兰州中心城区用地扩展及其热岛响应的遥感分析^{*}

潘竟虎** 韩文超

(西北师范大学地理与环境科学学院,兰州 730070)

摘 要 以兰州中心城区为研究区,以1978、1993、2001 和 2010 年的 Landsat MSS/TM/ ETM⁺影像为数据源,采用 NDBI-SAVI 指数相结合的方法,提取建设用地信息,利用热红外 波段的单窗算法反演城市地表温度。结合城市热岛比例指数和地表温度分级,定量研究城 镇用地扩张对城市热环境的影响。结果表明:兰州中心城区建设用地在 1978—2010 年的 30 余年间面积由 87.47 km²增加到 172.61 km² 增幅近1 倍。城市扩展与热岛扩展趋势具 有空间一致性,在城市扩张的同时,城区地表温度逐渐上升,城市热岛面积不断扩大。

关键词 城市扩张;热岛效应;遥感信息提取;兰州

中图分类号 P901 文献标识码 A 文章编号 1000-4890(2011)11-2597-07

Urban expansion and its heat island response in Lanzhou City based on remote sensing analysis. PAN Jing-hu^{**}, HAN Wen-chao (*College of Geographic and Environmental Science*, Northwest Normal University, Lanzhou 730070, China). Chinese Journal of Ecology, 2011, **30** (11): 2597–2603.

Abstract: This paper quantitatively analyzed the effects of urban expansion on city thermal environment, taking the urban area of Lanzhou City as a case, and based on the 1978, 1993, 2001 and 2010 Landsat/TM and ETM⁺ images. The information of urban construction land was extracted by using NDBI-NDVI index, and the land surface temperature was retrieved via mono-window algorithm, with the urban heat-island ratio index and the land surface temperature grade maps built. In 1978–2010, the construction land in the central area of Lanzhou City increased from 87.47 km² to 172.61 km², and the urban expansion had a spatial consistency with the urban heat island expansion. At the same time of urban expansion, the urban surface temperature increased gradually, and the heat island area had an increasing expansion.

Key words: urban expansion; heat island effect; remote sensing information extraction; Lanzhou.

随着城市化进程的不断加快,由其引起的城市 热岛效应已引起人们的广泛关注。城市化过程实质 上就是地表覆盖转化的过程,由于城市的扩张,以蒸 腾植被和透水表面为主的城郊自然景观被以不透水 面层为主体的城市人为景观所取代,地表的辐射、热 容量、湿度和糙度等属性也随之被改变,为城市热岛 的形成创造了地面条件(Voogt,2000;樊辉,2008)。 国外很早就发现了城市规模与城市热岛效应之间的 相关性(Oke,1982),近年来,针对城市扩张的热岛 效应(Vrishali,2000;邓玉娇等,2009)、城市土地利 用类型与地表温度的关系(黄一凡等,2009; Reza et al. 2009)、城市热环境与绿地及植被指数的关系 (王文杰等,2006;周媛等,2011)、城市热岛的时空 分布及变化规律(周红妹等,2008;夏叡等,2009)、 城市热岛产生的原因(Bohm,1998)等进行了多方面 的研究。综合来看,研究内容集中在城市人口、人为 热、地表参数对城市热环境的影响;研究方法有城郊 温差分析法、数理分析方法和遥感分析法等。

自 Rao(1972) 发现 ITOS-1 卫星 SR 热红外数据 能识别城区及郊区热辐射差异以来,热红外遥感技 术逐渐成为研究地表城市热岛效应的一种有效手 段。理想的条件是选用不同年代时相的热红外波段 来进行研究(孔达等 2009)。兰州市中心城区位于 河谷盆地之中,可利用建设用地十分有限,空气流动 性差且有大量工业废气排放,由于城市地理环境和

^{*} 国家自然科学基金项目(41061017)资助

^{* *} 通讯作者 E-mail: panjh_nwnu@ nwnu.edu.cn 收稿日期: 2011-05-09 接受日期: 2011-08-20

人为因素的影响,城市热岛效应明显。伴随着城市 的扩展,城市热岛逐渐扩大,热环境问题日趋突出, 同时也使得抵御这种城市病态气候环境所投入的人 工能源增多。研究该区域的城市扩张和热岛响应, 对城市规划和生态环境的建设有着重要的意义。目 前的研究多利用城市和郊区多年的气温资料进行统 计分析(李国栋等,2008;韦海东等,2009),鲜见遥 感手段的引入,而且多将城市用地扩展和热岛效应 割裂研究。因此,本文利用四期 Landsat MSS/TM/ ETM*影像提取兰州市中心城区用地信息,反演地表 温度,进而分析了城市扩张与热岛的响应关系,旨在 为兰州宜居城市和生态城市建设提供科学参考。

1 研究地区与研究方法

1.1 研究区自然概况

兰州(35°35′N—37°7′N,102°36′E—104°34′E) 位于陇西黄土高原西部,青藏高原的东北缘。辖5 区3县 红古城区距离其余4 城区较远而保持了相 对的独立性。故本文中兰州中心城区特指主城区, 即城关、七里河、安宁及西固4个城区(图1)。主体 位于南北两山之间的黄河谷地,并沿河东西带状延 伸 是一个典型的河谷型城市。属于大陆性干旱气 候 雨量少而集中,年均降雨量 324 mm,年蒸发量 1486 mm,年均气温 9.3 ℃。2009 年建成区面积 183.85 km²,人口 188 万(甘肃发展年鉴编辑部, 2009)。随着兰州城市规模的扩大,城市下垫面性 质和格局发生巨大变化 大量人为热进入大气 城市 的能量平衡和水分平衡发生改变 深刻影响城市热 环境分布格局。近年来,随着全球变暖及城市热岛 效应的增强 ,兰州市夏季发布高温橙色警报、红色警 报的日数较以往都有所增加。

1.2 数据来源

考虑到遥感卫星数据源的一致性,本次研究统

图 1 兰州中心城区位置示意图 Fig. 1 Location of urban central area of Lanzhou

一采用 Landsat 系列遥感数据。由于兰州市的城市 热岛在 2010 年达到了前所未有的强烈程度 本文研 究的重点时段集中在 2011 年以前,遥感影像为 Landsat 4 MSS 影像 轨道号 140/35 成像时间 1978-9-27; Landsat 5 TM 影像,轨道号 130/35,成像时间 1993-8-26 和 2010-9-10; Landsat 7 ETM⁺影像,轨道 号130/35 成像时间 2001-7-14。在 Erdas 9.3 软件 支持下,采用多项式法对2010年影像进行几何校 正 在1:5万地形图上选择地面控制点 ,二元二次 多项式作为校正模型 采用双线性内插法进行像元 重采样 输出 30 m×30 m 大小的像元 ,RMS 误差在 1个像元之内。然后用校正后的 2010 年影像对其 余年份影像进行配准。将原始图像的 DN 值转换为 大气层顶辐亮度,以减少不同时相影像在地形、光照 和大气等方面的差异。计算表观大气反射率,利用 "6S"模型进行大气校正,得到各波段经过校正后的 反射率图像。中心城区边界与城市规划确定的范围 一致。

1.3 城市用地信息提取

城市建设用地的遥感信息提取通常采用人机交 互的手工方式,自动化程度不高,许多方法如果不做 后续处理,精度无法满足要求。近年来,基于指数的 建筑用地提取技术相继提出,常用的遥感指数有差 值建筑覆盖指数 DBI(杨存建等,2008)、归一化的差 值建筑覆盖指数 NDBI(Zha *et al.* 2003)、基于指数 的建筑用地指数 IBI(Xu,2007)等。本文使用的 TM/ETM 影像利用上述指数提取建设用地效果不明 显,经多次试验,最后采用 NDBI-SAVI 的方法提取 兰州市的建设用地信息(图2),可有效区分植被、土 壤和建设用地。其中:

$$NDBI = \frac{\rho_7 - \rho_4}{\rho_7 + \rho_4} \tag{1}$$

$$SAVI = \frac{\rho_4 - \rho_3}{\rho_4 + \rho_3 + L} (1 + L)$$
(2)

式中: *NDBI* 为归一化差值植被指数; *SAVI* 为土壤调 节植被指数; *L* 为土壤调节因子,本文取 0.5; ρ_n 为第 *n* 波段的反射率。由于 NDBI 指数需要用到短波红 外波段,而 1978 年的 MSS 影像没有该波段,所以只 能用监督分类来获得 MSS 影像的建设用地信息。 将所获得的建设用地信息分别与同期或准同期的 SPOT-Pan 10 m 分辨率影像进行精度验证。对于 1978年的影像,由于当时没有更高分辨率的影像,

所以只能将提取结果与原影像进行对比。采用随机 抽样的方法在每个年份的建设用地影像中各采集 200 个样本。精度验证表明,1978 年、1993 年、2001 年、2010 年的建设用地提取精度分别为 88.2%、 92.9%、95.3%和 93.7%。由于 1978 年 MSS 影像 的分辨率为 79 m,因此分类精度要明显逊于 30 m 分辨率的 TM/ETM⁺影像。最后分别对各相关年份 的地图进行矢量化,并结合影像判读来获得各年份 城市建成区的矢量边界图,然后用其对所提取的建 筑用地信息进行掩膜运算,经归一化处理后,获得了 各年份的城市建成区范围(图 3)。

1.4 城市空间形态定量测度

利用 GIS 的空间分析和统计分析方法对兰州市 城市空间形态进行定量测度,包括5个指数:扩张速 度、形状指数、分维数、紧凑度指数、扩张强度指数 (杨立国和周国华 2010)。

1) 扩展速度 AGA ,计算公式为:

$$AGA = [U_{A(n+i)} - U_{Ai}]/n$$
 (3)

式中: *U*_{A(n+i)} 和 *U*_{Ai}分别为第 n+i 年和 i 年的城市面积; n 为时间,单位为年。

2) 扩张强度指数 AGR ,计算公式为:

$$AGR = \frac{(U_{A(n+i)} - U_{Ai})}{nU_{Ai}} \times 100\%$$
(4)

图 3 研究区不同年份的建设用地分布示意图 Fig. 3 Built-up lands in Lanzhou in 1978-2010

式中: n 为时间,单位为年。

3) 形状指数 SHI,计算公式为:

$$SHI = \frac{P_{ij}}{\min P_{ij}} \tag{5}$$

式中: P_{ii}为斑块 ij 的周长。

4) 分维数 *D*,计算公式为: *P=KA^{D/2}* (6)

$$P = 4A^{D/2} D = 2\lg(P/4) / \lg A$$
 (7)

式中: D 为分维数; P 为斑块周长; A 为斑块面积。

5) 紧凑度指数 BCI 公式为:

$$BCI = \sqrt{2\pi A}/P$$

式中: *A* 为建成区面积; *P* 为城市建成区域轮廓的 周长。

1.5 地表温度反演

遥感影像反演地表温度的方法可分为 5 类: 单 通道方法、分裂窗(双波段)方法、多波段温度-比辐 射率分离方法、多角度温度反演方法和多角度与多 通道相结合的方法。这些方法都各有利弊,核心内 容是如何提高反演的精度和模型的适用性。覃志豪 等(2003)从辐射传输方程出发,发展了用于 TM 的 单窗反演算法,对 5 种标准大气状态进行验证的结 果表明,该算法的地表温度演算精度很高,平均误差 <0.4 ℃,取得了较好的反演结果。故本文利用单窗 算法提取研究区的地表温度。首先将 TM 热红外波 段图像亮度值转换为大气顶部的辐射亮度,然后将 辐射亮度转换为亮度温度。真实温度计算公式如 下:

 $T_5 = \frac{a_6(1 - C_6 - D_6) + [b_6(1 - C_6 - D_6) + C_6 + D_6]T_6 - D_6T_a}{C_6}$

式中: $a_6 = -60.326$, $b_6 = 0.434$; $C_6 \ D_6$ 为中间变量, $C_6 = \varepsilon_6 \tau_6$, $D_6 = (1 - \tau_6)$ [$1 + \tau_6 (1 - \varepsilon_6)$]; T_a 为大气平均 作用温度; τ_6 为大气透射率; ε_6 为地表比辐射率,限 于篇幅,上述参数的估算方法略去,可参见相关文献 (潘竟虎等 2007)。在 ERDAS 9.3 中利用空间建模 工具完成上述运算。

2 结果与分析

2.1 城市用地扩展

以 ArcGIS 软件作空间叠加分析,得到 1978— 2010 年间兰州市城市扩张图(图4)。表1 和图3 表 明,兰州中心城区的建设用地面积在近30 年里有了 大幅度增加。建成区的空间范围从 1978 年的 8747.64 hm²增加到 2010 年的 17261.91 hm²,净增 8514.27 hm²。从表1 可知,兰州中心城区的快速扩 展主要体现在 2001 年以前的 20 年,其建设用地面 积扩展速度和城市扩展强度都成倍地高于前 10 年。

图 4 兰州市 1978—2010 年城市扩张示意图 Fig. 4 Urban expansion map of Lanzhou City from 1978 to 2010

而在前 20 年中,1978—1993 年的速度和强度又大 于 1993—2001 年,说明中心城区的扩展速度趋于平 缓。分别考察 4 个年份的城市建成区分布及其叠加 图可以看出,兰州中心城区的空间扩展是以城关-七 里河区为中心,向河谷盆地边缘拓展的,并经历了以 下过程:1)1978—1993 年,城市建成区面积增加了 4662.72 hm²。城区主要往城关区黄河以北、七里河 区城市边缘农业区、安宁区东部等地扩展。2) 1993—2001 年,面积增加了 2435.85 hm²,城市除了继 续往安宁中部、西固东部小幅扩展外,更多的是向雁 滩扩展,并快速推进到九洲。3)2001—2010 年,面积 增加了 1415.70 hm²,主要向整个兰州盆地填空补实, 重点在安宁三滩、城关东岗和七里河沿山坪地。

从建成区形状的演化来看,兰州中心城区的紧 凑度指数比较低(0.4~0.6),且总体上呈先下降后 缓慢上升趋势。城市扩展过程中紧凑度数值降低, 显示出城市空间形态日趋复杂,向着趋于不稳定状 态发展,城市形状变得不规则。可见20世纪80— 90年代初,兰州中心城区扩张主要以向周边团块蔓 延为主,这一时期的城市建设以城市周边相对均衡 扩张为主。而1993—2010年,紧凑度数值稍有增 加,扩展特征表现了对前一时期大范围的扩张进行 了归并填空补实,城市形态变化趋向稳定。城市用 地形态分维数始终维持在1.02~1.04,总体呈下降 趋势,特别是2001年后下降趋势非常明显,这与形 状指数的变化一致。

2.2 热场时空变化

由于 3 期影像成像时间不同,为了消除季节对 陆面温度的影响,对原有的LST 进行归一化处理, 生成归一化地表温度图。采用可以体现数据统计特 征的自然裂法(natural break),将其分为最低温区、 低温区、偏低温区、中温区、偏高温区、高温区、极高 温区 7 个等级(图 5),并统计每个等级的像元数及 面积(表 2)。

徐涵秋和陈本清(2003)构建了城市热岛比例 指数 OCRI,计算式为:

$$OCRI = \frac{1}{100 \ m} \sum_{i=1}^{n} w_i p_i \tag{9}$$

式中: *m* 为归一化等级指数; *i* 为城区高于郊区的温 度等级; *n* 为城区高于郊区的温度等级数; *w* 为权重 值,取第 *i* 级的级值, *p* 为第 *i* 级的百分比。在本研 究中 将兰州的地温等级定为7级,所以*m* 为7。特 高温区和高温区这2个等级主要分布在城市,而

(8)

	1	1				
 年代	面积(hm ²)	形状指数	分维数	紧凑度指数	扩张速度(hm ²)	扩张强度指数(%)
1978	8747.64	1.317	1.041	0.66		
1993	13410.36	1.240	1.040	0.40		
2001	15846.21	1.229	1.037	0. 42		
2010	17261.91	1.179	1.027	0.44		
1978—1993					310.84	3.55
1993—2001					304.48	2.27
2001-2010					157.30	0. 99

表1 研究区建设用地及其形态指标

Table 1 Built-up lands and related shape indicators in Lanzhou Basin

表 2 地表真实温度分级面积统计

Table 2 Statistics of area of land surface temperature grading

 地温分区				面积(km ²)		
	1993 年	2001 年	2010 年	1993 年	2001 年	2010 年
最低温区	9256	800	5856	8. 33	0.72	5. 27
低温区	24700	8344	6100	22. 23	7.51	5.49
偏低温区	34456	10978	8767	31.01	9.88	7.89
中温区	30344	26111	14411	27.31	23.5	12.97
偏高温区	30522	35478	33011	27.47	31.93	29.71
高温区	43244	76678	57344	38.92	69.01	51.61
极高温区	47800	61933	94833	43. 02	55.74	85.35

郊区的温度主要位于次高温以下,极高温区和高温 区代表了城市热岛范围,因此 n 为 2;极高温区和高 温区的级值分别为 7 和 6。据此,可以计算兰州中 心城区 1993 年、2001 年和 2010 年的城市热岛比例 指数分别为 0.385、0.579 和 0.653。从热岛比例指 数计算结果结合图 4、表 2 可以看出,近 20 年来,兰 州中心城区偏高温区以上面积大幅增加,尤其是极 高温区面积增加了近 1 倍;2010 年热岛比例指数是 1993 年的 1.7 倍,热岛比例指数的增加反映出城区 热岛效应增强。

2.3 建设用地扩展的热岛响应

从图 5 发现,从 1990—2000 年再到近期,中心 城区热岛效应总体布局发生了较大变化。总体来 说,1993 年城市热岛范围非常小,仅集中在城关-七 里河老城区范围以内;到 2001 年,除了主城区的热 岛范围显著扩大以外,雁滩、西固、沙井驿也体现出 了较强的热岛效应;到 2010 年,热岛效应的影响范围 进一步扩大 蔓延到研究区全境,主城区的热岛与安 宁及西固连成一片,还呈现出了许多较小范围的热岛 点。将热岛强度空间分布图与之前得到的城市扩张 图(图4)结合起来进行分析,可以发现城市的高温地 带随着城市的扩张而逐渐增大,分布的位置和城市扩 张的方向一致,在空间上呈现高度的一致性。

图 5 兰州市三时期地表温度空间分布示意图 Fig.5 Spatial distribution of land surface temperature in Lanzhou

图 6 NDBI-SAVI 与地表温度回归

Fig. 6 Regression of NDBI-SAVI and land surface temperature

为定量研究城市扩张与热岛响应的相关性,利 用 ArcGIS 的 point analysis 功能,在研究区随机选取 300 个点,去除落在水域地类中的 23 个点后,对 NDBI-SAVI 与地表温度进行回归分析。结果发现, NDBI-SAVI 值与地表温度存在较高的相关性,3 个 时期的相关系数均在 0.7 以上。图 6 为 2001 年的 回归结果,反映出以高储热性人工建筑物为主的下 垫面对城市热岛的显著贡献。研究区在这 30 年里 建设用地共增加了 85.14 km²,意味着城市中有更 多的其他用地类型被建设用地所侵占。这一转变使 得地表景观及其下垫面性质发生了根本性的变化, 并因此诱发了严重的城市热岛效应(徐涵秋, 2011)。

3 结 语

尽管城市热环境的遥感研究已经取得了较多的 研究成果 但仍然还存在着诸多有待深入解决的问 题 尤其是定量化研究进展十分缓慢。河谷型城市 由于地形等各种因素的影响,普遍存在着建设用地 紧张、环境问题突出、热岛效应明显等问题。本研究 表明,1978-2010年,由于城市扩张,兰州中心城区 建成区面积由 87.48 km² 增加到 172.62 km²,而城 市热岛效应中高温-极高温区面积由 1993 年的约 81.95 km² 增长到 2010 年的约 136.95 km²。快速扩 展主要体现在 2001 年以前的 20 年,城市扩展与热 岛扩展趋势具有时空一致性。城市扩张、人口增加 和工业区建设是兰州中心城区城市热岛效应的主要 驱动力 城市下垫面性质的改变 ,人为热、废气的排 放对城市热岛都有重要的影响。随着城市化进程的 加速 旧城区的热岛现象在减弱 热岛高温区向新城 区及新开发的工业区(安宁、雁滩)延伸,虽然城市 建成区绿化面积得到了很大的提高,但新城区的扩

张 侵吞原来的农田、水域而导致新的热岛的发育。

目前,兰州城市主要建设用地分布在河流阶地 和部分坪地、台地上,并正在向河漫滩扩展。而高级 别阶地,由于黄土坡地稳定性差,切割严重,不宜近 期开发(杨永春等,2004),因此,市区如果增加建设 用地,必然会损害绿地面积或者具有绿地功能的农 业用地,降低城市生态功能,增加热岛效应。为了最 大限度减轻城市热岛效应,在城市规划、设计和建设 过程中,应当多采用生态设计和施工的理念,增加城 市绿地和绿化覆盖面积,改善环境质量,增强生态调 节能力,用"绿岛"拯救"热岛"。此外,兰州盆地内 可利用空间几近饱和,近期适宜采取合理集聚、适度 扩散的模式,采取城市空间职能的"空间置换"战 略。未来应跳出盆地,建设新城区,有机疏解人口和 产业,将城市的生态环境治理、产业转换、空间职能 结构调整结合在一起,从源头上减缓热岛的发展。

参考文献

- 邓玉娇, 匡耀求, 单海滨, 等. 2009. 城镇用地扩张对城市 热环境的影响. 生态学杂志, **28**(11): 2347-2352.
- 樊 辉. 2008. 基于 Landsat TM 的城市热岛效应与地表特 征参数稳健关系模型. 国土资源遥感, 19(3): 45-51.
- 甘肃发展年鉴编辑部. 2009. 甘肃发展年鉴 2010. 北京:中 国统计出版社.
- 黄一凡,李 锋,王如松,等.2009.基于遥感信息的常州 市热岛效应.生态学杂志,28(8):1594-1599.
- 孔 达,龚文峰,赵惠新,等.2009. 基于 RS 与 GIS 的哈尔 滨城市热岛效应动态变化分析.哈尔滨工业大学学报, 41(3):198-201.
- 李国栋,王乃昂,张俊华,等. 2008. 兰州市城区夏季热场 分布与热岛效应研究. 地理科学,28(5):115-120.
- 潘竟虎,任皓晨,秦晓娟,等. 2007. 嘉峪关市瞬时热力场 空间格局的遥感分析.城市环境与城市生态,20(5): 39-42.
- 覃志豪,李文娟,张明华,等. 2003. 单窗算法的大气参数估计方法. 国土资源遥感,14(2): 37-43.
- 王文杰,申文明,刘晓曼,等.2006.基于遥感的北京市城 市化发展与城市热岛效应变化关系研究.环境科学研 究,19(2):44-48.
- 韦海东,赵有益,陈 英.2009. 兰州市城市热岛效应评价 与灰色预测.中国沙漠,29(3):571-576.
- 夏 叡,李云梅,王 桥,等. 2009. 无锡市城市扩张与热 岛响应的遥感分析. 地球信息科学学报,11(5):677-683.
- 徐涵秋. 2011. 近 30 a 来福州盆地中心的城市扩展进程. 地 理科学,**31**(3): 351-357.

- 徐涵秋,陈本清.2003.不同时相的遥感热红外图像在研究 城市热岛变化中的处理方法.遥感技术与应用,18 (3):129-133.
- 杨存建,张果,陈军,等.2008.基于遥感的成都市及 周边城镇的扩展.地理研究,27(1):100-108.
- 杨立国,周国华. 2010. 怀化城市形态的演变特征及形成机制. 长江流域资源与环境,**19**(3): 237-243.
- 杨永春,张从果,刘治国.2004.快速集聚发展过程中的河谷型城市的空间整合与规划──以兰州市为例.干旱区地理,27(4):603-609.
- 周红妹,高阳,葛伟强,等.2008.城市扩展与热岛空间 分布变化关系研究.生态环境,**17**(1):163-168.
- 周媛,石铁矛,胡远满,等.2011.基于城市土地利用类型的地表温度与植被指数的关系.生态学杂志,30 (7):1504-1512.
- Bohm R. 1998. Urban bias temperature time series: A case study for the city of Vienna , Austria. *Climate Change* , 38: 113–128.
- Oke TR. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society ,108: 1-24.
- Rao PK. 1972. Remote sensing of urban "heat islands" from an environmental satellite. Bulletin of the American Meteorological Society, 53: 647–648.

- Reza A , Weng QH , Abbas A , et al. 2009. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area , Iran. Remote Sensing of Environment , 113: 2606 – 2617.
- Vrishali D. 2000. Impact of rapid urban growth on heat and moisture islands in Pune City, India. Atmospheric Environment, 34: 2745-2754.
- Voogt JA. 2000. Urban heat island// Munn T , Douglas I. Encyclopedia of Global Environmental Change. Chichester: John Wiley & Sons.
- Xu HQ. 2007. Extraction of urban built-up land features from landsat imagery using a thematic-oriented index combination technique. *Photogrammetric Engineering & Remote Sensing*, **73**: 1381–1391.
- Zha Y , Gao J , Ni SX. 2003. Use of normalized difference built– up index in automatically mapping urban areas from TM im– agery. *International Journal of Remote Sensing* , 24: 583– 594.

作者简介 潘竟虎,男,1974 年生,硕士,副教授。主要从事 环境遥感研究。E-mail: panjh_nwnu@nwnu.edu.cn 责任编辑 刘丽娟