflectivity function from
PCT in the SAR azimuth direction (along the red line in Fig. 1)
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els whose f (w, z) value ranges from 0 to 0.25, and the pixels with
value exceed 0.25 are represented by the color of value 0.25. We
can see that the relative reflectivity contributed by the volume scat-
tering from the upper part of forest decays with the increasing of
depth. However, there is relative strong reflectivity contributed by
volume scattering in the forest near the ground surface. This indi-
cates that there may be an underlying dense shrub layer.

3.2 Calculation forest stand average relative reflec-
tance function and the definition of characteristic
parameters

The f‘ (w, z) from Eq. (2) is calculated on the pixel scale, while
ground measured forest AGB is provided by average ABG on stand
scale. Therefore, it needs to calculate the average f” (w, z) on stand
scale. Boundaries of the 20 inventory stands are drawn as the red
polygons in Fig. 1. f (w, z) of all the pixels in a stand is taken the
arithmetic average as average f (w, z) of the stand. So there is an
average f (w, z) for each of the stands, which is used in the follow-
ing sections.

Fig. 4 shows the f (w, z) of three forest stands of distinct AGB
levels, namely low (AGB of No.14: 135.7 t/hm?), medium (AGB
of No.9: 303.3 t/hm”) and high (AGB of No0.20: 402.6 t/hm’). In
Fig. 4, h, and h, are the height positions where relative reflectivi-
ties are the closest to 0.0002 in the upper half of the f (w, z) curve.
These data between 4, and 4, constitute the first envelope. /4, is the
height position where relative reflectivity is the maximum in the
first envelope. A, is the height position which is the first inflection
point between the relative reflectivity corresponding to /, and the
maximum relative reflectivity in the lower half of j} (w, z) curve.
These data between the £, and the 0 height positions constitute the
second envelope. We can see that the shape and peak position of
the first envelope is closely related with the AGB. For the stand of
high AGB, such as No.20, the peak is small, the span of the enve-
lope (namely h,—h,) is larger, &, is high and the peak of the second
envelope is smaller than that of the low AGB stand such as No.14.
Through fitting the upper half of 7(w, z) curve by Gaussian func-
tion as the red dotted line in Fig. 4, we find that the Gaussian func-
tion can well fit the upper part of the f (w, z) curve, indicating that
the upper part of average relative reflectance function in stand scale
is of Gaussian distribution. In order to analyze quantitatively the re-
lationship between forest AGB and j} (w, z), we define 9 parameters
to describe the characteristics of f (w, z) as follows:

Parameter 1: P,=(h—h,)/ f(w, hs)

z=h,

Parameter 2: P, = ZZ-f‘(w,z)
=h

Parameter 3, 4, 5: Through fitting the upper half curve by Gaus-
sian function, we can get the three parameters P;, P, and P re-
spectively. Parameter 3 is the reciprocal of height of the Gaussian.
Parameter 4 is the center of the Gaussian. Parameter 5 is the width
(the standard deviation) of the Gaussian.

z=hy ~ z=hy n
Parameter 6, 7: P, = I/Zf(w,z) P, = 1/Zf(w, 2)

z=h, z=0

Parameter 8: P=P/P,

z=hy | z=hy
Parameter 9: P, = Y f(w,2)/ Y f(w, 2)

=, Z=hy
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Fig. 4 Average relative reflectivity function in optimum
polarization channel dominated by volume scattering of 3
typical forest stands in distinct AGB levels
(a) No. 14; (b) No. 9; (¢) No. 20

3.3 Estimation model of forest AGB

Studies have shown that high correlation can be obtained by us-
ing the power function as shown by Eq. (4) to describe the relation-
ship between the AGB and remote sensing observations by SAR
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(Feng & Liu, 2005). So Eq. (4) is also used as the estimation model
of forest AGB in this paper.

B=p]]2
i=1

where B is the AGB, P, are the characteristic parameters extracted

“

from f (w, z), b, and by are the parameters of model, n is the number
of characteristic parameters used in the model. In this paper, 9 pa-
rameters are defined to describe the characteristics of J} (w, z). So
the maximum value for n is 9. Then we take natural logarithm of
Eq. (4) as follows:

In(B)=In(by)+b,In(P,)+b,In(P,)+---+b,In(P,) 5)
We set
Y=In(B), b=In(by),
Xi=In(P,), X;=In(Py), -+, X,=In(P,)
Then we get the linear multivariate equation as follows:
Y=bytb X +b, Xyt +b, X, (6)
3.4 Construction and evaluation of AGB estimation

model

In order to select significant characteristic parameters P; (as
independent variables) and find the best combination to predict the
dependent variable (i.e., AGB), we use multiple linear stepwise
regression analysis method to construct AGB estimation model as
shown by Eq. (6). The method allows independent variable to enter
into the regression equation from less to more one by one (Gao,
2005). At each step, the independent variable not in the equation
but with probability of the smallest F' is entered, indicating the
probability is sufficiently small. Variables already in the regression
equation are removed if their probability of /' becomes sufficiently
large. The method terminates when no more variables are eligible
for inclusion or removal. Finally, the variables retained have larger
contribution to the dependent variable estimation and are significant
variables. Variables excluded are variables whose ability to explain
the variance in the dependent variable is weak.

In stepwise regression analysis, serious collinearity must be
avoided since the severe collinearity between the variables will
make regression model meaningless. Generally, collinearity can be
indicated by tolerance or the variance inflation factor (VIF). Toler-
ance of an independent variable is denoted by the proportion of the
variation not explained by the other variables to the variation of
the dependent variable explained by the independent variable. It is
calculated as (1-R* ) where R’ is the multiple correlation coefficient
for the independent variable against all of the other variables in the
regression equations. The VIF is the reciprocal of tolerance and low
VIF indicates high degree of collinearity.

In addition, the consistency and significant of regression model

tics or P values, respectively. F is calculated as the regression mean
square divided by the residual mean square. Then the P value can
be obtained through F value table, which is used to determine sig-

nificance of the regression equation at a given level.

3.5 The accuracy evaluation of AGB estimation model

The m-fold cross validation is used to assess the performance of
the AGB estimation model established by the stepwise regression
method. Namely the N samples are partitioned equally into m sub-
samples denoted respectively by G,, G,, G;,..., G,. Of the m sub-
samples, a single subsample G, is retained as the validation data for
testing the model, and the remaining m—1 subsamples G, are used
as training data. The cross-validation process is then repeated m
times (the folds), with each of the m subsamples used exactly once
as the validation data. The N results from the folds then can be used
to calculate R” and RMSE with the measured values as the perform-
ance indicators of the AGB estimation model. The total number of
validation stands is 20, so N is 20 and m is set to 10.

4 RESULTS AND ANALYSIS
4.1 Construction and analysis of AGB estimation model

In polarization channel w, dominated by volume scattering,
we obtain the average f (w, z) for each of validation stands by the
method as described in section 3.1. Then 9 characteristic param-
eters extracted from the f (w, z) are used to do correlation analysis
with the ground measured AGB of validation stands and the corre-
lation coefficients R calculated are shown in Table 1. It can be seen
that these parameters are to some extent related with biomass, of
which the three parameters (P;, P,, Ps) from Gaussian fitting is of
the highest correlation.

The 9 parameters are further used to carry the stepwise regres-
sion analysis with ground measured AGB. Based on probability of
statistic £, namely P value, the independent variables which have P
value of the largest F is entered, if that P value is less than or equal
to 0.05. Variable already in the regression equation which has P
value of the smallest 7 is removed if its P value is greater than or
equal to 0.051. Finally, the three independent variables are selected,
namely P,, P; and P,. The corresponding regression results are
shown by model 1(M1) in Table 2. For each of independent variables
in the M1, the tolerance is large (greater than 0.5) and VIF is small (less
than 2), indicating that there is not collinearity problem in the three
independent variables. F' equals 95.9768 and P is 0.0000, showing that
the regression models are significant. Based on the parameters esti-
mated in M1, AGB regression equation can be constructed as follows:

InB=-2.9966+1.7806 In(P,)+

is indicated by the squared correlation coefficient (R”) and F statis- 0.5765 In(P;)-0.2927 In(P,) 7)
Table 1 Correlation coefficients between the 9 characteristic parameters and AGB using three different processing methods
Parameter P P P P P P P P, P
Method 1 2 3 4 5 6 7 8 9
Method 1 0.8698 0.7041 0.9136 0.9355 0.8886 0.7627 0.7583 0.6487 0.2414
Method 2 0.8668 0.7486 0.9196 0.9402 0.8928 0.7828 0.7952 0.6659 0.2743
Method 3 0.8426 0.7229 0.8800 0.9281 0.8086 0.4783 0.6513 0.3255 0.5747

Note: Method 1: With non-volumetric decorrelation compensation in polarization channel dominated by volume scattering
Method 2: With non-volumetric decorrelation compensation in polarization channel dominated by surface scattering
Method 3: Without non-volumetric decorrelation compensation in polarization channel dominated by volume scattering
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Table 2 Comparison of results of stepwise regression analysis for AGB estimation
L Collinearity statistic
Model Model R Adjusted B (BY) Estimation F P
parameter parameter
tolerance VIF
b=-2.9966
P, b,~=1.7806 0.5453 1.8340
Ml P, 0.9474 0.9375 b=0.5765 95.9768 0.0000 0.6876 1.4544
P, by=-0.2927 0.7067 1.4149
b=—0.7766
P, b,~=1.8960 0.3153 3.1715
M2 P, 0.9479 0.9381 b=2.3706 97.0290 0.0000 02053 48714
P, b;=-2.1366 0.1121 8.9168
by=-1.3218
MM2 P, 0.9287 0.9203 b~=1.5424 110.7269 0.0000 82;; iggiz
Py b=1.1565 : :
bh=—4.8165
M3 P, 0.8932 0.8806 b,~=1.9590 71.0603 0.0000 0.7081 1.4122
P, b,=0.8827 0.7081 1.4122
A b=-0.5270
M4 h\, 0.9031 0.8977 by=1.8457 167.7714 0.0000 1 1

Note: Model parameters are accurated to 4 digits after the decimal point

M1: This model is constructed from 9 characteristic parameters by stepwise regression method in polarization channel dominated by volume scattering
M2: This model is constructed from 9 characteristic parameters by stepwise regression method in polarization channel dominated by surface scattering

MM2: This model is M2 modified by excluding parameter P7

M3: This model is constructed from 9 characteristic parameters by stepwise regression method in polarization channel dominated by volume scattering without
regard to the non-volumetric decorrelation factor in the process of estimation of forest stand height
M4: This model is constructed only from forest stand height inversed from coherence amplitude and phase information using stepwise regression method

The average AGB (natural logarithm) of the 20 forest stands es-
timated from Eq. (7) are plotted against the corresponding ground
measured AGB (natural logarithm) as shown in Fig. 5. We can see
that the RMSE is 0.15 t/hm’, most of the points fall in the 1:1 line
and a small part uniformly distribute on both sides of the line. The
squared correlation coefficient is up to 0.9474. After eliminating
the effects of the number of independent variables and the sample
size on R’, the square of the adjusted correlation coefficient R} can
be obtained with value of 0.9375. This shows that there is a good
correlation between the dependent variable and the 3 independent
variables.

Mean error=—0.00 t/hm’
R’=0.9474
RMSE=0.15 t/hm’

1 L 1 J

The estimated AGB by regression method/(t/hm’)
W

3 4 5 6 7
The natural logarithm of ground measured AGB/(t/hm?)

Fig. 5 Scatter diagram of ground measured forest stand
AGB (natural logarithm) with estimated forest stand AGB
(natural logarithm) by stepwise regression method

In addition, we can see from the sign of the estimated equation
parameters P, and Py that the P, and Py have positive impact on
estimation of AGB, namely the greater their values the greater the

estimated AGB are. However, P, is just the opposite. This is con-
sistent with that shown in Fig. 4.

4.2 Analysis of some factors affecting the performance of
the AGB estimation model

The f (w, z) estimated by PCT is closely related with polariza-
tion and is different in different polarization states. In addition, tree
height and ground phase are the two key input parameters of PCT
and their estimation errors directly affect the reconstruction accura-
cy of /; (w, z). Effects of the two factors on AGB estimation model
will be analyzed below.

4.2.1 Effects of polarization on AGB estimation model

The f'(w, z) represents the relative reflectance function corre-
sponding to a specific polarization (w). In the process of reconstruc-
tion of f (w, z) by the method described in section 3.1, if coherence
7(w,), which corresponds to the polarization channel w, dominated
by surface scattering obtained by the PD interferometric coher-
ence optimization method, is selected to calculate y, using Eq. (3),
we can obtain the relative reflectance function of each pixel which
corresponds to the specific polarization channel w,. Nine stand
characteristic parameters are further extracted to conduct correla-
tion analysis with ground measured AGB. The results are shown in
Table 1. Compared to the results corresponding to the polarization
channel w, dominated by volume scattering (row 1 in table 1), the
correlation coefficient of each parameter changes little. The three
independent variables P,, P, and P; are selected by the stepwise
regression method to construct model denoted by model 2 (M2),
as shown in Table 2. Compared with M1, parameters P, and Py are
retained and P, is replaced by P,. This indicates that the character-
istic parameter from the lower half of the f (w, z) curve is sensitive
in the polarization channel dominated by surface scattering, while
this is just the opposite in the polarization channel dominated by
volume scattering. However, the three parameters in the M2 have
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very low tolerance, particularly the tolerance of P, is only 0.1121,
indicating that there are serious collinearity among the three param-
eters. We further analyzed the correlation in the three parameters
and find that the correlation coefficient between parameters P, and
Py is up to 0.8487. After parameter P, is excluded, multiple linear
stepwise regression analysis is used to construct model denoted by
the modified model 2 (MM2) as shown in Table 2. We can see that
there is no collinearity problem and the regression equation is sig-
nificant. However, compared with M1, R* of MM2 decreases from
0.9474 to 0.9287. The above analysis shows that the polarization
state dominated by volume scattering is more reasonable in forest
AGB estimation in general.
4.2.2  Effects of inversion errors of tree height on AGB estimation
model

First of all, tree height h‘ of each pixel must be known in order
to inverse f'(w, z) by PCT algorithm. There are many methods
used to inverse directly };V from PolInSAR data. In the process of
tree height estimation, the non-volumetric scattering decorrela-
tion factor (R,) is not considered and the corresponding estimated
forest stand average heights for 20 validation stands are plotted
against ground measured forest stand average heights in Fig. 6. The
average error is 2.71 m, with RMSE of 4.00 m and overestima-
tion. These overestimated tree heights are taken as inputs of the
PCT algorithm to reconstruct f (w, z) for each of forest stands in
the polarization state dominated by volume scattering. Then the 9
parameters, which are extracted from f (w, z), are used to conduct
correlation analysis with the ground measured AGB. The corre-
sponding results are shown in line 3 of Table 1. It can be seen that
the correlation coefficients of each of the parameters decrease
slightly. These parameters are used to perform stepwise regression
analysis with ground measured AGB and the corresponding results
are shown as model 3 (M3) in Table 2. Parameters P, and P, are
selected as the significant parameters for AGB estimation, indicat-
ing that parameters Pg and P, describing characteristics of the upper
part of the relative reflectivity function curve become less sensitive
to the AGB, while the parameter P, describing characteristics of the
lower part of the relative reflectivity function curve becomes more
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Fig. 6 the scatter diagram of ground measured average
forest stand height with estimated average forest stand height
by the phase-amplitude hybrid inversion method based
on interferometric coherence optimization without non-
volumetric decorrelation compensation

sensitive to the AGB because of the tree height estimation error.
The value of F is 71.0603 and that of P is 0.0000, which indicates
the regression equation is significant. However, compared with M1,
R’ is decreased from 0.9474 to 0.8932. These results indicate that the
estimation errors of tree heights will be transmitted to the f (w, z), thus
reduce the accuracy of AGB estimation based on f (w, z). If other
sensors, such as LiDAR, are used to obtain accurate ground phase
and tree height as the initial values of PCT algorithm, the effects of
propagating errors from tree height and ground phase on PCT algo-
rithm can be reduced and the performance of f'(w, z) reconstruction
should be further improved to further improve accuracy of AGB
estimation.
4.2.3 Compared with the AGB estimation method only based
on the forest stand average height
Forest stand average height inversed from PolInSAR data may
be directly used to do stepwise regression analysis with ground
measured stand average AGB to construct AGB estimation model.
Based on the forest stand average heights /,, estimated by the
method described in section 3.1, the AGB estimation model is
constructed as Eq. (8) and the corresponding results are shown by
model 4 (M4) in Table 2. The scatter plot is shown in Fig. 7 with R*
0f 0.9031 and RMSE of 0.21 t/hm”. This shows M4 generally gives
poor results than that of M1.
InB=-0.5270+1.8457 In(j, ) )

Mean error=—0.00 t/hm’
R*=0.9031
RMSE=0.21 t/hm’

1 1 1 ]

The estimated AGB by regression method/(t/hm’)
W

3 4 5 6 7

The natural logarithm of ground measured AGB/(t/hm®)

Fig. 7 Scatter diagram of ground measured AGB (natural logarithm)
with the estimated AGB (natural logarithm) by stepwise regression
method using only the estimated forest stand average heights

The predictive values from M1 and M4 are taken inverse func-
tions of natural logarithm and are plotted against ground measured
forest stand AGB as shown in Fig. 8 (a) and (b), respectively. It can
be seen that compared with R* of the AGB estimation mode only
based on forest stand average heights, R” of the AGB estimation
model based on the relative reflectance function increases from
0.8219 to 0.8630 and RMSE decreases from 57.59 t/hm’ to 47.86 t/
hm’. Then 10-fold cross validation is used to compare AGB estima-
tion accuracy of M1 and M4. The results of cross validation show
that the average prediction error of the biomass decreases from 3.97
t/hm’” to 0.17 t/hm”. Therefore, we can conclude that the three pa-
rameters closely related with forest structure information have greater
explanatory ability for AGB than a single forest stand average height



LUO Huanmin, ef al.: Forest above ground biomass estimation methodology based on polarization coherence tomography 1145

N/E\ 600
£
&
E +
g 400 [~ ) )
8 e
2 | + +
8 -+
E +t
s wor .
= RMSE=47.86 t/hm’
3 + R*=0.8630
é Mean error=—0.87 t/hm’
3
é 0 200 400 600
The ground measured AGB/(t/hm’)
(a)
g 600
% +
=}
=
[}
g 4
.S 400 - f+
Z L
)
g + +
> +
£
m 200
&) + + )
g RMSEZ57.59 t/hm
3 p R=0.8219 )
g + Mean error=—0.01 t/hm’
‘%’ Il L - 1
é’ 0 200 400 600

The ground measured AGB/(t/hm’)
(®)
Fig. 8 Scatter diagram of ground measured AGB with the
estimated AGB by stepwise regression method

(a) Using the characteristic parameters; (b) Using only the
estimated forest stand average heights

and can be used to improve performance of the AGB estimation.
Estimated AGB of the 20 validate stands by M1 are mapped
as shown in Fig. 9(a). Fig. 9(b) shows the corresponding ground
measured forest stand average AGB. It can be seen that estimation
results using M1 can well reflect the actual spatial variation of for-

est AGB.
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Fig. 9 Forest stands average AGB map
(a) Estimated by M1; (b) Ground measured

5 CONCLUSIONS

In this paper, the advantage and potential of forest stand average
AGB estimation model and method using PCT technology is inves-
tigated with the repeat pass ESAR L-band PolInSAR data collected
by DLR at the Traunstein test site. Ground measured forest stands
AGB of the 20 validate stands by the detailed forest inventory are
used to quantitatively analyze and evaluate the main factors affect-
ing the AGB estimation with the developed model and methods.
The main conclusions are as follows:

(1) Based on the analysis of relative reflectivity function curve
of different levels of typical stand AGB, the nine characteristic
parameters, which are possibly correlated with forest stand AGB,
are defined and used to do correlation analysis with the 20 ground
measured forest stands AGB. The results show that except the 9th
parameter, the other 8 parameters have good correlation with forest
stand AGB.

(2) Based on the stepwise regression analysis with the forest
stand average characteristics arguments as independent variables
and ground measured forest stand average AGB as the dependent
variable, the model and method for AGB estimation are proposed.
The effects of choice of polarization channel and estimation error
of the tree height on performance of the AGB estimation model are
analyzed. The results show that the AGB estimation model based
on relative reflectivity function in polarization channel dominated
by volume scattering is superior to that in polarization channel domi-
nated by surface scattering. Accurate tree height estimation is very im-
portant for estimation of forest stand AGB based on PCT. Estimation
error of tree height will decrease the accuracy of AGB estimation.

(3) The AGB estimation method based on the characteristic
parameters from the relative reflectivity function is compared with
that only based on the forest stand average height and the results
show that R’ is increased from 0.8219 to 0.8630, while RMSE is
decreased from 57.59 t/hm’ to 47.86 t/hm’. The results of cross
validation show that the average error is reduced from 3.97 t/hm’
to 0.17 t/hm”, which indicates that the characteristic parameters ex-
tracted from the relative reflectance functions based on PCT tech-
nology are sensitive to the biomass and making full use of informa-
tion from relative reflectivity function can improve the accuracy of
AGB estimation.
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