基于光谱归一化的马尾松 LAI 遥感估算研究

叶炜,汪小钦,江洪,傅银贞

(福州大学福建省空间信息工程研究中心 空间数据挖掘与信息共享教育部重点实验室,福州 350002)

摘要:通过对比不同传感器间光谱响应函数的差异,研究基于光谱响应函数的不同传感器相似波段的归一化 方法,探讨归一化后植被指数在马尾松叶面积指数(LAI)估算中的应用。以某一传感器为基准,根据波段总辐射 率比值关系将其他卫星传感器归一化为基准传感器,然后计算其植被指数,建立 LAI 反演模型。为验证方法可行 性,选取永安地区 2008 年 3 月获取的 BJ-1 CCD、IRS-P6 LISS3 和 MODIS 数据作为研究对象,根据三者的光谱响 应函数差异,将 BJ-1 CCD 和 IRS-P6 的 LISS3 的红光和近红外波段归一化为 MODIS 的相应波段,并分别计算归 一化前后的 NDVI 值。结果表明归一化后不同传感器的植被指数关系与理想的关系 y=x 更加接近。利用归一 化后的 IRS-P6 影像的 NDVI 反演马尾松 LAI,并将其应用于 MODIS 和 BJ-1 传感器,得到归一化后不同传感器 的植被指数值基本相等,表明归一化以后的植被指数应用于 LAI 的估算具有一定的普适性,能适用于多种传 感器。

关键词:叶面积指数(LAI);光谱归一化;光谱响应函数;马尾松 doi:10.3969/j.issn.1000-3177.2011.05.009 中图分类号:TP79 文献标识码:A 文章编号:1000-3177(2011)117-0052-07

Masson's Pine LAI Estimation Based on Spectral Normalization Using Remote Sensing Data

YE Wei, WANG Xiao-qin, JIANG Hong, FU Yin-zhen

(Spatial Information Research Center of Fujian Province; Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education Fuzhou University, Fuzhou 350002)

Abstract: In this paper, the spectral response functions among the different sensors were compared, and the normalization method for similar bands of different sensors was studied. The application of normalized VI on Masson's pine LAI estimation was studied. One specific sensor was set as a reference and other sensors were normalized to it according to the integral ratio relationship, then the vegetation index could be calculated and LAI inversion model was established. To validate its feasibility, Yongan city in Fujian province was taken as the study area, and the data of red and near-infrared from BJ-1 CCD sensor and IRS -P6 LISS3 sensor were normalized consistently to corresponding bands of MODIS sensor. And then the NDVI values before and after normalization were calculated. The results showed that after normalization, the relationship of vegetation indices among the different sensors were closer to the ideal relationship y=x. Moreover, NDVI calculated from normalized IRS P6 data was used to estimate Masson's pine LAI, which was applied to MODIS and BJ-1 sensors. As the LAI among different sensors were nearly equal after normalization, the conclusion could be reached that the normalized VIs of different sensors could be generally applied to estimate LAI to a certain extent.

Key words: leaf area index(LAI); spectral normalization; spectral response function; Masson's pine

作者简介:叶炜(1985~),男,硕士研究生,主要研究方向为环境与自然资源遥感。

E-mail: ye<u>5</u>@21cn. com

- 52 -

收稿日期:2010-09-14 修订日期:2011-01-05

基金项目:福建省自然科学基金杰出青年资助项目(项目编号:2009J06024),福建省教育厅 A 类科技项目(JA10041),863 计划子专题(项目编号:2009AA12Z1462)。

1 引 言

叶面积指数(Leaf Area Index,LAI),是植被冠 层结构的一个重要参数。随着全球气候变化研究的 深入、全球范围和大尺度森林碳循环和森林水文分布 式模型的建立,LAI 常常作为重要的输入因子而成为 模型中不可缺少的组成部分^[2~3]。因此,叶面积指 数反演一直都是定量遥感研究的热点^[4~6]。

利用遥感技术提取 LAI 的方法有很多,其中以 植被指数(VI)作为统计模型自变量是经典的 LAI 反演方法,该方法对输入参数要求不高,简单灵活。 早在 20 世纪 90 年代中期,Choudhury 等^[7]就提出 了求解 LAI 的经验公式,近几年来,随着多卫星传 感器的发射,LAI 统计模型建模得到更加广泛的 应用。孙鹏森等^[8]利用地面调查数据和 TM 影像 数据,区分不同植被类型建立 LAI 算法;刘礼^[9]研 究了落叶松 LAI 与 SPOT5 植被指数的相关关系, 认为多元线性回归模型最适用于 LAI 信息反演; Wu Jiali 等^[10] 结合分类数 据和实测数 据针对 CBERS-02B 影像建立反演模型,并以此生成广西 区域的 LAI 影像;Xiao 等^[11]研究经验模型改进了 LAI 估算方法,并取代原有物理模型反演 MODIS 数据。

尽管可利用的传感器众多,然而不同传感器间 反演的模型不尽相同,不同的数据源需要重新拟合 参数,模型需要不断地调整。因而现有的基于植被 指数的叶面积指数反演方法的局限性比较大,因此 研究一个可以适用于不同传感器的叶面积指数反演 模型对当前的定量遥感反演有重要意义。本文以南 方典型树种马尾松为例,试图通过对不同卫星传感 器光谱响应函数的归一化校正,使基于 VI 的 LAI 估算模型对不同的传感器具有一定适用性。

2 研究区和数据概况

研究区域为福建永安地区,永安市位于福建省 中部偏西,25°33′-26°12′N,116°56′-117°47′E,总 面积 2941.1km²。永安自然资源丰富,是我国南方 48 个重点林区县(市)之一,也是经国务院批准的南 方集体林区改革试点区之一。现有林地面积 382.5 万亩,森林覆盖率达 83.2%,林木蓄积量 2200 多万 m³,居全省第一位。永安树木种类繁多,马尾松、杉 木、竹林、阔叶林等种类都有典型的分布。因此,选 择永安地区对于研究植被具有很好的代表性。

所用的遥感数据有 BJ-1、IRS-P6 和 MODIS L1B(图 1)。BJ-1(分辨率为 32m)和 IRS-P6(分辨 率为 23.5m)影像数据的获取时间分别为 2008 年 3 月 2 日和 2008 年 3 月 24 日,由于仅相差 22 天,都 属于春季,因此由时间差异引起的 NDVI 值差异不 大,在分析中可以忽略不计。同时下载覆盖永安市 区的 MODIS L1B 的 B1 和 B2 波段数据(分辨率为 250m),获取时间分别为 2008 年 3 月 2 日、2008 年 3 月 24 日、2008 年 7 月 5 日和 2009 年 4 月 8 日,利 用 ENVI 软件对 MODIS 数据进行去蝴蝶效应、几 何校正、大气校正等处理。

(a)IRS-P6(近红-红-绿波段合成)

(c)MODIS(2009.4.8 近红-红-红波段合成)

为了提高数据反演的精度,文中使用数字化的 2005 年1:5万永安市林业资源数据,并利用新的遥 感数据配合 2009 年 4 月的野外考察进行适当的更 新,用于提取永安地区马尾松区域。 建模和验证所用的 LAI 数据是 2009 年 4 月中 旬和 2008 年 7 月中旬在福建省永安市所测;使用的 测量仪器是美国 LI-COR 公司生产的 LAI-2000 植物冠层分析仪。LAI-2000 测量包括植被冠层结

- 53 —

构的两个主要方面:叶片数量和叶片倾斜^[12]。测量 时天气状况良好,相对稳定。表1列出了两次野外考 察的 LAI 测量值,其中用于建模的 LAI 数据是 2009 年4月中旬;而验证的 LAI 数据是 2008 年7月中旬。

	2009 年 4 月中旬	2008 年 7 月中旬	
序号	马尾松 LAI 值	马尾松 LAI 值	
1	2.11	3.51	
2	3.73	3.32	
3	2.45	3.41	
4	1.23	2.94	
5	1.87	2.85	
6	2.44	3.23	
7	2.52	2.78	
8	1.87	3.74	
9	2.55	3.56	
10	4.59	3.79	
11	3.1		
12	4.38		
13	1.92		
14	1.03		
15	2.74		
16	2.89		
17	2.56		
18	2.05		
19	1.28		
20	1.53		

表 1 马尾松 LAI 具体测量值

3 研究方法

如果不考虑地形等其他因素的影响,可以认为 表面反射率图像是大气和光谱响应作用的综合结 果^[13]。然而不同传感器影像在进行了大气校正和 辐射定标的情况下,其反射率和 NDVI 之间仍存在 的明显差异,主要由传感器类似波段的光谱响应不 同造成,因此多传感器定量分析时需要进行相应的 光谱归一化改正。

本研究技术路线如图 2 所示,首先对遥感影像 进行预处理,包括影像的几何校正、镶嵌、辐射定标、 大气校正等,在此基础上对不同传感器数据归一化 处理和 LAI 反演模型的构建。

— 54 —

3.1 基于光谱响应函数的不同传感器相应 波段归一化

计算卫星的波段平均太阳辐照度需要获得大 气顶部的太阳光谱曲线和卫星图像每个波段的波 段响应函数。波段光谱响应函数是波长的函数, 是传感器在每个波长处所接受到的辐亮度与入射 的辐亮度的比值,它反映了传感器对光的响应能 力。不同传感器的波段光谱响应函数差异很大, 其中 CBERS CCD 和 BJ-1 CCD 主要由相关遥感数 据处理提供单位获取,MODIS 和 LANDSAT 由 6S 模型源代码获得,IRS 由发表的相关论文获得^[14], 具体如图 3 所示。

不同传感器不同波段吸收的总太阳辐照度不 同,获得太阳光谱曲线和传感器波段光谱响应曲线 后,由于卫星波段平均太阳辐照度是计算表观反射 率的重要参数,通过公式(1)^[15]积分求得各传感器 波段所接收的总辐射率,不同传感器间其差异可用 总辐射率比值来表示,以某一卫星传感器为基准,对 不同卫星传感器之间波段反射率进行订正和归一化 处理。

$$L = \frac{\int_{\lambda_1}^{\lambda_2} E(\lambda) \times response(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} response(\lambda) d\lambda}$$
(1)

式中L是传感器波段总辐射率, λ_1 和 λ_2 分别表 示波段范围的上界和下界, $response(\lambda)$ 是波长的光 谱响应函数, $E(\lambda)$ 是波长的太阳光谱辐照度,对于 卫星传感器来说,当其波段响应函数确定的情况下, 其波段平均太阳辐照度也是常数。

3.2 基于植被指数的 LAI 反演模型构建

由于植被在红光波段和近红外波段反差较大, 因此利用这两波段的植被指数能较好地反映植被覆 盖度和生长状况的差异,且与 LAI 有较好的相关 性,常用的植被指数包括:归一化差值植被指数 NDVI、比值植被指数 RVI、差值植被指数 DVI^[16]。 在反演模型的选择上可以采用线性模型、二次曲线 模型、幂函数曲线模型或指数曲线模型拟合实测马 尾松 LAI 与植被指数的相关性。而根据傅银贞^[17] 对马尾松 LAI 与植被指数相关性分析可知,NDVI 的指数曲线模型反演南方马尾松 LAI 效果最好,因 此本文采用 NDVI 的指数曲线模型来反演马尾 松 LAI。

由于建模用的 LAI 数据测量时间与影像的获 取时间难免有差异,直接反演会产生较大的误差,因 此采用同时间获取的重返周期短的遥感影像(如 MODIS),利用两期影像间的植被指数关系将所选 用影像的植被指数时相校正到 LAI 测量时间,减少 因时间差异产生的影响。用同样的方法将影像植被

指数时相校正到验证数据获取日期,代入反演模型, 验证模型准确性。

马尾松 LAI 估算与结果分析 4

4.1 归一化前后不同影像的 NDVI 对比分析 先对影像进行统一的几何精校正。辐射定标和 大气校正并截取相同研究区域,通过式(1)计算各传

感器波段的总辐射率并取其比值(表 2)。 表 2 BJ-1、IRS-P6 和 MODIS 的红波段 与近红外波段总辐射率(w·m⁻²· μ m⁻¹·sr⁻¹)

	波段		
卫生	RED	NIR	
IRS-P6	1576.474	1093.444	
BJ-1	1564.993	1057.518	
MODIS	1603.424	1824.635	
MODIS/IRS-P6	1.017095	1.668705	
MODIS/BJ-1	1.024557	1.725394	

以 MODIS 为基准, 通过对表 2 不同传感器间 的总辐射率比值对 IRS-P6 和 BJ-1 影像进行归一 化,然后分别求它们的 NDVI,根据已有树种的分类 信息提取种植马尾松区域,从而对 IRS-P6、BJ-1、 MODIS 的马尾松 NDVI 进行比较分析。通过对比 BJ-1 与 MODIS、IRS-P6 与 MODIS 以及 BJ-1 与 IRS-P6 的归一化前后的 NDVI,比较不同传感器以 及在传感器归一化后的 NDVI 植被指数的差异。 时相上由于 BJ-1 影像与 IRS-P6 影像的时相接近, 分别与 MODIS 1B 当天数据进行归一化,避免由于 时间引起的植被指数差异。

如果是在完全理想的状态下,不同传感器的 NDVI 关系斜率应为 1,截距为 0。当然,对于两种 不同传感器,由于分辨率、大气等各因素的影响,是 不可能达到理想的状态。图 4~图 6 是各传感器归 一化前后 NDVI 的对比情况。

- 55 —

归一化前后 BJ-1 和 IRS-P6 马尾松 NDVI 对比 图 6

由图 4 和图 5 可知, BJ-1 的 CCD 传感器和 IRS-P6 的 LISS3 传感器影像归一化至 MODIS 后, 计算出的马尾松 NDVI 与 MODIS 的马尾松 NDVI 关系更加显著。尽管归一化前两者相关性都不低, 但其 NDVI 值相差比较大, 而归一化后两者的 ND-VI 值基本相等,差值很小,而且归一化后不同影像 间 NDVI 的相关性都有所提高。

从表 2 可知, BJ-1 的 CCD 与 IRS-P6 的 LISS3 传感器本身红波段与近红外波段的总辐射率相差很 小,即 BJ-1 的 CCD 与 IRS-P6 的 LISS3 传感器的光 谱响应能力相近,因此两者的 NDVI 值相差不大。 但是由图 6 可知,归一化后这种差异更小,NDVI 值 更接近。

4.2 马尾松 LAI 反演结果对比分析

由于归一化的目的是消除不同传感器间的差异 对于 LAI 反演的影响,通过建立反演模型,代入不 同影像验证,探究归一化后模型的适应性。

鉴于 IRS-P6 影像数据质量好,分辨率较高,选 取其建立反演模型。先对归一化至 MODIS 后的 IRS-P6 的 LISS3 传感器计算 NDVI, 然后采用指数 曲线模型对 2009 年 4 月中旬的马尾松 LAI 测点进 行建模,并根据决定系数 R² 对 LAI 的反演模型进 行评价,反演统计结果见图 7。

由图 7 可知,将 IRS-P6 归一化到 MODIS 后的 植被指数反演的马尾松 LAI 模型与 IRS-P6 影像植 被指数直接反演的马尾松 LAI 结果对比,其反演模 型精度略有降低,相差不大,基本可以满足要求。 56 -

马尾松LAI 4 $R^2 = 0.767$ 2 0 0 0.1 0.2 0.3 0.4 0.5 IRS-P6归--化前NDVI R松LAI $y = 0.362e^{3.8493}$ $R^2 = 0.711$ 中1 00 0.2 0.4 0.6 0.8 IRS-P6归一化后的NDVI 图 7 马尾松 LAI 与 IRS-P6 归一化前后 NDVI 的指数曲线拟合

 $y = 0.430e^{4.795x}$

通过永安地区植被分类数据,选择马尾松生长区 域,由于纯净像元从一尺度向上转换到另一尺度时 LAI 不会产生尺度误差^[18],鉴于 MODIS 影像分辨率 较低,其像元覆盖的范围广,内部涵盖了多种地物,而 地表的异质性导致了同一算法在不同空间尺度上的 转移必将带来误差,为了降低此误差对研究产生影 响,通过对比相同位置的 IRS-P6 影像和 MODIS 影 像并结合验证点所在位置,选取像元较纯净区域。

由于 IRS-P6 和 BJ-1 归一化至 MODIS 后,三 者的植被指数值基本相等,在反演马尾松 LAI 时, LAI=f(VI)中的 MODIS 和 BJ-1 的 VI 可以用于替 代 IRS-P6 归一化后的 VI。因此将 BJ-1 归一化后 的和 MODIS 的 NDVI 数据代入 IRS-P6 归一化后 反演后的结果,得到 BJ-1 归一化后和 MODIS 的 LAI数据,通过对不同传感器相同区域 LAI 取均 值,验证 IRS-P6 归一化后反演结果应用于不同传 感器和分辨率遥感数据的实用性(表 3)。

传感器 位置点	MODIS	BJ-1	IRS-P6	实测
1	3.5691	3.5244	3.5236	3.51
2	3.3636	3.5765	3.5073	3.32
3	3.5113	3.3583	3.5381	3.41
4	3.5605	2.9313	3.1530	2.94
5	3.0688	2.7010	2.6441	2.85
6	3.0688	3.0289	3.0654	3.23
7	2.9519	3.1713	2.9956	2.78
8	3.9848	3.5337	3.6508	3.74
9	3.6028	3.6731	3.6487	3.56
10	4.4012	4.1236	3.7413	3.79

表 3 BJ-1、IRS-P6 和 MODIS 反演的 LAI 比较

通过表 3 比较得出,归一化后的 IRS-P6 数据 反演出的 LAI 与实测值很接近,其差值最大仅为 0.2156,而由表4可得,其差值的均值和标准差分别为 0.1355 和 0.0728, 说明归一化后的 IRS-P6 反演模型有 较好的预测性和较高的精度。并且利用归一化后 IRS-P6 植被指数反演的模型对于不同传感器的适用 效果都比较理想,其中 IRS-P6 与 BJ-1 归一化后反演 结果最接近,差值最大仅为 0.3823,均值为 0.1264, 标准误差仅为 0.0369。MODIS 与 IRS-P6 和 BJ-1 反 演结果不如 IRS-P6 与 BJ-1, 与 IRS-P6 和 BJ-1 的 LAI 差值均值分别为 0. 2135 和 0. 2466,标准误差为 0.0719 和 0.0605。由于 MODIS 分辨率较低, 一个像 元内无法保证绝对纯净,难免存在地表异质性,这是 引起尺度转换误差的主要原因,所以总体结果也在可 以接受范围之内,因此基本可以认为 IRS-P6 归一化 后的反演模型能在一定程度上适用于不同传感器。

实验区	IRS-bj-1	IRS-modis	bj-1-modis	IRS-实测
1	0.0008	0.0455	0.0446	0.0136
2	0.0692	0.1437	0.2129	0.1873
3	0.1797	0.0267	0.1530	0.1281
4	0.2218	0.4075	0.6292	0.2130
5	0.0569	0.4247	0.3679	0.2059
6	0.0365	0.0034	0.0400	0.1646
7	0.1757	0.0437	0.2194	0.2156
8	0.1171	0.3340	0.4511	0.0892
9	0.0243	0.0459	0.0703	0.0887
10	0.3823	0.6599	0.2776	0.0487
均值	0.1264	0.2135	0.2466	0.1355
标准差	0.1166	0.2273	0.1912	0.0728
标准误差	0.0369	0.0719	0.0605	0.0230

表 4 BJ-1、IRS-P6 和 MODIS 结果差值分析

结束语

5

通过对永安地区森林马尾松叶面积指数的测量 和对不同传感器光谱接收的校正,得出了一些有意 义的结论:

(1)通过对比分析 BJ-1 的 CCD 传感器和 IRS-P6 的 LISS3 传感器归一化到 MODIS 传感器后植 被指数的相关性,表明传感器的归一化可有效消除 因传感器不同引起的植被指数差异。

(2)在单一树种情况下,利用归一化后的植被指 数反演 LAI,可以建立适用于不同传感器不同分辨 率的区域 LAI 反演模型,提高模型的适用性。

参考文献

- [1] Chen J M. Derivation and validation of Canada_wide coarse_resolution leaf area index maps using high_resolution satellite imagery and ground measurement[J]. Remote Sensing of Environment,2002(80):165-184.
- [2] Chen J M, Chen X Y, Ju W M. Distributed hydrological model for mapping evapotran spirationusing remote sensing inputs[J]. Journal of Hydrology, 2005(305):15-39.
- [3] 张娜,于贵瑞.基于遥感和地面数据的景观尺度生态系统生产力的模拟[J].应用生态学报,2003,14(5):643-652.
- [4] Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J]. Remote Sensing of Environment, 1996(55):153.
- [5] Gemmell F, Varjo J, Strandstrom, et al. Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion [J]. Remote Sensing of Environment, 2002 (81):265.
- [6] Schlerf M, Atzberger C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data[J]. Remote Sensing of Environment, 2006(100):281.

— 57 —

- [7] Choudhury B J, Ahmed N U, Idso S B, Regent R J, et al. Relations between evaporation coefficients and vegetation indexes studiedly model simulations[J]. Remote Sensing of Environment, 1994(50):1-17.
- [8] 孙鹏森,刘世荣,刘京涛,李崇巍,林勇,江洪.利用不同分辨率卫星影像的 NDVI 数据估算叶面积指数(LAI)[J]. 生态 学报,2006,26(11):3827-3834.
- [9] 刘礼. SPOT 影像植被指数与落叶松林 LAI 相关性分析[D]. 南京:南京林业大学. 2008.
- [10] Wu J L,Gu X F,Yu T,Meng Q Y,Chen L F,Li L,Gao H L,Wu S J. 2008 international workshop on earth observation and remote sensing applications [C]//Lincoln, Nebraska, USA: Institute of Electrical and Electronics Engineers (IEEE). 2008.
- [11] Xiao Z Q, Liang S L, Wang J D, Song J L, Wu X Y. A temporally integrated inversion method for estimating Leaf Area Index from MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009(47):2536-2545.
- [12] 王谦,陈景玲,孙治强.LAI-2000 冠层分析仪在不同植物群体光分布特征研究中的应用[J].中国农业科学,2006,39 (5):922-927.
- [13] 叶泽田,顾行发,刘先林,王志民.遥感模拟图像应用于不同传感器光谱性能分析[J].武汉测绘科技大学学报,1999, 24(4).
- [14] Michael D S, Timothy J M, Frederic B, Hui X, Mark J C. Intercalibration of vegetation indices from different sensor systems[J]. Remote Sensing of Environment, 2003(88):412-422.
- [15] 潘志强,傅俏燕,张浩平.CBERS-02 星 CCD 波段平均太阳辐照度反演及应用[J].地球信息科学,2006,10(1):110-113.
- [16] 田庆久,闵祥军. 植被指数研究进展[J]. 地球科学进展,1998,13(4):327-333.
- [17] 傅银贞,汪小钦,江洪.马尾松 LAI 与植被指数的相关性研究[J].国土资源遥感,2010(3):41-46.
- [18] 张万昌,钟山,胡少英.黑河流域叶面积指数(LAI)空间尺度转换[J].生态学报,2008,28(6):2496-2503.

可量测实景影像数据产品

立得空间作为世界移动测量和实景三维技术的领导者,在国内首创了移动测量系统(MMS:MOBILE MAPPING SYS-TEM),是当今测绘界最为前沿的科技之一。其原理是在机动车上装配 GPS(全球定位系统)、CCD(视频系统)、INS(惯性导航 系统)或航位推算系统等先进的传感器和设备,在车辆的高速行进之中,快速采集道路及道路两旁地物的空间位置数据和属 性数据。

通过移动测量系统可获得可量测实景影像(DMI:Digital Measurable Image),它是一种以地面近景摄影测量立体影像文件及其外方位元素构成的基础地理信息产品,通过可量测实景影像提供的开发包可直接对立体影像进行测量、信息提取并与 其他基础地理信息产品集成,是我国基础地理信息数据库为适应按需测量采集更新空间信息的一种新的产品。

该产品表现形式主要按照人的视角提供详细的城市立面信息,对于行业用户而言,既可从 DMI 中提取所需要的业务要素,又可进行数据的挖掘,更好满足管理与决策上的高级应用。对于公众而言,影像是客观世界的最直观和最真实的写照,也是无需专业知识判读,最易理解的"数字城市",可直接回答公众有关城市地理信息方面的问题。

ENVI SARscape 高级雷达数据处理工具

合成孔径雷达(SAR)拥有独特的技术魅力和优势,渐成为国际上的研究热点之一,其应用领域越来越广泛。SAR数据可以全天候对研究区域进行量测、分析以及获取目标信息。InSAR技术可提取地形信息和地表形变信息,SAR及其干涉测量技术主要应用于地形数据(DEM)提取、地表沉降监测、滑坡/冰川移动监测、目标识别与跟踪、原油泄漏跟踪、作物生长跟踪、农作物产量评估、森林制图,以及洪水、火灾和地震的灾害评估等领域。

ENVI SARscape 由 sarmap 公司研发,是国际知名的雷达图像处理软件。该软件架构于专业的 ENVI 遥感图像处理软件 之上,提供图形化操作界面,具有专业雷达图像处理和分析功能。完整的 SAR 数据处理能力、众多实用的基本雷达处理工具 以及专业的干涉测量技术,能让您轻松将原始 SAR 数据进行处理和分析,输出 SAR 图像产品、数字高程模型(DEM)和地表 形变图等信息,并可以将提取的信息与光学遥感数据、地理信息集成在一起,全面提升 SAR 数据应用价值。

— 58 —