ZHAO Xi'an, CHEN Zhixue, LÜ Jingguo, et al. The Scale and Rotating Invariant Auto Stereo Matching[J]. Acta Geodaetica et Cartographica Sinica,2012,41(1):81-86.(赵西安,陈志学,吕京国,等. 具有尺度与旋转不变性的立体影像自动匹配研究[J]. 测绘学报,2012,41(1):81-86.)

具有尺度与旋转不变性的立体影像自动匹配研究

赵西安,陈志学,吕京国,靖常峰

北京建筑工程学院 测绘系,北京 100044

The Scale and Rotating Invariant Auto Stereo Matching

ZHAO Xi'an, CHEN Zhixue, LÜ Jingguo, JING Changfeng

Department of Geomatics, Beijing University of Architecture and Civil Engineering, Beijing 100044, China

Abstract: A stereo matching algorithm with invariant scale and rotation is presented. Firstly, the directional wavelet transform is used to extract the feature points of images with three scales, and a stereo matching at two scales is then carried out, this processing is scale invariant. Secondly, a key direction and a 64-dimensional describing vector are derived from these feature points to make the image matching be rotation invariant. This new algorithm is used to process different stereo images from close-range, un-manned aircraft, and airplane, and the scale and rotation invariant is clearly shown.

Key words: image matching; stereo image; scale invariant; rotation invariant; feature point

摘 要:提出一种具有尺度与旋转不变性的影像自动匹配算法。首先基于方向小波变换构造三尺度特征点算子,进行两尺 度匹配,保证其尺度不变性问题;其次构造特征点 64 维描述向量,解决影像匹配的旋转不变性。分别采用地面立体像对、 无人机平台立体像对、航空立体像对进行试验分析。试验结果表明,提出的立体匹配算法具有良好的尺度和旋转不变性。 关键词:影像匹配;立体影像;尺度不变性;旋转不变性;特征点

中图分类号:P234文献标识码:A文章编号:1001-1595(2012)01-0081-06基金项目:国家自然科学基金(40771178);北京市自然科学基金(KZ200710016007);北京市学术创新团队项目
(PHR200907127)

1 引 言

立体影像匹配是数字摄影测量的核心技术之 一。常用立体影像匹配算法,如跨接法匹配、核线 匹配、最小二乘匹配¹¹在地形信息自动生成中效 果明显。但对于建筑物的三维信息自动生成,上 述算法效果还不明显。文献[2]提出的基于小波 变换、遗传算法和最小二乘匹配的高精度影像匹 配组合算法,其小波变换用于减少匹配搜索数据, 遗传算法用于优化搜索空间,最小二乘匹配则用 于获得子像素匹配精度。文献[3]提出的全局自 动配准算法,采用多分辨率小波变换缩小搜索空 间,实现多传感器、大数据量影像的快速高效自动 配准。当影像间视差不连续,或存在明显辐射强 度变化,或有较大旋转变化时,上述算法的匹配效 果明显下降。Fourier-Mellin 变换是保持旋转、 尺度和平移不变性算法,在 SAR 与多光谱影像配 准, 医学影像匹配中得到应用^[6-8]。Fourier-Mellin影像匹配算法属于一致性尺度不变算法,

用于存在中心投影变形的影像匹配还存在一些问题待解决。文献 [9] 提出 SIFT(scale-invariant feature transform)算法,对于不同传感器影像配准、地面立体影像匹配,具有辐射强度与尺度不变性。但是,SIFT 算法的高斯多尺度变换以及 128 维向量匹配,计算量大、效率低,已经影响到其实际应用。

针对上述问题,本文提出了一种新的尺度与 旋转不变性匹配算法,其基本思路是利用方向小 波变换构造三尺度特征点算子,保证特征提取的 尺度与辐射强度不变。采用两尺度立体匹配,解 决匹配中尺度不变性问题;在精匹配中,构造特征 点的主方向与 64 维描述向量,解决匹配中旋转不 变性问题。算法流程如图 1 所示。

2 方向小波变换与多尺度特征点提取

为解决影像特征提取中辐射强度与尺度不变 性,基于多尺度方向小波变换,构造多尺度小波特 征算子,在3个尺度下进行特征点提取。

图 1 算法流程

Fig. 1 The algorithmic flow chart

2.1 二维方向小波构造

二维光滑函数 $\theta(x,y)$ 沿方向 $n = [\cos \alpha \sin \alpha]$ 的一阶偏导数为^[5]

 $\psi^{a}(x,y) = \frac{\partial \theta(x,y)}{\partial \mathbf{n}} = \cos \alpha \, \frac{\partial \theta(x,y)}{\partial x} + \sin \alpha \, \frac{\partial \theta(x,y)}{\partial y}$ (1)

对于任意函数
$$f(x,y)$$
,有方向小波变换

$$Wf^{\alpha}(x,y) = \psi^{\alpha}(x,y)f(x,y)$$
(2)

式中,α表示方向小波变换后高频信息方向。

2.2 生成三尺度小波影像

采用样条小波,基于式(2)对数字影像 G(m, n)进行二尺度离散方向小波变换,分别得到三尺 度下影像:

- 尺度 0 低频影像 G₀
- 尺度 1 低频影像 G_1
 - 高频影像 D_1^0 、 D_1^{45} 、 D_1^{90} 、 D_1^{135}
- 尺度 2 低频影像 G₂

高频影像 D_2^0 、 D_2^{45} 、 D_2^{90} 、 D_2^{135}

其中,高频影像 D 的上标表示方向。

离散方向小波变换流程如图 2 所示。

图 2 离散方向小波多尺度变换

Fig. 2 Multi-scale transform of directional wavelet

2.3 三尺度特征点提取

三尺度特征点算子构造如下:

由尺度 2 高频影像得

 $\sqrt{(D_2^0)^2 + (D_2^{90})^2} = \max, \sqrt{(D_2^{15})^2 + (D_2^{135})^2} = \max$ 由尺度 1 高频影像得

 $\sqrt{(D_1^0)^2 + (D_1^{90})^2} = \max, \sqrt{(D_1^{15})^2 + (D_1^{135})^2} = \max$ 由尺度 0 低频影像得

$$egin{aligned} dg_1 &= \sum ig|G_0(i,j) - G_0(i,j+1)ig| \ dg_2 &= \sum ig|G_0(i,j) - G_0(i+1,j)ig| \ dg_3 &= \sum ig|G_0(i,j) - G_0(i+1,j+1)ig| \ dg_4 &= \sum ig|G_0(i,j) - G_0(i+1,j-1)ig| \ v &= \min(dg_1, dg_2, dg_3, dg_4) \end{aligned}$$

式中,*dg*₁、*dg*₂、*dg*₃、*dg*₄分别为水平、垂直、倾斜 方向的灰度差分绝对值和,三尺度下同时满足条 件的点为特征点。

3 尺度与旋转不变性立体匹配

尺度与旋转不变性立体匹配分为两步进行。 首先在尺度1低频影像 G_1 上作粗匹配,得到左右 影像间视差;然后在尺度0低频影像 G_0 上构造特 征点主方向和 64 维描述向量,进行向量距离 匹配。

3.1 基于特征的粗匹配

在尺度1左右低频影像上,利用公式(3)计算 左、右影像特征点的灰度相关系数

$$R = \frac{\sigma_{gg'}}{\sqrt{\sigma_{gg}\sigma_{g'g'}}} \tag{3}$$

式中, $\sigma_{gg'}$ 为左右影像灰度协方差。对于左像上任 一特征点,在右像上可找到其最大相关系数 max(R)、次大相关系数 submax(R)所对应的点。 取满足式(4)的点对

$$\frac{\left|\max(R) - \operatorname{submax}(R)\right|}{\left|\max(R) + \operatorname{submax}(R)\right|} \ge T \qquad (4)$$

作为粗匹配点。通过试验,选取 $T \neq 0.5 \sim 0.8$ 之间。

3.2 特征点梯度主方向确定

在 G_0 影像选定特征点邻域,计算邻域内梯 度模 m 与梯度方向 θ

$$m(i,j) = \sqrt{(G_1(i,j+1) - G_1(i,j-1))^2 - (G_1(i+1,j) - G_1(i-1,j))^2} \\ \theta(i,j) = \arctan\left(\frac{G_1(i,j+1) - G_1(i,j-1)}{G_1(i+1,j) - G_1(i-1,j)}\right)$$
(5)

将邻域内梯度方向

 $0^{\circ} \leq \theta(i,j) \leq 360^{\circ}$

按每 10°划分,统计邻域内梯度直方图,其峰值即 为该特征点的主方向。

3.3 构造 64 维特征描述向量

在 G₀ 影像上构造 64 维特征描述符,保持特征点邻域窗口的 0°方向与主方向重合。

定义邻域窗口为以特征点为中心 8 个同心环, 将环域分为 8 方向(0°、45°、90°、135°、180°、225°、270°、 315°)。如图 3 所示,以一特征点为中心取 17×17 像 素的窗口,依次建立 8 层环形区域。由式(5)计算每 个像素的梯度模和方向,统计每环内 8 个方向的梯 度累加值。构建 8×8=64 维的特征向量。

图 3 构造 64 维特征描述向量 Fig. 3 The describing vector of 64 parameters

3.4 向量距离匹配

设左像一特征点的 64 维描述向量为 X_i ,右像 第 i 个特征点的 64 维描述向量为 Y_i ,由

$$\min = \| \boldsymbol{X} - \boldsymbol{Y}_i \|_2 \tag{6}$$

可判断右像第 *i* 个特征点即为匹配点。

4 基于核线约束的可靠性匹配

完成 64 维特征向量匹配后,建立核线约束模型,剔除不满足核线约束的点对,提高匹配可靠性。

4.1 最优共面模型参数确定

由图 4 知,左右影像上同名像点满足共面方 程展开得^[1]

$$\begin{vmatrix} B_X & B_Y & B_Z \\ u & v & w \\ u' & v' & w' \end{vmatrix} = 0$$
(7)

$$L_{1}+L_{2}x+L_{3}y+L_{4}x'+L_{5}xx'+L_{6}xy'+L_{7}yx'+L_{8}yy'-a=0$$
(8)

式中,q为"上下视差";L为待求参数。当已知 8 对以上同名像点坐标,可根据最小二乘平差解求 L参数。

采用随机抽样一致性算法 RANSAC(random sample consensus)从匹配点集中迭代搜索匹配点

子集,不断修正解算的共面模型(8)中的 L 参数, 计算得到最优共面模型参数,可保证模型整体误 差最小。通过试验得出:RANSAC 法随机抽取不 少于 100 组同名点对(每组>8 对),迭代计算可 得到最优模型 L 参数。

图 4 核线几何关系 Fig. 4 Relation of epipolar line

4.2 核线约束检查

对于左影像任一特征点 $p(x_p, y_p)$,存在右 影像同名像点 $p'(x'_p, y'_p)$,必满足式(7)及 式(8)。对于已知 x'_p ,由式(9)计算 y'_p y'_p =

 $\frac{(1-L_3^0)y_p-L_1^0-L_2^0x_p-L_4^0x'_p-L_5^0x_px'_p-L_7^0y_px'_p}{(1+L_6^0x_p+L_8^0y_p)}$

(9)

由于匹配点对必位于同名核线上,不在同名 核线上的点对为误匹配,需要剔除。因此核线约 束用于检查发现误匹配,提高匹配的可靠性。

5 试验与分析

5.1 立体影像自动匹配实现

(1)对影像作方向小波变换,得到三尺度低、 高频影像,按2.3节进行三尺度影像特征点提取。

(2) 在尺度1低频影像G₁上,给定邻域窗口 进行粗匹配。选取满足式(4)并均匀分布的16点 对作为粗匹配结果,计算立体像对视差中数。

(3) 在尺度 0 低频影像 G_0 上,构造特征点主 方向和 64 维描述向量,进行向量距离匹配。

(4) 计算最优共面模型参数,基于式(9)进行 核线约束,剔除误匹配点对。

5.2 试验与结果分析

本文采用 3 种平台获取的立体像对(像对间 存在尺度与旋转变化)进行匹配试验。为了说明 本文算法的优越性,对试验结果进行人工检查, 表1列出传统基于特征匹配算法及本文算法得到 的正确匹配点对数。

表 1 与传统特征匹配比较

 Tab. 1
 Comparison with original feature matching

	正确匹配点对数	
	传统算法	本文算法
无人机平台立体像对匹配(右像顺时 针旋转15°)	217	415
地面立体像对匹配 (右像逆时针旋转 30°)	65	384
航空立体像对匹配 (右像顺时针旋转 120°)	25	420
无人机平台立体像对匹配(右像缩到 0.6倍)	44	95
地面立体像对匹配(右像缩到 0.6 倍)	19	77
航空立体像对匹配(右像缩到 0.6 倍)	7	128

(1)图 5(a)采用 Cannon EOS 400D 数字相 机在地面拍摄立体影像,影像尺寸:3888 像素× 2592 像素。对右像逆时针旋转 30°;图 6(a)以无 人机为遥感平台用 Cannon EOS 400D 数字相机拍 摄立体影像,相对航高 600 m,摄影比例尺 1/ 25 000,对右像顺时针旋转 15°;图 7(a)是采用专 业 DMC 面阵相机获取的航空摄影像对,影像尺 寸:7680 像素×13 824 像素,飞行航高 800 m,摄 影比例尺1/6000,对右像顺时针旋转 120°。图 8 是将上述 3 种立体像对的右像缩到原图大小的 0.6 倍后,与左像的匹配效果。

(2)图 5(b)、图 6(b)、图 7(b)是在三尺度(尺 度 2 高频影像、尺度 1 高频影像、尺度 0 低频影 像)下,提取同时满足条件的点作为特征点。3 类 不同影像对提取效果表明,本算法对于点特征敏 感且分布密度均匀。多尺度特征抗辐射强度变 化、尺度变化效果明显。

(3)图 5(c)、图 6(c)、图 7(c)是首先在 G_1 低 频影像上,基于(4)式获取均匀分布的 16 对匹配 点,计算影像对的视差中数;然后在 G_0 低频影像 上,确定特征点主方向及与主方向有关的 64 维特 征向量,进行向量距离匹配;最后用核线约束剔除 误匹配,确保匹配可靠性。为了便于说明,在 图 5(c)、图 6(c)、图 7(c)分别表示出 10 对匹配 点。由于立体匹配是在两尺度下完成,其结果具 有一定抗尺度变化,基于主方向的 64 维向量匹配 保证了匹配过程的旋转不变性。

(4)图 8 试验结果表明,无论是地面、无人机 还是航空平台得到立体像对,其立体匹配尺度不 变性效果明显。

(5)表1表明,当立体影像间存在尺度与旋转变化时,本文算法匹配获得的正确匹配点对数远多于传统算法,优势明显。

(a) 地面立体像对(右像逆时针旋转30°)

(b) 三尺度特征点提取

(c) 两尺度立体匹配

图 5 地面影像特征提取与立体匹配

Fig. 5 Feature point extracting and stereo matching by close-range images

6 讨 论

常用立体影像匹配算法,当影像视差不连续、 影像间存在明显辐射强度变化,或影像间存在旋 转、尺度变化时匹配效果不好。试验结果表明,本 文提出基于方向小波多尺度算子、64 维特征描述 向量、两尺度匹配,可以解决影像尺度和旋转不变 性问题。今后需要进一步研究、提高多方向多尺 度点特征提取精确性,特别是提高算法对于特殊 关键点(如建筑物角点、道路交叉点等)的选择性; 另外,进行地面大交向角立体像对匹配时,得到的 正确匹配点对较为稀疏,不能满足摄影测量的要 求,需要进一步研究改善,同时对城市建筑物特征

(a) 无人机平台立体像对(右像顺时针旋转15°)

(b) 三尺度特征点提取

(c)两尺度立体匹配

图 6 无人机平台影像特征提取与立体匹配

Fig. 6 Feature point extracting and stereo matching by unpiloted-aircraft images

(a) 航空立体像对(右像顺时针旋转120°)

(b) 三尺度特征点提取

(c)两尺度立体匹配

图 7 航空影像特征提取与立体匹配

Fig. 7 Feature point extracting and stereo matching by airplane images

(a) 地面立体像对匹配(右像缩到0.6倍)

(b) 无人机平台立体像对匹配(右像缩到0.6倍)

(c) 航空立体像对匹配(右像缩到0.6倍)

图 8 不同尺度立体影像匹配

Fig. 8 Stereo matching between different scale images

参考文献:

[1] ZHANG Zuxun. Study on Digital Photo-Grammetry 30 Years[M]. Wuhan: Wuhan University Press, 2007.(张祖助. 数字摄影测量研究 30 年[M]. 武汉:武汉大学出版 社,2007.)

- [2] XIONG Xinghua, CHEN Ying, QIAN Zengbo. A Fast, Accurate and Robust Image Matching Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(1): 40-45.
 (熊兴华,陈鹰,钱曾波. 一种快速、高精度和稳健的影像匹 配算法[J]. 测绘学报,2005,34(1):40-45.)
- [3] ZHOU Haifang, TANG Yu, HE Kaitao, et al. An Automatic Global Registration Algorithm Based on Wavelet and Its Parallel Implementation [J]. Acta Automatica Sinica, 2004,30(6):880-889.(周海芳,唐宇,何凯涛,等. 基于小波 遥感图像全局配准算法研究及其并行实现[J].自动化学 报,2004,30(6):880-889.)
- [4] LI Xiaoming. Reaserch in Image Registration Methods[D].
 Beijing:Beijing Institute of Technology, 2006. (李晓明.图 像配准方法研究[D].北京:北京理工大学, 2006.)
- [5] MALLAT S. A Wavelet Tour of Signal Processing[M]. YANG Lihua, DAI Daoqing, HUANG Wenliang, et al. Translated. Beijing: China Machine Press, 2002. (MALLAT S. 信号处理的小波导引[M]. 杨力华,戴道清,黄文良,等 译. 北京:机械工业出版社,2002.)
- [6] ANUTA P E. Spatial Registration of Multi-spectral and Multi-temporal Digital Imagery Using Fast Fourier Transform Techniques [J]. IEEE Transactions on Geoscience Electronics, 1970(8):353-368.
- [7] CASTRO E D, MORANDI C. Registration of Translated and Rotated Images Using Finite Fourier Transforms[J].
 IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9(5):700-703.
- [8] CHEN Q S, DEFRISE M, DECONINCK F. Phase-only Matched Filtering of Fourier-mellin Transforms for Image Registration and Recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(12): 1156-1168.
- [9] DAVID G L. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004,22(1): 77-85.
- [10] BROWN M, LOWE D G. Invariant Features from Interest Point Groups[C] // Proceedings of British Machine Vision Conference. Cardiff: [s. n.], 2002: 656-665.
- [11] DENOS M. Automated System for Coarse-to-fine Pyramidal Area Correlation Stereo Matching[J]. Image and Vision Computing, 1996, 14(3): 225-236.
- [12] HANK P, SONG K W, CHUNG E Y, et al. Stereo Matching Using Genetic Algorithm with Adaptive

Chromosomes[J]. Pattern Recognition, 2001, 34(9): 1729-1740.

- [13] MALLAT S G. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
- [14] CANDES E J. Ridgelets: Theory and Application [D]. Stanford: Stanford University, 1998.
- [15] DO M N, VETTERLI M. The Contourlet Transform: an Efficient Directional Multi-resolution Image Representation[J]. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106.
- [16] DONOBO D L. Wedgelets: Nearly Minmax Estimation of Edges[J]. The Annals of Statistics, 1999, 27(3): 859-897.
- [17] SONKA M, HLAVAC V, BOYLE R. Image Processing, Analysis, and Machine Vision [M]. AI Haizhou, WU Bo, Tanslated. Beijing: Post and Telecom Press, 2003.
 (SONKA M, HLAVAC V, BOYLE R. 图像处理、分析与 机器视觉[M]. 艾海舟,武勃,译. 北京:人民邮电出版 社,2003.)
- [18] TONJES R, GROWE S, BUCKNER J, et al. Knowledge Based Interpretation of Remote Sensing Images Using Semantic Nets [J]. Photogrammetric Engineering & Remote Sensing, 1999, 65(7):811-821.
- [19] KRUGER N, PETERS G. ORASSYLL: Object Recognition with Autonomously Learned and Sparse Symbolic Representation Based on Metrically Organizied Local Line Detectors [J]. Computer Vision and Understanding, 2000, 77:48-77.
- [20] SZU H H, TELFERN B, KADAMBE S. Neural Network Adaptive Wavelets for Signal Representation and Classification[J]. Optical Engineering, 1998, 31(9):1907-1916.

(责任编辑:雷秀丽)

收稿日期:2010-03-05

修回日期: 2011-01-07

第一作者简介:赵西安(1957—),男,博士,教授,主要从 事摄影测量与遥感研究。

First author: ZHAO Xi'an (1957—), male, PhD, professor, majors in digital photogrammetry and remote sensing. E-mail: zhaoxian@bucea.edu.cn