文章编号:1001-1595(2010)06-0585-07

一种基于变分 Retinex 的遥感影像不均匀性校正方法

李慧芳1,沈焕锋2,张良培1,李平湘1

1. 武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079; 2. 武汉大学 资源与环境学院,湖北 武汉 430079

An Uneven Illumination Correction Method Based on Variational Retinex for Remote Sensing Image

LI Huifang¹, SHEN Huanfeng², ZHANG Liangpei¹, LI Pingxiang¹

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China; 2. School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China

Abstract: A new uneven illumination correction method for optical remote sensing image is presented. The method is based on the Retinex theory and the variational function is used to estimate the uneven illumination distribution in the imaging instant. Retinex theory addresses the problem of separating the illumination from the reflectance in a given image, which in general is an ill-posed problem. The color sensation for any area in an image does not depend on illumination but on reflectance which should be retained. In the variational Retinex framework, the projected normal steepest descent optimization method is applied to solve the function and the multi-resolution numerical solution is introduced to improve the algorithm efficiency. The proposed algorithm outperforms the traditional methods in terms of the calculation efficiency, the quantitative measurements and visual evaluation. Key words : variational Retinex; uneven illumination; remote sensing image

摘 要:提出一种基于变分 Retinex 的遥感影像灰度不均匀性校正方法。该方法在 Retinex 框架上,利用变分最优化技 术和投影归一化最速下降法求解成像瞬间的照度分布,并以此为基础对遥感影像的灰度不均匀性进行校正。为提高运 算效率,引入多尺度数值求解的策略。利用模拟影像和真实影像进行试验,并与传统方法进行对比分析,结果表明,本文 方法能够在消除影像灰度不均匀现象的同时,有效保持影像本身的色彩和细节信息,同时还具有较高的运算效率。

关键词:变分 Retinex;灰度不均匀;遥感影像

中图分类号: P237 文献标识码: A

基金项目: 国家 973 计划(2009CB723905); 国家自然科学基金(40801182,40930532,40771139); 模式识别国家重点实验 室开放课题(0971)

1 引 言

由于受到大气、光照及传感器系统内部因素 的影响,遥感影像往往呈现出亮度分布不均匀的 现象,极大地影响了对地表真实情况的反映。现 有的遥感影像不均匀性校正方法主要包括直方图 均衡、同态滤波、Mask 匀光法和 Wallis 滤波法 等^[12]。直方图均衡法是基于全局的影像亮度调 整,它仅涉及像素亮度,而与像素方位无关,因此 仅对部分特殊影像效果较好,适用性不强。同态 滤波是在频率域的运算,它同时对图像的低频和 高频部分进行处理,突出高频削弱低频,对影像亮 度不均匀性有很好的平衡作用,但其滤波函数设 计及参数选定需要有一定的技巧和经验。Mask 匀光法假设影像中的不均匀现象为加性噪声,此 加法模型可能会导致局部模糊和色彩失真,并且 随着影像幅度的变大,该方法中的高斯模糊窗口 就要越大,运算量就会成比例增加。Wallis 滤波 主要针对多幅影像拼接时亮度的调整,具有效率 高运算快的特点,但需提前给定灰度均值和方差, 且应在单幅影像亮度均衡的基础上进行。

变分 Retinex 是一种新型的影像增强方法^[3],已在近景图像处理中得到了初步应用,并展现了较强的应用潜力。因此,本文将其引入到遥感影像处理中,提出一种基于变分 Retinex 的遥感影像灰度不均匀性校正方法,并分别给出该方法的单尺度和多尺度数值解法。利用模拟影像和真实影像进行试验,与 Mask 方法进行了定量比较与分析,验证了算法的有效性。

一〇 何昭-267 PChina Academic Southal Effectionic Publishing House. All rights reserved. http://www.cnki.net

2 变分 Retinex 理论及其数值解

2.1 Retinex理论

Retinex 理论, 即视网膜大脑皮层理论, 最初 由 Land 于 20 世纪 70 年代提出^[4]。他指出影像 上某点进入人眼的亮度值是该点的反射值与光照 值的乘积,而通过视网膜和大脑皮层的神经反馈 与处理,最终感受到的是由每个点的反射值组成 的影像,这一幅影像不会因为光照条件的变化而 发生亮度的变化^[56]。它是一种颜色恒常性理论。 颜色恒常性是知觉恒常性的一种. 它是人类的一 种心理倾向[7]。Helmholtz认为色彩恒常性是人 在认知事物时排除照明光线的变化,做出颜色判 断的结果[810],即人类视觉具有排除外界干扰,反 映事物真实性质的认知能力。随着计算机技术的 高速发展和数字图像的出现,计算机视觉需要具 备人眼的此种特性,从而保持影像色彩的真实性。 Retinex 理论恰是最具影响力的色彩恒常计算 理论。

根据 Retinex 理论,影像可以分为两部分:光 照分量与反射分量,二者的乘积即为影像本身。 其基本理论模型如式(1)。

S(x, y) = L(x, y)R(x, y)(1)其中, (x, y) 为像素点的坐标: S 为原始影像: L 为 光照分量: R 为反射率。在实际的影像获取过程 中,光照条件是不确定的,反射值也是未知的,所 以在仅已知S的条件下,L和R有无数解。根据 色彩恒常性理论、计算机需要排除光照 L 的影 响,获取反射分量 R。为此,需要通过估计来获取 接近真实情况的光照分量L,处理流程如图(1)所 示。首先对原始影像 S 进行对数处理, 可得对数 域的模型 s= l+ r, 其中, s、l 和r 分别是 S、L 和 R 在对数域的表示。从 s 中减去 l 的估计值 l 得到 r̂, r̂ 的指数变换即为输出影像。由于反射分量仅 反映物体本身的反射性质,不受外界光照影响。 所以视觉上而言、输出影像消除了原影像中由于 光照引起的灰度不均匀现象,且保持了物体的原 本色彩、突出了细节。

经过二十多年的发展,学者们发展了多个基 于 Retinex 理论模型的算法^[11],其不同之处在于 光照分量的估计方法。最早 Land 给出的是随机 路径算法^[4],利用模拟 Mondrian 图中的几何关 系,寻找分段的线性路径,来确定路径两端点灰度 间的比例关系,继而修改终点的亮度值,但是自然 图像中的几何路径不易确定.极大降低了算法的 效率。Frankle 和 M cCann 对随机路径法进行了 改进^[12],以回归矩阵计算代替路径计算,提高了 运算效率,但每次回归均需设定迭代次数,该参数 不确定。在 Cooper 和 M arini 的文章中^[1314]. 分 别采用双螺旋和布朗路径来代替随机路径,提高 了计算效率。以上三种算法均属于一维路径算 法,其缺点之一是路径长度不易确定,太短则只涉 及临近像素,比值均接近于1,太长则失去了局部 性质,且消耗更多的运算时间。另外一维路径只 是寻找固定方向上的像素关系,未能充分考虑像 素点与邻域像素的关系。因此出现了二维 Retinex算法,主要包括 Jobson 等改进的中心环 绕算法以及 Kimmel 等提出的基于方程的变分算 法等[3,1516]。前者属于窗口运算,需要设定滤波 窗口的大小,且结果会产生光晕现象,为了克服这 一缺点,出现了多尺度的中心环绕,但未能从根本 上解决这一问题。后者将光照分量的获得归结于 变分方程的求解,通过惩罚项和约束条件保证各 项的取值,即光照分量和反射分量的空间连续性 和平滑性,以及反射率值在[0,1]区间。此算法较 好地顾及了像素和其邻域间的关系,没有光晕现 象,利用投影归一化最快下降法 (projected normalized steepest descent, PNSD)求得方程的 最优解,并在此基础上发展了多尺度解法,提高了 求解的运算效率,全局最优解很好地模拟了影像 的光照分布,对于原影像中曝光过度区域的调整 也可以达到很好的效果。

2.2 遥感影像的变分 Retinex 校正算法

航空航天遥感影像与近景影像的成像原理基 本相同, 而航空航天遥感影像在成像瞬间的大气 和光照条件更加复杂, 且传统大气校正方法所需 的参数, 如大气光学厚度、气溶胶含量和太阳天顶 角等经常缺失。因此, 将 Retinex 模型用于航空 航天遥感影像的校正是可靠并且有价值的。其 中, 分离得到的光照分量可作为成像瞬间光照分 布的模拟, 反射分量则作为地表真实情况的反映。

© 1994-2011 China Academic Journal Electronic Publishing House: An Highes teserved. http://www.chki.nd

文采用基于变分框架的模型。

2.2.1 变分框架的定义

基于 Retinex 理论模型, 通过对实际问题的 分析, 提出了以下假设⁽³⁾:

1. 光照分量 / 具有空间平滑性;

 空间域中反射率 *R* 被限制在 0 到 1 之间, 即对数域中的反射分量 *r* ≤0, 故 *l* ≥*s*;

3. 光照分量 *l* 近似于原始影像 *s* , 即使得 *l* 与 *s* 之间的距离最小;

4. 反射分量 r 具有空间平滑性;

5. 在影像边界光照分量是持续光滑的。

基于以上假设,可以得到如下惩罚函数,即 Retinex 算法的变分框架(variational framework retinex, VFR)

最小化: $F[l] = \int_{\Omega} (|\Delta l|^2 + \alpha (l-s)^2 + \beta |\Delta (l-s)|^2) dx dy$ (2)

约束: $l ≥_s$, 且在边界 $\partial \Omega \perp \langle \Delta l, n \rangle = 0$

其中, Ω是影像区域; 惩罚项 $|\Delta l|^2$ 是光照分量的 梯度, 保证光照分量 l 具有空间平滑性; 惩罚 项 $(l - s)^2$ 保证 l 和s 之间的相似性, 由非负参数 α 约束; 惩罚项 $|\Delta (l - s)|^2$ 是反射分量的梯度, 保 证反射分量 r 具有空间平滑性, 由非负参数 ^β约 束。遥感影像符合以上的各项假设。

当方程取得最小值时, *l* 即为光照分量的估 计值。方程(2)中各项均为二次式, 故最小化问题 可归结为二次规划问题, 对式(2)求导得欧拉-拉 格朗日方程。

$$\forall (x, y) \in \Omega \begin{cases} \frac{\partial F[l]}{\partial l} = 0 = -\Delta l + \alpha(l-s) - \\ \beta \Delta(l-s) & \text{and} \quad l > s \\ l = s \end{cases}$$
(3)

2.2.2 变分框架解法及其改进

上述问题可归结为非线性最优化问题, 最常 用的求解方法为梯度下降法, 通过迭代公式 $l_i = l_{i-1} = \mu G$ 来求解。其中, *G* 为影像梯度, 即式(3) 所示 *F*[*l*] 对*l* 的偏导数; μ 为迭代最优化步长, 如 式(4)所示。

$$\mu = \frac{\int_{\Omega} |G|^{2}}{\int_{\Omega} (\alpha |G|^{2} + (1 + \beta) |\Delta G|^{2})} \quad (4)$$

由于模型中将 R 约束在 0 到 1 之间, 故该解 法定义为投影归一化最速下降法(PNSD)。我们 希望从原始遥感影像中获得的反射分量能够反映 真实的地表,因此迭代收敛要足够充分,故设定迭 代终止条件为 $\frac{||l_{j-1}||}{||l_{j-1}||} \leq 收敛阈值,其中收敛$ 阈值必须足够小。通过试验得知,影像尺寸越大收敛速度越慢,当阈值小于或等于 10⁻⁴时试验结果基本可以满足人眼视觉。

由于梯度下降法是从初始点开始,沿负梯度 方向寻找局部最优点的最优化过程,具有线性收 敛速度,迭代次数越高,解越接近于理想收敛值。 整体而言,该算法效率较低,且迭代初始值的选择 对于收敛速度有很大的影响。因此,为提高算法 效率,可采用多尺度的 PNSD 解法⁽³⁾。具体处理 流程如下:

1. 输入影像 s, 确定参数 α 和 β;

 利用高斯平滑建立层数为 n 的影像金 字塔;

3. 从分辨率最低的第 n 层开始, 利用 PNSD 法解得 *l_n*;

4. 对 *l*ⁿ 进行邻域放大得 *l*[']ⁿ;

5. 以 l_n 作为第n-1 层的迭代初始值进行梯度下降法求解, 直到 n=1 为止。

该方法以低分辨率影像光照分量的邻域放大 值作为较高分辨率影像迭代的初始值,可以极大 地提高算法收敛的速度。但是,简单的邻域放大 结果较粗糙,细节缺失,与真实情况的差距较大。 因此,文中采用双线性内插方法获得较高分辨率 层的迭代初始值,这样较好地模拟了细节,更接近 收敛值,因此结果会更优。

3 试验与分析

本文首先将上述算法用于模拟影像,除视觉 评价外,引入定量因子对算法的性能进行评价,结 论更加真实客观,然后把算法用于两幅真实航空 遥感影像的处理,进一步证实了其有效性。

3.1 模拟数据试验

模拟数据采用从高分辨率航空影像中截取的 一幅 300 × 300 的亮度较均匀的屋顶影像,如 图 2(a) 所示(图 2 中均为彩色影像的 Red 波段), 利用余弦函数 $\cos(\frac{\pi}{2}\frac{x+y}{row+column})$ 对原影像进 行降质处理,其中(x, y)为像素点坐标, row 和 column 分别为影像的高度和宽度。处理结果如 图 2(b) 所示,作为模拟试验的输入影像。

© 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

试验中需要选定两个参数 α 与 β , 其中 α 的值 越小, 对式(2)的正则化约束越强, 问题越正定, 而 β 值的选定对试验结果影响不大, 具有稳定性。 本文的试验均设定 α = 0.000 01, β = 0.1。分别采 用 Mask 匀光法和变分 Retinex 法对图 2(b) 进行 处理, 并将各方法的输出影像与原始影像进行直 方图匹配, 以达到与原始影像具有相同级别灰度 的效果, 结果如图 2(c)~(h) 所示, 其中(c)~(e) 分别为 Mask 方法在高斯窗口尺寸为 35、55 和 85 下的试验结果; (f)~(h) 分别为单尺度变分、尺度 为 2(n= 2) 和 3(n= 3) 的多尺度变分算法(multiresolution variational framework retinex, M R- VFR)的试验结果。主观上评价, Mask 方法在消除原影像阴暗遮掩, 平衡影像亮度的同时, 模糊了 阴暗部分的细节, 如图 2 中矩形框标识区域, 而变 分 Retinex 法则很好的保持了阴暗区域的细节, 但阴暗区域的右下角的却由于边界位置的影响, 未能充分优化, 保留了小区域的阴影。这在阴暗 区域不均匀分布的遥感影像中是很少出现的。

分别对彩色影像 RGB 三个波段做相同处理, 彩色合成结果如图 3 所示。可以看出,本文所采 用的方法较 Mask 方法在色彩的保持上有明显的 优势,未出现强烈的色偏现象,显示了 Retinex 方 法的颜色恒常特性。

(b) Mask85

(c) MR-VFR(n=3)

为了对试验结果进行定量评价,引入以下评价因子:

 $MSE = E((1-I)^2)$ (5)

本试验中真实值即为降质前的影像,估计值

1. 均方差(mean square error, MSE),是指估 为试验结果。MSE 值越小,表示试验结果越接近 计值与真实值之间误差的平方的期望,其定义为nic Pub真实值,越理想;反之,则越不理想。http://www.cnki.net 峰值信噪比(peak signal to noise ratio, PSNR),用于衡量处理后的影像品质,值越大,影 像品质越高,其定义为

$$PSNR = 10\log\left(\frac{255^2}{MSE}\right) \tag{6}$$

3. 运行时间(running time, RT), 用于评价

算法的运行效率。

4. 色彩距离(color distance, *D*_c),所有像素在 RGB 色彩空间上的距离的平方的平均值,值越小,色偏越小,色彩保持度越高,该项是对彩色影像结果的评价因子,其定义为

 $D_{c} = E[(I_{R} - I_{R})^{2} + (I_{C} - I_{C})^{2} + (I_{B} - I_{B})^{2}]$ (7) 上述评价指标的统计值如表 1。

速度均是可以接受的.当影像尺寸较大时.多尺度

算法显著提高了运算效率。因此,在兼顾效率和

质量的基础上,以下针对较大幅航空影像的变分

图 4(a) 为从原始航空影像截取的 1 000 ×

1000数据, Mask 方法(窗口为 115)和 MR VFR

(n= 3)的试验结果如图 4(b)~(e) 所示,其中图(b)

为 Mask 方法(窗口为 115)得到的光照分量,图 4(c)

为其试验结果;图 4(d)为 M R-VFR 方法(n= 3)

得到的光照分量,图4(e)为其试验结果。

试验选择 n=3 的 M R-VFR 方法进行。

3.2 航空遥感影像试验

表 1 试验结果定量 评价 Tab. 1 Ouantitative evaluation of the results

评价因子		M as k35	Mask 55	Mask85	Mask105	VFR	M R VFR (<i>n</i> = 2)	M R V FR $(n=3)$
Red 波段	MSE	41.993	28.767	25.290	25.506	19.783	20.739	20. 202
	PSNR	31.899	33.542	34.101	34.064	35.168	34.963	35.077
	RT/s	1.062	2.484	6.000	9.016	1.640	0.625	0. 281
彩色波段	D _c	174.974	121.997	102.775	100. 483	94.296	88.443	80. 921

由表 1 可以看出,高斯窗口越大, Mask 方法 的 *MSE* 越小, *PSNR* 越大,试验结果越理想,但 是运行时间明显增长,效率降低;相比而言, VFR 方法有较高的运算效率,且*MSE* 较 Mask 法有所 降低, *PSNR* 值有所提高; 另外, VFR 结果的 *D*。 值较 Mask 方法明显较低,体现了本文方法对彩 色影像处理的优势。

由表 1 还可以看出, 尺寸在 300×300 以上的 影像,采用 Mask 方法时至少要选择 85 以上的窗 口尺寸;多尺度的变分 Retinex 算法 MR-VFR 极 大地提高了算法效率,且运算结果具有相似的质 量,当影像尺寸较小时,单尺度或较少层数的运算

(a) 原始影像

(b) Mask115光照

图 4 不同方法试验结果图 Fig. 4 Results of aerial image by different methods

(c) Mask 115

(d) MR-VFR(n=3)光照

(e) MR-VFR(*n*=3)

SII.

由两种方法获取的光照图 4(b) 和(d) 可以看 出, M ask 方法由于进行了大窗口的高斯运算, 导 致相邻的大片区域均有相同或相似的值。在加法 模型的基础上, 结果影像相当于原始影像的简单 位移, 所以细节的展现不够清晰; 反之, 窗口越小, 光照影像的细节越多, 造成结果影像的细节缺失 更严重, 不能很好地反映地物。这些主要都是由 于高斯平滑固定窗口的设置, 使得光照影像的提 取不能很好地适应影像亮度的变化。而本文所采 用的是一种基于最优化理论的方法, 在迭代的过 程中寻找出了适合每个像素的最优解。在乘法模 型的基础上, 通过在对数域的处理, 试验结果相邻 区域的增强程度有所差异, 因此细节表现更清晰, 如图 5 的局部放大图所示, 图 5(a)~(c) 对应 图 4(a)中实线框标识区域,图 5(d)~(f)对应 图 4(a)中虚线框标识区域。

由图 5(a)~(c)可以看出,对原影像灰度值 较大区域的调整, Mask 方法的结果存在明显的 模糊现象,而变分 Retinex 方法则更好地保持了 细节,人眼更容易识别。由图 5(d)~(f)可以看 出,对原亮度较亮区域的调整, Mask 方法的亮度 调整不够充分,而变分 Retinex 方法的结果更均 匀,且与暗区域的调整结果的平均亮度更接近,即 达到了更好地均衡整幅影像亮度的效果。

以上两种方法的运行时间如表 2 所示,可以 看出,在得到相似结果的前提下,变分 Retinex 方 法的运行效率明显高于 M ask 方法。

图 5 局部放大图对比

Fig. 5 Comparison of magnifying parts of the results

Tab. 2 Running time of different methods

	Mask35	M as k55	Mask85	Mask115	VFR	M R-VFR($n=2$)	$M \operatorname{R-} V \operatorname{FR}(n=3)$
运行时间/ s	39.687	103.206	300.008	442.953	214. 672	69.516	22.406

试验数据 2 来自武汉地区的航空影像, 尺寸 为 400×600, 影像在亮度上存在明显的不均, 且 整幅影像有绿色色偏, 图 6(b)、(c) 分别显示了 Mask 匀光法和变分 Retinex 方法的处理结果, 可 以看出, M R-VFR (*n*= 3) 的结果色彩更鲜明, 更 符合人眼视觉。运行速度方面, M ask 85 的运行 时间为 61-765 s. M R-VFR (*n*= 3) 的运行时间为

10.359 s, 速度明显优于 Mask 算法。

图 7 显示了图 6 中矩形框所选部分的放大结 果,可以看出, Mask 方法未消除原影像的色偏现 象,亮度较暗的区域仍存在绿色色偏,而变分 Retinex 方法的试验结果则没有色偏,整幅影像 亮度均匀,色彩和谐。本试验再次验证了 Retinex

时间为 61.765 s. M R- V FR (*n*= 3)的运行时间为 方法在保持遥感影像色彩恒常上的优势。

(a) 原片

(b) Mask 85

图 7 武汉航片局部放大图

Fig. 7 Magnifying parts of the result

4 结 论

航空航天遥感影像的亮度、色调不均匀性普遍 存在,在成图等应用前进行适当的校正是必不可少 的步骤。本文提出一种变分Retinex 遥感影像不均 匀性校正方法,在继承Retinex 方法优点的基础上, 以最优化理论为出发点从影像中寻找成像瞬间的 光照情况,适用范围广,同时可通过多尺度的数值 解法提高运算效率。利用模拟影像和真实影像进 行了试验,并与传统方法进行了比较,定量评价与 目视评估结果验证了该算法对遥感影像的有效性, 及其在运行时间和色彩保持上的优势。

参考文献:

- WANG Mi, PAN Jun. A Method of Removing the Uneven Illumination for Digital Aerial Image [J]. Journal of Image and Graphics, 2004, 9(6): 744 748. (王密,潘俊. 一种数 字航空影像的匀光方法 [J]. 中国图象图形学报, 2004, 9 (6): 744 748.)
- [2] ZHANG Li, ZHANG Zuxun, ZHANG Jianqing. The Image Matching Based on Wallis Filtering[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1999, 24 (1): 24-27. (张力,张祖勋,张剑清. Wallis 滤波在影像匹 配中的应用[J]. 武汉测绘科技大学学报, 1999, 24(1):

[3] KIMMELR, ELADM, SHAKEDD, et al. A Variational Framework for Retinex [J]. International Journal of Computer Vision, 2003, 52(1): 7 23.

(c) MR-VFR(n=3)

- [4] LAND E H, MCCANN J. Lightness and Retinex Theory
 [J]. Journal of Optical Society of America, 1971, 61(1):
 +11.
- [5] LAND E H. Recent Advances in Retinex Theory and Some Implications for Cortical Computations: Color Vision and the Natural Image[J]. Proc Natl Acad Sc U SA, 1983, 80: 5163-5169.
- [6] LAND E H. An Alternative Technique for the Computation of the Designator in the Retinex Theory of Color Vision
 [J]. Proceedings of the National Academy Science of the United State of America, 1986, 83(10): 3078 3080.
- BRAINARD D H. Bayesian Color Constancy[J]. Journal of the Optical Society of America: A, 1997, 14(7): 1393-1411.
- [8] XIA Siyu, LI Jiuxian, XIA Liangzheng. Improved Color Image Enhancement Algorithm Based on Color Constancy [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(z1): 5457. (夏思宇,李久贤,夏 良正. 基于色彩恒常性的彩色图像增强改进算法[J]. 南京 航空航天大学学报, 2006, 38(z1): 5457.)
- [9] RUIYibin, LIPeng, SUN Jintao. Images Defogging Techniques Based on Color Constancy Theory [J]. Journal of Nanjing University of Science and Technology, 2006, 30 (5): 622 625.(芮义斌,李鹏,孙锦涛.基于色彩恒常理论的图像去雾技术[J].南京理工大学学报,2006, 30(5):

© 24974-2011 China Academic Journal Electronic Publishing House. All rights reserved. (下時第598页)ki.nd

- [8] KORNUS W, ALAM ÚS R, RUIZ A, et al. DEM Generation from SPOT-5 3-fold along Track Stereos copic Imagery U sing Autocalibration [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 60(3): 147-159.
- [9] TAOCV, HUY. A Comprehensive Study of the Rational Function Model for Photogrammetric Processing [J]. Photogrammetric Engineering & Remote Sensing, 2001, 67(12): 1347-1357.
- [10] ZHANG Li, ZHANG Jixian, CHEN Xiangyang, et al. Block Adjustment with SPOT-5 Im agery and Sparse GCPs Based on RFM [J]. Acta Geodaetica et Cartographica Sinica, 2009, 38 (4): 302-310. (张力,张继贤,陈向阳, 等. 基于有理多项式模型 RFM 的稀少控制 SPOT25 卫星 影像区域网平差[J]. 测绘学报, 2009, 38 (4): 302-310.)
- [11] FRASER C S, HANLEY H B. Bias Compensation in Rational Functions for IKONOS Satellite Imagery [J]. Photogrammetric Eng. & Remote Sensing, 2003, 69 (1): 53-57.
- [12] OpenGIS Consortium. The OpenGIS Abstract Specification (Topic 7: The Earth Imagery Case) [EB/OL]. [2001 05 08]. http://portal.opengeospatial.org/files/? artifact_id= 892.
- [13] REINARTZ P, MÜLLER R, LEHNER M, et al. Accurracy Analysis for DSM and Orthoimages Derived from SPOT HRS Stereo Data Using Direct Georeferencing [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 60 (2006): 160 169.
- [14] ZHANG Zuxun, ZHOU Yueqin. Epipolar Line of SPOT Images Using Fitting Method [J]. Journal of Wuhan University of Surveying and Mapping Technology, 1989, 14(2): 20 24. (张祖勋,周月琴. 用拟合法进行 SPOT 影 像的近似核线排列[J]. 武汉测绘科技大学学报, 1989, 14(2): 20 24.)
- [15] JIANG Wanshou, ZHANG Jianqing, ZHANG Zuxun. Simulation of Three line CCD Satellite Images from Given Orthoimage and DEM [J]. Geomatics and Information

(上接第591页)

- [10] MARINI D, RIZZI A, CARATI C. Color Constancy Effects M easurement of the Retinex Theory [C] # SPIE Conference on Color Imaging: Device Independent Color, Color Hardcopy, and Graphic Arts IV. San Jose: SPIE, 1998: 249 256.
- [11] LEI Ling, ZHOU Yingqing, LI Jingwen. An Investigar tion of Retinex Algorithms for Image Enhancement [J]. Journal of Electronics(China), 2007, 24(5): 697700.
- [12] FRANKLE J A, MCCANN J J. Method and Apparatus for Lightness Imaging: US, 4384336[P/OL]. (1983-03-17)[2009-08-15]. http://www.google.com.hk/patents? id= TIU0AAAAEBAJ& printsec= abstract& zoom= 4# v = onepage& q= & f= false.
- [13] COOPER T J, BAQAI F A. Analysis and Extensions of the Frankle McCann Retinex Algorithm [J]. Journal of Electronic Imaging, 2004, 13(1): 85 92.
- [14] MARINI D, RIZZI A. A Computational Approach to

Science of Wuhan University, 2008, 33(9):943-946. (江 万寿,张剑清,张祖勋. 三线阵 CCD 卫星影像的模拟研究 [J]. 武汉大学学报:信息科学版, 2002, 27(4):414419.)

- [16] ZHANG Yongsheng, GONG Danchao. Application of High Resolution Remote Sensing Satellites model, Processing and Application [M]. Beijing: Science Publicar tions, 2004: 86 89. (张永生, 巩丹超. 高分辨率遥感卫 星应用 成像模型、处理算法及应用技术[M]. 北京:科学 出版社, 2004: 86 89.)
- [17] SAKAMOTO M, UCHIDA O, DOIHARA T, et al. De tection of Collapsed Buildings Due to Earthquake in Urban A reas [C] // ISPRS. Istanbul: [s. n.], 2004.
- [18] FISCHLER M A, BOLLES R C. Random Sample Corr sensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography [J]. CACM, 1981, 24 (6): 381-395.
- [19] LOWEDG. Distinctive Image Features from Scale Invariant Keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
- [20] YUAN Xiuxiao. A Novel Method of Systematic Error Compensation for a Position and Orientation System [J]. Progress in Natural Science, 2008, 18(8): 953-963.

(责任编辑:宋启凡)

收稿日期: 2009-12-21

修回日期: 2010-06-02

第一作者简介: 季顺平(1979一), 男, 博士, 讲师, 主要从 事高分辨率遥感影像匹配及定位研究工作。

First author : JI Shunping(1979—), male, PhD, lecturer, majors in image matching and location of high resolution remote sensing images.

E mail : jishunping 2000@ 163. com

Color Adaptation Effects[J]. Image and Vision Computing, 2000, 18(13): 1005-1014.

- [15] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and Performance of a Center/Surround Retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451462.
- [16] RIZZIA, GATTA C, MARINID. A New Algorithm for Unsupervised Global and Local Color Correction [J]. Pattern Recognition Letters, 2003, 24(7): 1663-1677.

(责任编辑:丛树平)

收稿日期: 2009-09-15

修回日期: 2010-01-07

第一作者简介:李慧芳(1985一),女,博士生,研究方向为 遥感图像质量改善。

First author: LI Huifang(1985—), female, PhD candidate, majors in quality improvement of remote sensing image. E mail: huifang lee@163.com