LI Deren. China's First Civilian Three-line-array Stereo Mapping Satellite: ZY-3[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3):317-322.(李德仁. 我国第一颗民用三线阵立体测图卫星——资源三号测绘卫星[J].测绘学报, 2012, 41(3):317-322.)

我国第一颗民用三线阵立体测图卫星——资源三号测绘卫星 _{李德仁}

武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079

China's First Civilian Three-line-array Stereo Mapping Satellite: ZY-3

LI Deren

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

Abstract:On January 9th, 2012, China launched its first civilian three-line-array stereo mapping satellite--ZY-3. ZY-3 is equipped with 2 front and back view TDI CCD cameras having the resolution better than 3.5 m and the width better than 50 km, 1 TDI CCD camera with the resolution better than 2.1 m and the width better than 50 km and 1 multispectral camera with the resolution better than 5.8 m. In order to ensure accuracy and reliability, ZY-3 adopts a large platform which is equipped with double-frequency GPS and more gyroes. ZY-3 obtains its geolocation accuracy better than 15 m without GCPs, geolocation accuracy better than 3 m and plane geolocation accuracy better than 4 m with GCPs which completely satisfies 1 : 50 000 mapping precision. Key words:ZY-3 survey satellite; precision testing

摘 要:2012年1月9日,我国成功发射了第一颗民用三线阵立体测图卫星"资源三号测绘卫星",资源三号测绘卫星配置2台分辨率优于3.5m、幅宽优于50km的前后视全色 TDI CCD 相机,1台分辨率优于2.1m、幅宽优于50km的正视 全色 TDI CCD 相机和1台分辨率优于5.8m的多光谱相机;为了保证精度精度和可靠性,资源三号测绘卫星采用大平 台、并配置双频 GPS 以及多个陀螺,经过处理,资源三号无控制点直接定位优于15m,带控制点高程精度优于3m,平面 精度优于4m,完全满足1:50000测图精度。

关键词:资源三号测绘卫星;精度验证

中图分类号:P23 文献标识码:A ジ

文章编号:1001-1595(2012)03-0317-06

1 概 述

2012 年 5 月 18 日是王之卓院士逝世 10 周 年纪念日,王之卓院士在 1965 年的《测绘通报》的 "航空摄影测量科学技术的现代发展"一文中写 到:"将来人造卫星会为测图人员提供编制或者修 订地球上地形图的像片,由于像片的摄影高度很 大,影像的解译能力和比例尺将是一个问题。在 200 英里高空摄影的像片不能够满足大比例尺地 图所需的碎步资料,但是对于中小比例尺地图来 说,获得的资料还是十分丰富的,这样高速取得的 大量测图资料据说将会显著减少现有测图方面的 时间和成本"^[1],科学预测到"将来人造卫星会为测 图人员提供编制或修订地球上地形图的像片"^[1]。

2012 年是我国民用航天卫星测绘取得重要 进展的一年。2012 年 1 月 9 日北京时间 11 时 17 分,我国在太原卫星发射中心用长征四号乙运载 火箭,成功将我国第一颗高分辨率立体测图卫星 "资源三号测绘卫星"送入太空,火箭点火起飞约 12 min 后, 西安卫星测控中心传来的数据表明, "资源三号测绘卫星"卫星与火箭分离,成功进入 高度约 500 km、倾角约 97.5°的太阳同步轨道,卫 星发射取得圆满成功,1月11日上午星上4台相 机成功开机,获取了第一批卫星图像。资源三号 测绘卫星是我国自主设计和发射的第一颗民用高 分辨率立体测图卫星,主要用于1:50 000 立体 测图及更大比例尺基础地理产品的生产和更新以 及开展国土资源调查与监测(http://www. sasmac. cn/)。"资源三号测绘卫星"的成功发射 凝聚了测绘人的心血,在总结国外测图卫星的经 验基础上,我国资源三号卫星参数决定采用10 bit 量化,将正视图像的分辨率提高到 2.5 m,同时加 5.8 m多光谱图像,以保证地物解译能力,要求全 色和多光谱采用相同的幅宽,尽可能保证三线阵 相机为无畸变系统的测绘相机。为保证定轨精 度,采用星载双频 GPS 接收机。为保证成像质量 选用大卫星平台,并多配备易损器件(主要指陀 螺),以保证卫星有效寿命^[2]。国家测绘地理信息

局卫星测绘应用中心和武汉大学相关科技人员研 制了全链路辐射和几何仿真系统,最终提出了资 源三号测绘卫星的研制总要求,并对资源三号测 绘卫星的研制过程进行全过程监控。资源三号测 绘卫星的成功发射,对我国测绘事业的发展具有 革命性意义,也是对王之卓院士 40 多年前的航天 测绘梦想和蓝图愿景的实现。

2 资源三号测绘卫星平台和载荷的基本 参数

根据我国航天卫星平台的发展和应用经验, 资源三号测绘卫星采用我国资源卫星系列使用的 大卫星平台,卫星平台的主要参数如表1所示^[2]。

表1 资源三号测绘卫星平台参数

Tab. 1 Parameters of ZY-3's satellite platform

平台指标	指标参数
卫星重量/kg	2650
星上固存容量 /TB	1
平均轨道高度/km	505.984
轨道倾角/(°)	97.421
降交点地方时	10 点 30 分
轨道周期/min	97.716
回归周期/d	59
设计寿命/a	5

资源三号测绘卫星上搭载4台光学相机,其 中3台全色相机按照前视22°、正视和后视22°设 计安装,构成了三线阵立体测图相机;另一台多光 谱相机包含红、绿、蓝和红外4个谱段,用于与正 视全色影像融合和地物判读与解译。为了保证卫 星影像的辐射质量,4台光学相机的影像都是按 照10 bit 进行辐射量化,资源三号测绘卫星4台 相机的主要参数见表2。

表 2	资源三号测绘卫星载荷主要参数

```
Tab. 2 Parameters of ZY-3's satellite load
```

载荷参数	三线阵相机	多光谱相机		
		蓝:0.45~0.52		
业 逆 坊 国 /	0.5 - 0.8	绿:0.52~0.59		
儿间记回/µm	1 0. 5/~0. 8	红:0.63~0.69		
		近红外:0.77~0.89		
地面像元分辨率	下视 2.1	5.8		
	前后视 3.5			
焦距 /mm	1700	1750		
量化比特数/b	it 10	10		
	下视 24 576(8192×			
梅二口十	$3) \times 7 \mu \mathrm{m}$	9216(3072 $ imes$		
涿兀尺刂	前后视 16 384(4096×	$3) \times 20 \mu m$		
	4) $\times 10 \mu \mathrm{m}$;			

	续表 2	
载荷参数	三线阵相机	多光谱相机
静态传函	优于 0.2	优于 0.2
幅宽/km	52	52
视场角 /(°)	6	6

3 资源三号测绘卫星地面应用处理流程

资源三号测绘卫星三线阵卫星影像产品的生 产主要实现从卫星下传原始数据,在完成数据解 扰、解密、解压等工作后,生成商业软件可以接受 的影像产品,该产品是对0级产品经辐射校正和 传感器校正处理后形成的影像产品,产品带有严 密成像几何模型和 RPC 模型,但未作系统几何纠 正,是进行实际测图的标准影像产品(该产品和 Worldview-2 的 basic 产品^[3] 以及 Pleiades 的 level 1 类似^[4]),产品生产流程如图1所示。

图 1 资源三号测绘卫星三线阵数据处理流程

4 资源三号测绘卫星几何性能分析

4.1 资源三号测绘卫星严密几何模型和 RPC 模型

资源三号测绘卫星的 4 台相机都是采用线阵 推扫行中心投影的方式获取影像数据,为了保证 影像成像时刻的时间同步精度,资源三号测绘卫 星在获取图像的同时,相机为成像的每一行影像 数据提供了精确的成像时刻,根据该成像时刻可 以精确地内插出每一行成像对应的轨道和姿态参 数。资源三号测绘卫星的轨道测量包括星上单频 GPS 测量数据和事后地面处理的双频 GPS 定轨 数据^[5],轨道测量数据的频率为 1 Hz。资源三号 测绘卫星的姿态测量系统采用星敏感器和和陀螺 组合测量的方式^[6],精确测定卫星平台在 J2000 坐 标系下的惯性姿态,测量频率为 4 Hz,同时,资源三 号测绘卫星也提供原始的星敏和陀螺观测值以及

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{WGS84}} = \begin{bmatrix} X_{\text{GPS}} \\ Y_{\text{GPS}} \\ Z_{\text{GPS}} \end{bmatrix} + m R_{\text{J2000}}^{\text{WGS84}} R_{\text{star}}^{\text{J2000}} (R_{\text{star}}^{\text{body}})^{\text{T}}$$
$$\begin{bmatrix} \begin{bmatrix} D_x \\ D_y \\ D_z \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix} + R_{\text{camera}}^{\text{body}} \begin{bmatrix} \text{tg}(\phi_Y) \\ \text{tg}(\phi_X) \\ -1 \end{bmatrix} \star f \end{bmatrix} \quad (1)$$

式中, $[X \ Y \ Z]_{WGS84}^{T}$ 表示地面一点 P 在 WGS84 下的三维笛卡儿坐标; $[X_{GPS} \ Y_{GPS} \ Z_{GPS}]^{T}$ 为 GPS 相位中心在 WGS84 下的坐标; R_{J2000}^{WGS84} 为 J2000 和 WGS84 间旋转矩阵; R_{star}^{J2000} 为星敏主光轴在 J2000 坐标系中的指向构成的旋转矩阵; R_{star}^{body} 为星敏主光 轴在卫星本体坐标系中的安装关系构成的旋转矩 阵; $[D_x \ D_y \ D_z]^{T}$ 为 GPS 相位中心在卫星本体 坐标系中三个偏移; R_{camera}^{body} 为相机在卫星平台上安装 矩阵; $[d_x \ d_y \ d_z]^{T}$ 为相机节点在卫星本体坐标 系中三维坐标; (ϕ_x, ϕ_Y) 为 CCD 线阵上每个像元在 相机坐标系的指向角;f为相机主距;m为比例系数。

对于线阵推扫式影像,基于严密成像几何模型的像点坐标反投影计算需要进行迭代,效率较低^[10]。有理多项式(RPC)模型是目前高分辨率 光推扫卫星普遍采用通用几何模型^[12],能达到与 严密成像几何模型同等的精度。RPC 模型将地 面点的大地坐标(*Lat*,*Lon*,*h*)与其对应的像点坐 标(*S*,*L*)用比值多项式关联起来,并将地面坐标 和影像坐标正则化到-1和1之间。

经过在轨测试分析,资源三号测绘卫星严密成

像几何模型转换成 RPC 模型的拟合精度优于0.15% 像元^[13],因此,资源三号测绘卫星可以使用 RPC 模 型代替严密成像几何模型进行测图和其他应用。

4.2 基于地面几何定标场的几何标定

利用地面几何定标场对资源三号测绘卫星定 期进行在轨几何检校是提高其影像产品几何质量 的关键,也是充分挖掘卫星影像产品后续应用潜力 的保证。卫星在轨运行过程中由于各种因素的影 响,使得地面测量的各类成像参数不再适用,必须 进行在轨检校。

对资源三号测绘卫星在轨成像过程中各类误 差特性进行深入分析的基础上,并结合其各类载 荷具体的系统设计指标,从严密成像几何模型出 发,将待检校参数分为内外定标参数两类,并构建 在轨几何检校模型,如式(2)所示

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS84} = \begin{bmatrix} X_{GPS} \\ Y_{GPS} \\ Z_{GPS} \end{bmatrix} + m R_{J2000}^{WGS84} R_{star}^{J2000} R \begin{bmatrix} \tan(\Psi_Y) \\ \tan(\Psi_Y) \\ -1 \end{bmatrix}$$
(2)

式中,R 代表外定标参数,描述卫星成像过程中, 相机外部系统误差(包括:时间同步、GPS 偏心等 线元素误差及相机安装角、星敏安装角等角元素 误差)的综合影响;CCD 线阵上每个像元在相机 坐标系的指向角(Ψ_x , Ψ_Y),为内定标参数。

在在轨测试期间,利用武汉大学在河南嵩山 建设的高分辨率几何定标场,对资源三号测绘卫 星进行了在轨几何定标分析试验^[14],利用两次标 定结果,在 CCD 上每 50 个探元选取一个作为样 本,统计这些样本探元两次检校的指向角差异,定 标结果的精度评价如表 3。

载荷		前视	前视相机]相机	后视相机		
样本探	元数目	3	28	4	92	328		
	0.0-0.1	257	78%	106	22%	134	41%	
检检结甲	0.1-0.2	53	16%	296	60%	108	33%	
™化和木	0.2-0.3	14	4 %	83	17%	32	10%	
左升	0.3-0.4	4	1 %	7	1 %	24	7 %	
/像素	0.4-0.5	0	0 %	0	0 %	13	4 %	
	0.5-0.6	0	0 %	0	0 %	12	4 %	
上 17 关 / 佐 吉	沿轨方向	0.	06	0.	.06	0.12		
甲误差/像素	垂轨方向	0.08		0.	. 14	0.17		

表 3 几何定标结果及评价 Tab. 3 The result and evaluation of geometric calibration

4.3 资源三号测绘卫星无地面控制精度分析 经过几何定标后,利用高精度地面控制点(控制点精度优于1m)检验了不同轨道获取的影像 数据,得到的初步分析结果如下表4 所示,卫星系 统在稳定工作的情况下,标定后的无地面控制精 度优于15 m。 表 4 几何定标后无地面控制精度检验

	Tab. 4 Results of precision testing without GCPs after calibration										
景号	区域	检查点	成像时间	X中误差/m	Y 中误差 ∕m	中误差/m					
1	郑州	24	2012-02-03	5.332	5.193	7.443					
2	南阳	8	2012-02-03	2.322	7.749	8.090					
3	洛阳	24	2012-01-24	10.009	10.337	14.389					
4	法国	9	2012-02-29	7.866	4.309	8.969					
5	安平	508	2012-02-28	6.844	8.187	10.671					
6	合肥	4	2012-03-24	7.492	3.838	8.672					

4.4 资源三号测绘卫星立体模型平差精度分析

对于几何标定前后选取了河南南阳试验区 (如图 2 所示)进行了区域网平差^[15]精度分析,在 该地区分别获取了外业 9 个 GPS 控制点,分别采 用定标前后的结果,用不同的控制点和检查点测 量的结果如表 5 和表 6 所示,从表中可以看出,定 标后用 1 到 2 个控制点会明显提高影像的几何定 位精度和高程精度,当采用 5 个控制点时,由于系 统误差可以通过多余的控制点进行补偿,模型的 定向精度基本相当。

利用大连试验区,进行平差精度分析,在该地 区分别获取了外业 18 个 GPS 控制点,用不同的 控制点和检查点测量的结果如表 7 所示,从表中 可以看出,4 个控制点,14 个检查点会明显提高影 像的几何定位精度和高程精度,高程精度 1.787 m, 平面精度达到 2.975 m^[13]。

前视影像

F

下视影像

后视影像

图 2 河南南阳试验区影像

ig. 2	Images of	Nanyang,	Henan	experimental	р.	lo
-------	-----------	----------	-------	--------------	----	----

表 5	定标前定向结果
100	

[a	b. :	5	Oı	ien	tat	tio	n	re	sul	lt	be	foi	·e	ca	li	br	a	tio	01	1

位制卡人教		控制	制点		检查点				
控制点个数	X	X Y 4		Ζ	X	Y	平面	Ζ	
0					1 165.928	936.648	1 495.559	272.989	
1	0.0001	0.0005	0.000 51	0.015 5	8.0334	61.303	61.827	33.2027	
2	3.8944	2.0014	4.378579	1.0078	10.014 9	64.7351	65.505	33.744 9	
3	0.013	0.0018	0.013 124	0.0035	6.1831	3.6957	7.203	4.245 4	
4	2.11	0.4012	2.147 804	0.9947	3.484 6	5.5364	6.212	3.2223	
5	3.086 6	0.8301	3.196 274	1.924 3	2.156 6	4.274 1	4.787	2.2206	

表 6 定标后定向结果

Tab. 6 Orientation result after calibration

拉制卡人教		控制	削点		检查点				
控制点个数	X	Y	平面	Ζ	X	Y	平面	Ζ	
0					2.5881	2.1229	3.3474	10.2006	
1	0.0004	0.0039	0.0039	0.0123	2.8172	3.1598	4.2333	2.900 8	
2	1.6632	1.7888	2.4425	4.4370	2.6965	2.2828	3.5330	2.806 0	
3	2.3820	1.4605	2.7941	3.6848	3.0435	2.5273	3.9560	2.5736	
4	2.113 3	1.5983	2.6496	3.5319	3.5719	2.4083	4.3079	1.6306	
5	2.7071	0.8277	2.8308	2.0758	2.4778	2.5496	3.5552	2.006 1	

表 7 大连数据试验结果

		Tab. 7	7 Experime	ntal results of	f Dalian data			m	
ᅓᇓᆂᇫᄬ		控制	削点		检查点				
控制从作数	X	Y	平面	Ζ	X	Y	平面	Ζ	
3	0.000	0.000	0.000	0.000	2.341	2.154	3.181	1.768	
4	2.151	1.113	2.422	0.570	2.037	2.169	2.975	1.787	
18	2.011	1.944	2.797	1.299					

4.5 基于资源三号测绘卫星的 3D 产品生产与检验

利用河南洛阳试验区进行了 DSM 自动生 产^[16-18]和数字正射影像产品生产检验,用 18 个检 查点检查的结果如图 3 和图 4。

图 3 DSM 产品(检查点高程误差为 2.56 m) Fig. 3 DSM product (check points' altitude error is 2.56 m)

图 4 数字正射影像(检查点平面中误差为 3.73 m) Fig. 4 DOM product (check points' plane error is 3.73 m)

5 总 结

"资源三号测绘卫星"的成功发射实现了我国 民用高分辨率测绘卫星领域零的突破,对我国测 绘事业的发展具有革命性意义,是我国卫星测绘 发展史上一座新的里程碑。

从 2012 年 1 月 11 日接收第一轨图像开始, 经过 2 个月的在轨运行测试和分析表明,无控制 点系统定位精度优于 15 m,少量控制点条件下, 高程精度优于 3 m,平面精度优于 4 m,资源三号 利用大连试验区进行了 DSM 自动生产和数 字正射影像产品生产检验,用 14 个检查点检查的 结果如图 5 和图 6^[13]。

图 5 DSM 产品(高程中误差 2.07 m)

Fig. 5 DSM product (check points' altitude error is 2.07 m)

图 6 数字正射影像(平面中误差 2.92 m)

Fig. 6 DOM product (check points' plane error is 2.92 m)

测绘卫星达到了既定的设计目标,影像的几何定 位精度明显优于设计指标,完全满足 1:50 000 测图精度需要,达到甚至超过国际同类分辨率卫 星 SPOT5、P5 和 ALOS 的几何质量,并可开拓 研究其在 1:25 000 甚至 1:10 000 困难区测图 应用可行性。

致谢:感谢武汉大学测绘遥感信息工程国家重点 实验室、国家测绘地理信息局卫星测绘应用中心 和中国资源卫星应用中心相关工程和科技工作人

员提供的相关研究结果。

参考文献:

- [1] WANG Zhizhuo. The Modern Development of Aerial Photogrammetry[J]. Bulletin of Surveying and Mapping, 1965(5):3-7.(王之卓. 航空摄影测量科学技术的现代发 展[J]. 测绘通报, 1965(5):3-7.)
- [2] LI Deren. Unstoppable Thinking: The Anthology of Academician Li Deren[M]. Wuhan University Press, 2008. (李 德仁. 不停歇的思索:李德仁院士文集[M]. 武汉:武汉大 学出版社, 2008.)
- [3] Digital Globe. Digitalglobe Core Imagery Products Guide [EB/OL]. 2010[2012-01-01]. http://www.digitalglobe. com/digitalglobe2/file.php/811/digitalglobe_core_imagery _products_guide.pdf.
- [4] LUSSY F DE, KUBIK P, GRESLOU D, et al. Pleiades-HR Image System Products and Quality Pleiades-HR Image System Products and Geometric Accuracy [EB/OL]. [2012-01-01]. http://cmsv021.rrzn.uni-hannover.de/fileadmin/ institut/pdf/075-delussy.pdf.
- [5] ZHAO Qile, LIU Jingnan, GE Maorong. High Precision Orbit Determination of CHAMP Satellite[J]. Geo-Spatial Information Science, 2006, 9(3):180-186.
- [6] LI Deren, YAN Jun. Correction Technology for Underwater Object Navigation Using GNSS Buoy[J]. Geomatics and Information Science of Wuhan University, 2008,33(11): 1101-1105.(李德仁,闫军.水下目标卫星导航定位修正技 术研究[J]. 武汉大学学报:信息科学版, 2008,33(11): 1101-1105.)
- [7] XIE Junfeng, JIANG Wanshou, GONG Jianya. On-orbit Calibration of Stellar Camera Considering Distribution of Star Image Points [J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10):1271-1276.
 (谢俊峰,江万寿,龚健雅. 顾及星像点分布的恒星相机在 轨检校[J]. 北京航空航天大学学报, 2011,10 37(10): 1272-1276.)
- [8] JIANG Wanshou, XIE Junfeng, GONG Jianya, et al. New Star Identification Algorithm Based on Starlike Mappings Pattern[J]. Geomatics and Information Science of Wuhan University, 2008. 33(1):12-15.(江万寿,谢俊峰,龚健雅, 等. 一种基于星形的星图识别算法[J]. 武汉大学学报:信息 版,2008,33(1):12-15.)
- [9] SPOT Image. SPOT Satellite Geometry Handbook:1st ed. Revision[DB/OL][2012-01-01]. http://www-igm. univ-mlv. fr/~riazano/publications/GAEL-P135-DOC-001-01-04. pdf.
- [10] ZHANG Guo. Rectification for High Resolution Remote Sensing Image under Lack of Ground Control Points[D].
 Wuhan: Wuhan University, 2005. (张过. 缺少控制点的高 分辨率卫星遥感影像的几何纠正[D]. 武汉:武汉大 学, 2005.)
- [11] ZHU Xiaoyong, ZHANG Guo, TANG Xinming, et al. Research and Application of CBRS02B Image Geometric

Exterior Calibration[J]. Geography and Geo-information Science,2009,25(3):16-18. (祝小勇,张过,唐新明,等. 资源一号 02B 卫星影像几何外检校研究及应用[J]. 地理 与地理信息科学,2009,25(3):16-18.)

- [12] DIAL G F, BOWEN H, GERLACH B, et al. IKONOS Satellite, Sensor, Imagery, and Products [J]. Remote Sensing of Environment, 2004,88(1-2):23-36.
- [13] TANG Xinming, ZHANG Guo, ZHU Xiaoyong, et al. Triple Linear-array Imaging Geometry Model of Ziyuan-3 Surveying Satellite and Its Validation, Acta Geodaetica et Cartographica Sinica, 2012:41(2):191-198. (唐新明,张过, 祝小勇,等. 资源三号测绘卫星三线阵成像几何模型构建 与精度初步验证[J],测绘学报, 2012:41(2):191-198.)
- [14] GACHET R. SPOT5 In-flight Commissioning: Inner Orientation of HRG and HRS Instruments [C] // Proc eedings of XXth ISPRS Congr, Commission I: 35 Istanbul: [s. n.], 2004.
- [15] LI Deren, ZHANG Guo, JIANG Wanshou, et al. SPOT-5 HRS Satellite Imagery Block Adjustment without GCPs or with Single GCP[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 377-381. (李德仁,张 过,江万寿,等. 缺少控制点的 SPOT-5 HRS 影像 RPC 模 型区域网平差[J]. 武汉大学学报:信息科学版, 2006, 31 (5): 377-381.)
- [16] JIANG Wanshou. Multiple Aerial Image Matching and Automatic Building Detection [D]. Wuhan: Wuhan University,2004. (江万寿. 航空影像多视匹配与规则建 筑物自动提取方法研究 [D]. 武汉:武汉大学,2004.)
- [17] ZHANG Li, ZHANG Jixian. Multi-image Matching for DEM Generation from Satellite Imagery[J]. Science of Surveying and Mapping, 2008(S2): 35-39.(张力,张继 贤. 基于多基线影像匹配的高分辨率遥感影像 DEM 自 动生成[J].测绘科学,2008(S2): 35-39.)
- [18] ZHANG Guo, CHEN Tan, PAN Hongbo, et al. Patchbased Least Squares Image Matching Based on Rational Polynomial Coefficients Model [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):592-597. (张过,陈钽, 潘红播,等. 基于有理多项式系数模型的物方面元最小 二乘匹配[J]. 测绘学报, 2011, 40(5): 592-597.)

(责任编辑:张燕燕)

收稿日期: 2012-04-09

修回日期: 2012-04-22

第一作者简介:李德仁(1939—),男,中国科学院院士、中 国工程院院士,主要从事以遥感、全球定位系统和地理信 息系统为代表的空间信息科学与技术的科研和教学工作。 First author: LI Deren(1939—),male,academician of the Chinese Academy of Sciences,academician of the Chinese Academy of Engineering, majors in the research and education in spatial information science and technology represented by RS,GPS and GIS.