RapidEye 卫星影像质量分析与彩色合成方案研究

王广亮^{①,②},李英成^{①,②},陈志军³,曾钰¹,金澜^{0,②}

(①中国测绘科学研究院,北京100039; ②中测新图(北京) 遥感技术有限责任公司,北京100039;③中国科学院对地观测与数字地球科学中心,北京100094)

摘要: RapidEye 卫星是由德国负责运行的 5 颗 卫星群,具有覆盖范围大、重访率高、分辨率适中以及丰富的多 光谱信息等特点。本文对该 卫星影像的数据质量进行了分析和评价,同时对其多光谱数据模拟真彩色的彩色合成方案进行了研究,提出了红波段、新绿波段和蓝波段组合的最佳合成方案。

关键词: RapidEye; 数据质量; 彩色合成

doi: 10. 3969/ j. issn. 1000- 3177. 2011. 02. 018

中图分类号: TP79 文献标识码: A 文章编号: 1000-3177(2011) 114-0098-04

Quality Analysis and Color Composition Scheme of RapidEye Satellite Image

WANG Guang liang^(1), 2), LI Ying cheng^(1), 2), CHEN Zhr jun⁽³⁾, ZENG Yu⁽¹⁾, JIN Lan^(1), 2)

(1) Chinese A cademy of Surveying and Mapping, Beijing 100039;

⁽²⁾ China TopRS Technology Co., Ltd, Beijing 100039;

③ Center for Earth Observation and Digital Earth Chinese Academy of Sciences, Beijing 100086)

Abstract: RapidEye is a constellation of five satellites run by Germany. It has a wide application prospect due to its advantar ges of wide coverage, short repetition cycle, moderate resolution and abundant multi-spectral bands. This paper analyzes and evaluates RapidEye satellite image quality, and makes a thorough study on the scheme of its true color composition. Some valuarble and constructive conclusions are drawn in this paper.

Key words: RapidEye; dat a quality; color composition

1 引 言

RapidEye 卫星由于其强大的数据获取能力和 独特的光谱特征正在被国际各类遥感卫星应用机构 认可与采用。RapidEye 是商业多光谱遥感卫星星 座,由加拿大 MDA 公司设计实施,英国 Surrey 卫 星技术公司提供卫星平台,德国 RapidEye A G 公司 负责运行,俄罗斯第聂伯(Dnepr)火箭 2008 年 8 月 29 日从拜科努尔发射场成功发射的。RapidEye 由 5颗卫星组成,位于 630km 的高空,每颗卫星绕地 球一圈约 110 分钟,每颗卫星间隔 18 分钟,日覆盖 范围达 400 万 km² 以上。该系统一天内可访问地 球任何一个地方,5天内可访问北美和欧洲的整个 农业区,15天内可访问整个中国。

RapidEye 卫星具有较高的空间分辨率和丰富 的多光谱信息,其空间分辨率为 6.5m(星下点), 包括蓝、绿、红、红边和近红外 5 个光谱波段,是第 一个提供红边波段的商业卫星,该波段可监测植 被变化,为土地分类和植被生长状态监测提供丰 富、有效信息。RapidEye 卫星主要技术参数如表 1 所示。RapidEye 作为一种新型的遥感卫星,与同 类卫星相比具有范围覆盖大、重访率高和光谱信 息更丰富等优势,是土地利用监测、土地分类、环 境监测等的重要数据源。本文从影像的空间分辨

收稿日期:2010-07-05

作者简介: 王广亮(1967~), 男, 高级工程师, 工程硕士, 主要从事遥感应用等方面的工作。

E mail: toprs2007@163.com

率、波段同步性、影像的信息量和波段相关性几个 方面对其数据质量进行了客观分析和评价,并对 其利用多光谱数据模拟自然真彩色的彩色合成方 案进行了研究,得出了客观真实具有一定参考价 值的结论。

表 1 RapidEye 主要参数

卫星规格	参数		
传感器数量	5		
设计寿命	7 年		
轨道高度	63 0k m		
过赤道时间	11:00am		
传感器类型	多光谱推扫式		
	蓝: 440nm- 510nm 绿: 520nm- 590nm		
光谱波段	红: 630nm- 685nm 红边: 690nm- 730nm		
	近红外: 760nm- 850nm		
空间分辨率(星下点)	6.5m		
正射影像采样间隔	5m		
幅宽	77k m		
数据存储量	每轨道1500km 影像存储		
重返时间	每天(非垂直拍摄)/5.5天 (垂直拍摄)		
采集能力	400万 km²/d		
动态范围	12 比特		

2 数据质量分析

2.1 影像空间分辨率

卫星传感器标称的影像空间分辨率通常是比较 理想状态下的,即没有侧视角的情况。当观测视线倾 斜时,即在某一个不等于0的扫描角下观测时,其影 像空间分辨率将发生变化^[2]。利用公式(1)可计算出 RapidEye不同侧视角的影像空间分辨率,见表2。

$$\mathbf{\alpha} = \mathbf{\alpha}_0 \times \sec^2 \mathbf{\theta} \tag{1}$$

其中: α 为待计算的影像空间分辨率, α 为星下 点影像空间分辨率, θ 为侧视角。

表 2 RapidEye 不同侧视角影像空间分辨率

侧视角(单位:°)	分辨率(单位: m)
0	6.50
±10	6.70
±15	6.97
±20	7.36
±25	7.91

从表 2 计算结果看, 侧视角在 ±15° 范围内, 影 像空间分辨率下降不足 0.1 个像元, 侧视角在 ±25° 范围内, 影像空间分辨率下降不足 0.22 个像元, 因 此, 为了保证影像整体精度, 对地形起伏较大的山区 和丘陵地区, 侧视角最好控制在 ±15° 范围内, 对平 原地区, 侧视角可适当放宽至 ±25°。

2.2 波段同步性

RapidEye 卫星 5 个波段采用两次成像, 首先是近 红波段、红边波段、红波段成像, 然后是绿波段、蓝波 段成像, 同次不同波段的成像时间间隔较短, 两次成 像时间间隔相对较长。由于成像时间和焦距的不一 致, 导致 RapidEye 波段间存在一定的匹配误差。实 验表明: 近红波段、红边波段、红波段之间, 以及绿波 段、蓝波段之间由于成像时间间隔较短, 波段匹配精 度较高, 可以达到 1 个像素以内; 近红波段、红边波段、 红波段和绿波段、蓝波段之间由于成像时间间隔有对 较长, 存在较大的波段匹配误差, 虽经地面系统几何校 正处理, 个别地区特别是山区匹配误差仍达到 1 个像 素以上。因此, 两次成像之间的波段后期必须进行波 段匹配, 否则对影像质量和平面精度会造成较大影响。

2.3 影像信息量

影像信息熵是衡量图像信息丰富程度的一个重 要指标,通过对影像信息熵的比较可以对比出影像 的细节表现能力。熵越大,影像所含的信息越丰富, 影像质量越好⁽¹⁾。根据仙农信息论原理,一幅 8bit 灰度影像的信息熵为:

$$H(x) = -\sum_{i=0}^{255} p_i \log_2 p_i$$
 (2)

其中:*p*ⁱ为影像上出现灰度值为*i*的概率。 对于彩色影像的联合熵为:

$$H(x_1, x_2, x_3) = -\sum_{i_1, i_2, i_3=0}^{255} p_{i_1}, p_{i_2}, p_{i_3} \log_2 p_{i_1}, p_{i_2}, p_{i_3}$$

(3)

其中: *p i*₁, *p i*₂, *p i*₃ 为彩色影像中不同波段出现 灰度值为 *i*₁、*i*₂、*i*₃ 的联合概率。

根据公式(2)分别计算 RapidEye 影像 5 个波段的信息熵,其中,蓝波段信息熵为 5.817,绿波段信息 熵为 6.026,红波段信息熵为 5.817,经边波段信息熵 为 6.027,近红外波段信息熵为 5.938。各波段信息熵 排序为:红边波段>绿波段>近红外波段>红波段> 蓝波段。因此,在进行影像波段合成时,应充分考虑 各波段信息量,尽量使用信息量大、影像质量佳的波 段,提高合成后的影像质量。RapidEye 蓝波段、绿波 段、红波段、红边波段和红外波段影像如图 1 所示。

蓝波段影像

绿波段影像

红边波段影像

近红外波段影像

图 1 RapidEye 各光谱段影像

2.4 波段相关性

波段之间的相关性通常是用相关系数来评价 的。相关系数是描述两个函数间的相互近似程度的 一个量值。相关系数越大,表示两个变量函数的相 关程度则愈高,反之则越小。

$$r = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\left[\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}\right]}$$
(4)

其中: X_i 和 Y_i 为两个影像的灰度值, \overline{X} 和 \overline{Y} 为 灰度均值。

根据公式(4)对 RapidEye 5 个波段影像进行相 关性计算,计算结果见表 3。

从统计表可见, 红外波段与其他波段的相关性 最差,红边波段与其他波段的相关性次之;蓝波段与 绿波段相关性较强,与红波段相关性次之。在彩色 合成过程中,应充分考虑波段之间的相关性以及遥 感影像应用的目的,合理选择波段组合。

表 3 RapidEye	波段相关性计算统计表
--------------	------------

.

相关系数 波段	蓝波段	绿波段	红波段	红边波段	红外波段
蓝波段	1.000000	0. 905313	0. 891611	0.577371	- 0. 237249
绿波段	0.905313	1. 00 00 00	0. 905 397	0.808960	0.015858
红波段	0.891611	0. 905397	1. 000000	0.737529	- 0. 178849
红边波段	0.577371	0. 808960	0. 737 529	1.000000	0.413085
红外波段	- 0. 237249	0. 01 58 58	- 0.178849	0.413085	1.000000

彩色合成方案研究 3

彩色合成是影像彩色增强应用最为广泛的一种 处理技术,随着多光谱遥感和多源数据融合技术的 发展,日益显示出其巨大的应用价值^[3]。彩色合成 是有效利用影像信息进行数据解译和分析的重要内 容。RapidEye 包含蓝、绿、红、红边、近红外 5 个光 谱波段,本文通过不同波段之间的组合生成模拟自 然真彩色的影像,通过定性和定量分析相结合的方

法对其彩色合成结果进行评价,从而确定了有利于 数据分析和应用的最佳彩色合成方案。

RapidEye 数据模拟自然真彩色的彩色合成通常 有4种方案,分别为红、绿、蓝波段组合,红、红边、绿 波段组合,红、近红外、蓝波段组合,以及本文提出的 红、新绿波段、蓝波段组合。从图 2 不同合成方案的 目视效果看,利用4种彩色合成方案得到的影像各具 特点,第一种方案建筑物色彩与实际地物比较接近, 但农用地细节不够丰富和突出; 第二种方案农用地细 节较丰富,但建筑物色彩与实际地物色彩相差较大; 第三种方案则农用地和建筑物与实际地物色彩都存 在较大差距;本文提出的第四种方案将原有绿波段与 红外波段通过选择不同的权重系数进行几何运算,得 到新绿波段,最后采用红、新绿波段和蓝波段进行彩 色合成,合成后影像与实际地物的色彩更加接近,纹

合成方案 1(红、绿、蓝 波段合成)

合成方案 2(红、红边、绿 波段合成)

理细节更加突出。新绿波段计算公式见公式(5)。

DN'_c = W₁×DN_c+ W₂×DN_{INF} (5)
其中, DN'_c 表示计算后新绿波段, DN_c 表示原
绿波段, DN_{INF} 表示原红外波段, W₁, W₂ 表示权重系
数。本文 W₁, W₂ 的权重系数分别为 0.8 和 0.2。

合成方案 3(红、红外、蓝 波段合成)

合成方案 4(红、新绿波段、 蓝波段合成)

图 2 RapidEye 彩色合成方案比较

利用均值、标准偏差、相关系数和信息熵对4种 彩色合成方案的影像进行定量评价。均值向量反映 的是各波段亮度值的总体水平,它将直接影响彩色 合成影像的色调。标准偏差或方差反映的是数据的 离散程度,偏差越大,数据越离散,就越能反映地面 不同目标之间的差别,它将直接影响彩色合成后影 像的信息含量。相关系数反映的是两两波段数据 的相关程度,即信息的重复量,系数越大,重复的 信息量越多;反之,相关性越小的波段组合,其图 像信息越丰富,因为这可以避免波段相叠加造成 信息的抵消或某些信息的遗漏。所以,相关系数 的大小直接影响到信息的总含量。信息熵则反应 了影像信息的丰富程度,彩色合成后影像采用影像 的联合熵进行评价。通过计算,得出上述4种彩色 合成方案影像的均值(见表 4)、标准偏差(见表 4)和 相关系数(见表 5),彩色合成后影像的联合熵分别 为 14.178、14.540、14.661和 14.610。

表 4 新绿波段与其他 5 个波段均值标准偏差统计表

统 计 统 计 值 波 段	均值	标准偏差	
蓝波段	10. 281006	4. 460674	
绿波段	9.784906	4. 216247	
红波段	14. 601588	5. 352107	
红边波段	12. 638385	4. 350781	
红外波段	33. 346805	8. 95 161 1	
新绿波段	14. 097929	4. 853316	

相 关 系 段 波	蓝波段	绿波段	红波段	红边波段	红外波段	新绿波段
蓝波段	1. 000000	0.905313	0.891611	0. 577371	- 0. 237249	0. 68 18 98
绿波段	0. 905 31 3	1.000000	0.905397	0.808960	0.015858	0. 882364
红波段	0. 891611	0.905397	1.000000	0. 737529	- 0. 178849	0. 709146
红边波段	0. 577 37 1	0.808960	0.737529	1. 000000	0.413085	0. 899856
红外波段	- 0.237249	0.015858	- 0.178849	0. 41 308 5	1.000000	0. 478683
新绿波段	0. 681 89 8	0.882364	0.709146	0. 899856	0.478683	1. 00 00 00

表 5 新绿波段与其他 5 个波段相关性计算结果统计表

从理论上讲,应该选择3个偏差最大,相关系数 最小,平均亮度值接近的波段进行彩色合成,且合成 后的影像信息熵最大,其结果信息最为丰富,色彩表现最佳。但从原始像元亮度值统计 (下转第110页)

© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

4 结 论

ALOS PALSAR 传感器利用 L 波段多模式成 像,且提供高精度的轨道状态矢量,极大地丰富了对 地观测雷达数据。在今后的全球地形测图、地面沉 降、冰川移动、地震以及滑坡监测等 InSAR 应用中, PALSAR 数据将发挥巨大作用。

本文通过分析 ALOS PALSAR 在 InSAR 数学 模型中特点,得到如下结论:

(1)在 InSAR 处理中, PALSAR 数据允许较大的

临界垂直基线距,在FBS模式下,可达到12580m。

(2) 在相同垂直基线距前提下, PALSAR 的距 离向频谱偏移远小于 C 波段的 ERS SAR 数据, 因 而其几何去相干影响更小, 容易组合大量干涉像对, 提高 SAR 数据的使用率。

(3) 由于较长的波长, PALSAR 的模糊高度较 大、对地表形变敏感度较低, 不适合小范围高精度的 地形测绘和形变反演, 但因其较强的地表穿透能力, 在相同时间间隔内地物相干性更强, 因而对于大范围 甚至全球尺度的 InSAR 监测具有巨大的应用潜力。

参考文献

- [1] J, Bai, Prinet, V.. PS InSAR technique and its application in Beijing area[C] // ISPRS. 2005.
- [2] Colesanti, C., Zan, F. D., Ferretti, A., et al.. Generation of DEM with sub-metric vertical accuracy from 30° ERS ENVE SAT pairs[C]//FRINGE. 2003.
- [3] Colesanti, C., Ferretti, A., Prati, C., Rocca, F. Monitoring landslides and tectonic motions with the permanent scatterers technique[J]. Engineering Geology, 2003(68): 3-14.
- [4] Pepe, A., Sansosti, E., Berardino, P., Lanari, R.. On the generation of ERS/ENVISAT DInSAR time series via the SBAS technique J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3):265-269.
- [5] Woraw attanamat eekul, J., Hoffmann, J., Adam, N., et al. Urban deformation monitoring in BANGKOK metropolitan (Thailand) using permanent scatterer and differential interferometry techniques[C]//FRINGE. 2003.
- [6] Iwashita, M. Kudo, H. Baba, et al. Study of ground surface displacement estimation using ALOS/PALSAR D InSAR interferometry[C]//IGARSS. 2007.
- [7] D. Raucoules, C. Colesanti, C. Carnec. Use of SAR interferometry for detecting and assessing ground subsidence[J]. C. R. Geoscience, 2007(339): 289-302.
- [8] D. Myer, D. Sandwell, B. Brooks, et al. Inflation along Kilauea's Southwest Rift Zone in 2006 [J]. Journal of Volcanology and Geothermal Research, 2008 (177): 418-424.
- [9] Rosenqvist, M. Shimada, N. Ito, et al. ALOS PALSAR: A pathfinder mission for global scale monitoring of the environment[J]. IEEE T rans. Geosci. Remote Sensing, 2007, 45(11): 3307-3316.
- [10] Bamler R., Just D. Phase statistics and decorrelation in SAR interferomgrams[C]//IGARSS. 1993: 980-984.
- [11] Gatelli, F., Guarnieri, A. M., Parizzi, F., et al.. Wavenumber shift in SAR interfereometry [J]. IEEE Trans. Geosci. Remote Sensing, 1994, 32(4): 855-864.

(上接第101页)

结果来看,同时满足这些条件的3个波段是不存在 的。为此,必须从客观实际出发,兼顾影像目视效 果,同时尽量满足理论条件来选择波段组合。

综合考虑彩色合成后影像的目视效果和定量评价结果, RapidEye 数据模拟自然真彩色的最佳彩色合成方案为本文提出的红波段、新绿波段和蓝波段组合。

4 结束语

通过对 RapidEye 数据质量进行的较全面分析, 得出了科学、合理的结论,提供了使用过程中应注意 的问题和建议。另外,通过对该数据彩色合成方案的 研究,确定了该数据模拟自然真彩色的最佳波段组 合,为该数据的进一步应用提供了借鉴和参考。

参考文献

- [1] 赵英时, 等.《遥感应用分析原理与方法》[M]北京: 科学出版社, 2003.
- [2] 孙家抦, 舒宁, 关泽群.《遥感原理、方法和应用》[M]北京: 测绘出版社, 1997. 6.
- [3] 戴昌达,姜小光,唐伶俐.《遥感图像应用处理与分析》[M]北京:清华大学出版社,2004.3.