基于遥感技术的分散式水源水质监测初探——以重庆市永川区为例

叶 墉¹ , 任运刚¹ , 龙训建² (1. 重庆永川水务局 重庆 402160; 2. 西南大学资源环境学院 重庆 400716)

摘要 在基于统计学理论的水质遥感反演研究基础上 利用 Landsat-TM 遥感影像数据 结合水质反演的原理 选取典型丘陵区——永川 区主要水库水体水质参数(叶绿素 a、悬浮物、透明度、水温和氨氮)为研究对象 建立遥感信息同实测数据间的响应关系 得出具有区域 代表性的反演模型 初步形成了一套基于遥感的分布式水质定量测算研究方法 分析结果得出水体中叶绿素 a、水温和氨氮精度较高 悬 浮物、透明度精度较低。 关键词 分散式;水源;水质;遥感 中图分类号 S127 文献标识码 A 文章编号 0517 - 6611(2012)02 - 01206 - 03

Preliminary Study on Water Quality Monitoring of the Dispersed Water Source Based on Remote Sensing Technology YE Yong et al (Water Affair Bureau of Yongchuan Chongqing 402160)

Abstract Based on the statistics theory and the principle of remote sensing retrieval technology in water quality µsing Landsat–TM remote sensing image data the water quality parameters (chlorophyll a suspended substance transparency water temperature and ammonia nitrogen) in Yong– chuan District which is a typical hills region were selected as study object the corresponding relationship between remote sensing and measured data was established the regional representative model was obtained, a set of distributed water quality approach based on remote sensing retrieval technology was formed. The results showed that the precision of chlorophyll a water temperature and ammonia nitrogen are relatively higher than suspended substance and transparency.

Key words Dispersed model; Water source; Water quality; Remote sensing

水是生命之源 水危机问题也逐渐引起许多国家和科学 研究人员的密切关注^[1-3]。水质监测是水质评价与水污染 防治的主要依据 ,常规水质监测需要采样并对水样进行化学 分析 ,但无法准确、快捷地获得大面积、分散式水域的水质状 况 ,因此传统的人工点位采样水质监测方法越来越难以满足 社会发展的需求。20 世纪70 年代以来 ,凭借范围大、数据同 步性好、成本相对较低 ,能够提供长时间序列、不同空间分辨 率的水体信息等优点 ,卫星遥感为水质监测注入了新的活 力。Klemas 等最早利用 MSS 遥感数据来估算悬浮泥沙含 量 ,随着遥感技术和遥感应用理论与方法研究的进步 ,进行 小范围水域的水质监测日趋成熟 ,监测的内容包括悬浮泥 沙、叶绿素、水温、透明度、可溶性有机物、油污染、热污 染等^[4-6]。

目前 遥感水质反演的方法主要有 3 种^[5]:一是根据水 体色调的不同对水质状况进行定性分类、分级; 二是直接建 立水质指标同遥感信息之间的统计关系 对水质指标进行估 算; 三是基于神经元网络或灰色系统理论 建立遥感信息同 实测数据间的响应关系。笔者根据水体及其组分的光谱特 征 ,采用遥感信息和与实测信息的统计相关模型 构建水质 定量测算模型 ,从而达到利用遥感技术进行区域水质定量测 算的目的 ,为区域水资源的可持续利用提供技术支持。

1 研究区概况

重庆市永川区地处四川盆地东南,地理位置105°37′37″ ~106°05′06″E28°56′16″~29°34′23″N,面积1576km²(图 1)。2009年全区总人口110万人 实现国内生产总值241亿 元;地处川东平行岭谷的西南端,平行岭谷在这里作帚状散 开,地势西北高、东南低,属于四川盆地典型丘陵区,丘陵占 全区总面积的 70% 以上; 区域地处中亚热带湿润气候区,季 节性显著,四季分明,年均气温为 17.7 ℃,多年平均降雨量 1 049.6 mm 4~9 月的降雨约占全年 80%,多年平均日照时 数1 248.2 h,平均风速 1.5 m/s; 自然植被属亚热带偏湿润性 常绿针阔叶混交林亚带,长江上游低山丘陵植被小区。

由于独特的地形地貌特征,全区分布着133座水库;其 中中型水库4座,小(一)型水库28座,小(二)型水库101 座。广泛分布的水库工程是永川区生活、生产、农业灌溉的 保障 影响着社会经济生活的各个方面。因此,需要科学、适 时地对水库水源水质进行监测,促进水资源可持续利用,为 经济社会发展提供支持和保障。

2 数据来源

目前内陆水体水色遥感主要依靠陆地卫星多光谱传感 器 如 Landsat TM/ETM、SPOT HRV、CBERS CCD、EO-1 AS-TER 等。相对而言,利用 TM 数据对水体水质监测研究,如 叶绿素 a、悬浮物、透明度和黄色物质的遥感反演取得了理想 的结果^[3-4]。收集到研究区的陆地卫星为 Landsat-5 的 7 波 段 TM 影像 时相为 2008 年 3 月 25 日,卫星轨道 128、像幅 40,该数据无云覆盖,总体成像质量较好。7 个波段遥感数据 中 1~5 和 7 波段的像元空间分辨率为 30 m×30 m 6 波段 为 120 m×120 m。遥感影像的预处理包括辐射校正、几何校 正、光谱增强、波段选择、图像裁剪。同时收集到与卫星过境 时间基本同步的地面监测数据,以保证 2 种来源的信息有较 好的可比性。

考虑到区域污染特征,在研究区的主要水库(共12个水 库)选择叶绿素 a、悬浮物、透明度、水温和氨氮5个水质参数。另外,在与地面监测点位相同坐标上采集影像灰度的平 均值,作为与水质数据对应的灰度值。

3 水质参数遥感反演模型

3.1 水质参数遥感反演原理 水质参数遥感反演主要是利

用传感器接收的辐射能量值分析水质参数。去除水面太阳 耀斑和白帽反射影像,经水体遥感图像的大气校正,可以得 到含有水质光谱信息的离水辐亮度和遥感反射率。在水体 中,凡存在显著光谱特征或光学特性的水体组分参数,都可 以通过遥感定量反演 如叶绿素、悬浮物等为直接水质参数; 而不存在显著光谱特征或光学特征但与直接水质参数存在 紧密关联的其他水质参数为间接水质参数 ,主要包括总氮、 总磷及营养状态指数等。

3.2 叶绿素 a(*Chl-a*)反演模型 监测叶绿素 a 浓度是水环 境遥感中主要的监测项目之一 是反映水体富营养化程度的 一个重要的参数指标,也是衡量水质和水体初级生产力(水 生植物的生物量)等的最基本指标。Carpenter等^[7]利用 MSS 影像对湖区色素浓度进行了反演; Lathrop 等^[8-9]最早利 用 TM 影像进行非热红外波段反演叶绿素 a。大量学者对叶 绿素 a 的反演结果表明,TM 的1~4 波段在反演叶绿素 a 的 过程中精度较高。因此,从分析叶绿素 a 与水体光谱响应关 系出发 基于同步试验数据和遥感数据的成像时间,利用 TM 影像1~4 波段数据,建立叶绿素 a 的多光谱反演模型:

Chl-a = 37. 2 - 1. 37 × *B*1 - 1. 08 × *B*2 + 1. 7 × *B*3 + 3. 66 × *B*4 ($R^2 = 0.86$) (1)

式中 *B*1、*B*2、*B*3、*B*4 分别为 TM 第1、2、3、4 波段遥感反射率。 **3.3** 悬浮物浓度(*Cs*) 水库水体中悬浮物浓度是最先被遥 感估测的水质参数。Kritikos 等^[10] 最早利用陆地卫星数据研 究水体中的悬浮物含量;随后 *Carpenter* 从定量遥感监测研 究了悬浮物含量的可行性;Mahtaba 等^[11] 的模拟试验结果表 明,TM 1~4 波段是估测悬浮物浓度的最佳波段。从悬浮物 与水体光谱响应关系出发 根据试验数据和水体悬浮物浓度 的特点 反演得出永川区水库水体悬浮物浓度模型:

 $Cs = 28.99 - 0.39 \times B1 - 2.04 \times B2 - 2.04 \times B3 + 0.34 \times B4 \quad (R^2 = 0.96) \tag{2}$

3.4 水体透明度(SD) 水体透明度是评价水体富营养化 的重要指标之一,它与光学衰减系数、漫射衰减系数密切相 关,能直观反映水体清澈和混浊程度,其遥感反演常用间接 遥感反演算法,即先由离水辐亮度反演水色要素浓度或水体 的光学性质,再间接反演得到透明度。通过对国内外学者的 研究成果^[12-14]总结,得出 Landsat-TM 影像的 B2、B3 波段与 透明度显著相关。基于永川区水域同步实测数据,建立适合 区域的透明度模型:

ln(*SD*) = -0.28ln(*B*3) +0.58 (*R*² =0.95) (3) **3.5** 水温(*Temp*) Lathrop 等^[8-9]利用 TM 遥感影像第6 波 段对湖泊表层水温进行了估算。随后,Baban^[15]也利用 TM 遥感数据对英国 NorfolkBroad 地区的水质进行估测,他将各 个 TM 波段的平均像元数字 *DN* 值与地面实测的各种水质参 数进行回归分析,建立了 TM 数据与水温的相关关系式,得 出 TM 遥感影像第6 波段光谱特征与水温有明显的响应关 系。根据试验数据和水体水温监测数据,得出研究区主要水 库水体水温模型:

$$Temp = -0.028(B6)^{2} + 7.47 \times B6 - 501.35$$
$$(R^{2} = 0.74)$$
(4)

3.6 氨氮(*NH*₃-*N*) 水体中氨氮的遥感监测较晚 校为成 熟的方法为 2003 年 Blige 等^[16]的研究成果,该结果表明,TM 1~4 波段是估测水体中氨氮的最佳波段。结合大量实测数

据 得出区域水库水体氨氮反演模型:

$$NH_3 - N = -1.18 - 0.14 \times B1 - 0.22 \times B2 - 0.24 \times B3 + 0.18 \times B4 \quad (R^2 = 0.94)$$
 (5)

4 结果验证

永川区水库较多且分布广泛。20 世纪90 年代以来,由 于自然因素和人类活动的影响,区域水生态环境恶化,部分 水库水质遭到严重破坏,主要表现为总悬浮固体含量高,透 明度低,水体出现富营养化,水体污染严重。

笔者利用 2008 年 3 月下旬 TM 遥感影像数据,首先进行 图像处理利用适合永川区的水质参数反演算法,对叶绿素 a 浓度、悬浮物浓度、水体透明度、水体温度和氨氮参数进行反 演。通过对永川区主要水库水体的水质采样试验 测量参数 主要有叶绿素 a 和悬浮物浓度等。根据同步的实测数据和 遥感数据 构建适合区域水库的水质反演统计模型。为了检 验模型的实用性 通过反演结果与实测数据水质参数进行比 较 来验证反演精度。

叶绿素 a、悬浮浓度、水温、氨氮和透明度实测数据与反 演结果如图 2 所示。从散点图上可知 ,反演叶绿素 a 浓度、 水温和氨氮的精度较高 ,悬浮物浓度和透明度精度较差。

注: (a) 叶绿素; (b) 透明度; (c) 水温; (d) 氨氮; (e) 悬浮物浓度。

图 2 水质参数反演结果与实测值对比

5 结论与讨论

利用 Landsat-TM 多光谱数据反演水库水体水质参数 探 讨基于遥感技术的区域水质定量测算方法研究,从宏观性、 动态性和综合性等方面为分布式水源水体水质监测提供新 方法。

由于受到统计模型自身限制 模型建立在多点实测数据 与遥感信息间统计分析的基础上,所得的水质参数精度有 限,在今后的工作中,基于大量实测数据以及利用高光谱技 术手段,来逐步完善更为准确的水质状况和模型,对于其他 时段的模型适用性进行更多的监测数据来修正和验证。

该研究是对分布式水源水质遥感监测的初步尝试。遥 感、GIS 等地理信息技术的发展为分布式水资源环境预报模 型提供了新方法。因此 ,应用水质遥感监测可建立多种水质 参数反演算法 ,可为不同水体提供动态监测数据。

参考文献

- [1] 汪小钦 王钦敏 刘高焕. 水污染遥感监测 [J]. 遥感技术与应用 2002, 17(2):74-77.
- [2] 乔平林 张继贤 林宗坚. 石羊河流域水质环境遥感监测评价研究[J].
 国土资源遥感 2003(4):39-45.
- [3] 雷坤 郑丙辉 . 王桥. 基于中巴地球资源 1 号卫星的太湖表层水体水质 遥感 [J]. 环境科学学报 2004 24(3):376-380.
- [4] 马荣华 戴锦芳. 结合 Landsat ETM 与实测光谱估测太湖叶绿素及悬浮物含量[J]. 湖泊科学 2005 17(2):97 103.

- [5] 齐峰,王学军.内陆水体水质监测与评价中的遥感应用[J].环境科学 进展 1999 7(3):90-99.
- [6] 张渊智 聂跃平 蔺启中 等.表面水质遥感监测研究[J].遥感技术与应用 2000 15(4):214-219.
- [7] CARPENTER D J CARPENTER S M. Modeling inland water quality using Landsat data [J]. Remote Sensing of Environment 1983 13: 345 – 352.
- [8] LATHROP R G ,LILLESAND T M ,YANDELL B S. Testing the utility of simple multidate Thematic Mapper calibration algorithms for monitoring turbid inland waters [J]. Int J Remote Sensing 1991 10: 2045 – 2063.
- [9] LATHROP R G. Lillesand TM Monitoring water quality and river plume transport in green bay ,lake Michigan with SPOT2 imagery [J]. Photo gramm Eng Remote Sens 1989 55:349 – 354.
- [10] KRITIKOS H ,YORINKS L ,SMITH H. Suspended solids analysis using ERTSA data [J]. Remote Sensing of Environment 1974 3:69-80.
- [11] MAHTABA A L RUNQUIST D C HAN L H et al. Estimation of suspended sediment concentration in water using integrated surface reflectance [J]. Geocarto International J998 J3(2):11-15.
- [12] 陈楚群 施平 毛庆文. 应用 TM 数据估算沿岸海水表层叶绿素浓度模型研究[J]. 中国环境遥感 J996 J1(3): 168 175.
- [13] 王学军 冯廷. 应用遥感技术监测和评价太湖水质状况[J]. 环境科 学 2000 21(6):65-68.
- [14] 李俊生 涨兵 申茜 筹. 航天成像光谱仪 CHRIS 在内陆水质监测中的 应用[J]. 遥感技术与应用 2007 22(5):593-597.
- [15] BABAN M J. Deteeting water quality parameters; in the NorfolkBroads, UK using Landsat imagery [J]. Int. J. Remote Sensing ,1993 ,14(7): 1247 - 1267.
- [16] BILGE F ,YAZICI B ,DOGEROGLU T _et al. Statistical evaluation of remotely sensed data for water quality monitoring [J]. International Journal of Remote Sensing 2003 24(24):5317 –5326.