文章编号:100-1595(2004)03-026405

中图分类号: P237

文献标识码:A

一种从 SAR 图像中提取城市道路 网络的方法

肖志强,鲍光淑 (中南大学信息物理工程学院,湖南长沙410083)

A Method of Road Networks Extraction in Urban Areas Using SAR Images

XIAO Zhi qiang, BAO Guang-shu

(School of Info-physics and Geomatics Engineering, Central South University, Changsha 410083, China)

Abstract: A method to extract urban road network from high-resolution SAR images is presented. In high-resolution SAR images, the roads are represented as slender regions having almost constant width and reflectance. The road pixels are firstly extracted from the complex background by means of FCM. In order to make the shape of roads clear and to reduce redundant information, a thinning algorithm is applied to the results of clustering, and then a tracing algorithm is used to remove some non-road segments. Due to the speckle noise and shadow of buildings, the central lines obtained are discontinuous. By defining the gray values of the central lines as the image forces, the Snakes algorithm is used to detect the road networks. The experimental results show that the method can extract the complex road networks in urban areas from high-resolution SAR images.

Key words: fuzzy clustering; road detection; snakes; SAR images

摘 要:提出| 种从高分辨率 SAR 图像中提取城市道路网络的算法。在高分辨率 SAR 图像中,道路在空间结构上表现为| 细长的且宽度基本恒定不变的均匀区域。利用模糊 C 均值聚 类方法对高分辨率 SAR 图像进行聚类分析,将道路类像素从原始图像中分离出来。为突出道 路形状特征,减少冗余信息,对聚类结果进行细化,同时利用 跟踪算子消除短线 段;以提取道路 中心线二值图的像素值作为图像能量,应用 Snakes 模型检测道路网络。通过实际 SAR 图像 验证,该算法可以准确提取复杂的城市道路网络。

关键词: 模糊聚类; 道路探测; Snakes; SAR 图像

1 引 言

合成孔径雷达(SAR)是一种主动式微波遥感器,它克服了光学遥感受天气和光照条件的影响的缺点,可以对目标实现全天候、全天时的观测。

由于采用了脉冲压缩技术和合成孔径技术,可获 得高分辨率遥感图像。

从遥感图像,尤其是高分辨率 SAR 图像中提 取道路网络及其他线性特征的研究已成为遥感技 术应用研究中的热点之一^[1],其目的就是利用自 动和半自动提取技术为道路中心线的描述和 GIS

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2003-07-21; 修回日期: 2004-03-31

作者简介:肖志强(1976),男,湖南洞口人,博士生,主要研究方向为 SAR 图像处理、数据融合、遥感与 GIS 集成。

空间数据库的更新提供一种行之有效的方法。目 前、已有许多从光学遥感图像中提取线性特征的 方法^[2]。由于斑点噪声的影响,在 SAR 图像中直 接应用这些方法很难获得好的效果,因此有必要 研究专门的算法提取 SAR 图像中的线性特征。 Tupin 等人^[3]通过融合两个局部线性探测器的信 息获得线段集,然后在线段集上定义 Markov 随 机场连接线段形成实际道路网。文献[4]提出了 一种高精度、低时耗的 SAR 图像道路探测方法, 利用 Steger 方法从曲线结构中局部提取峰或谷. 将这些提取的曲线作为道路检测候选位置,利用 基于遗传算法的分组方法探测道路。这种方法可 以精确探测道路网络。文献[5]提出了一个包括 粗匹配和细匹配两步的自动道路探测算法, Jeon 等人利用 Water 变换和 Hough 变换提取曲线结 构,通过在提取的曲线结构上建立位场,应用 Snakes 模型探测道路。文献[6]则采用分级的方 法, 先将 SAR 图像分成林地、建筑物、道路等基本 类,由于分类后的道路像素并非彼此相互连接, Fabio 分别利用 FPCWHT, FPRT, FSPE 等方法 对分类后的道路像素进行连接形成道路网络。可 以看出,这些方法基本上都包括局部探测和全局 连接两大步骤。前者根据目标像素小邻域内的辐 射特性检测边缘或线段,后者则主要是结合某些 先验知识建立道路模型,利用 Markov 随机场、遗 传算法等方法将局部检测的线段连接起来形成满 足特定条件的道路。

本文提出了一种从高分辨率 SAR 图像中提 取复杂城市道路网络的方法。在高分辨率遥感图 像中,道路在空间结构上表现为一细长的且宽度 基本恒定不变的均匀区域。考虑到以上道路特 征,利用细化算子对聚类后的道路像素区域进行 细化提取中心线,然后由 Snakes 模型获得连续的 道路曲线。实验结果表明该算法能有效提取城市 道路网络,并且运行速度较快。

2 道路提取算法

自从 Kass^[7] 提出 Snakes 的理论框架以来, Snakes 方法在计算机图像分割,运动目标的跟踪 以及线性特征的提取等方面都有重要的应用。其 主要思想就是在感兴趣的图像特征(如边缘等)附 近设置 Snakes 模型, 然后定义一个能量函数, 它 与 Snakes 形状及其在图像中位置有关。Snakes 自动调整节点位置,使其能量不断减小, 当 Snakes

与图像特征完全匹配时能量函数取最小值,也就 是说. 在图像特征位置 Snakes 具有最小能量。通 常,总的能量包括内部能量、图像能量和外部能量 三部分, 它们分别与 Snakes 的内在属性、图像特 征性质及外部约束等因素有关。针对不同问题, 内部能量和图像能量的具体定义一般不同。例如 在图像边缘提取中,通常把图像的负梯度作为图 像能量。然而,在 SAR 图像中,由于受非高斯乘 性斑点噪声的影响,在线性特征提取中利用负梯 度及其他一些图像属性作为图像能量很难获得满 意的结果。本文针对 SAR 图像中道路特征,首先 对去噪后的 SAR 图像进行模糊聚类,将道路类像 素从图像中分离出来,形成道路类像素二值图,然 后将其细化以获得道路中心线。由于斑点噪声、 建筑物阴影等因素的影响,提取的道路中心线不 连续,同时提取的图像中包含有许多非道路的线 段,由于非道路线段相对较短,为此利用跟踪算法 去除长度小于某一阈值的线段。然后以此图像灰 度值作为 Snakes 的图像能量提取连续的道路网 络。整个算法结构如图1所示。

图 1 算法流程图 Fig.1 Overall flow of our algorithm

2.1 FCM 聚类

模糊 C 均值聚类算法是一种迭代优化的无 监督方法。设有数据集, $X = \{x_1, x_2, L, x_k, L, x_n\}$, 其中 x_k 为p 维向量。欲将 X 分为 c 类, 使 得每一类中至少包含一个样本, 将每一样本属于 某一类的程度用模糊隶属度表示。这样分类结果 可用如下 $c \times n$ 阶模糊矩阵 U 来表示

1份 胸第-75分子 (朝ha Academic Yourna) 言ectronic Publishing House. All rights reserved. http://www.cnki.net

$$\boldsymbol{U} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & L & u_{1n} \\ u_{21} & u_{22} & u_{23} & L & u_{2n} \\ M & M & M & O & M \\ u_{c1} & u_{c2} & u_{c3} & L & u_{cn} \end{bmatrix}$$
(1)

模糊矩阵 U的元素满足如下约束条件

$$\begin{array}{c} u_{i, k} \in [0, 1], \ \forall \, i, \, k \\ \sum_{i=1}^{c} u_{i, k} = 1, \ \forall \, k \\ 0 < \sum_{i=1}^{n} u_{i, k} < n, \ \forall \, i \end{array}$$
 (2)

定义如下目标函数

$$J_{\text{FCM}}(\boldsymbol{U}, \boldsymbol{V}) = \sum_{k=1}^{n} \sum_{i=1}^{c} u_{i,k}^{m} || \boldsymbol{x}_{k} - \boldsymbol{v}_{i} ||^{2} (3)$$

*J*_{FCM}(*U*, *V*) 表示各类中样本到聚类中心的加权 距离平方和。式(3) 中, *v*_i 为 *p* 维向量, 表示第 *i* 类的聚类中心; *m* ∈ [1, ∞] 为加权指数。聚类准 则为寻求最佳组对(*U*, *V*)以使 *J*_{FCM}(*U*, *V*)为取 最小值, 结合式(2)中约束条件, 可求得

$$u_{i, k} = \frac{1}{\sum_{j=1}^{c} \left(\frac{||\mathbf{x}_{k} - \mathbf{v}_{i}||^{2}}{||\mathbf{x}_{k} - \mathbf{v}_{j}||^{2}} \right)^{U(m-1)}}$$
(4)
$$\mathbf{v}_{i} = \frac{\sum_{k=1}^{n} u_{i, k}^{m} \mathbf{x}_{k}}{\sum_{k=1}^{n} u_{i, k}^{m}}$$
(5)

当数据集 *X*, 聚类类别数 *c* 和权重 *m* 都已知时, 由式(4)和式(5) 通过迭代可确定最佳模糊分 类矩阵和聚类中心。

利用 FCM 方法对 SAR 图像进行聚类分析, 聚类结果好坏将直接影响后续道路网络提取结果 的准确性。在综合考虑分类误差和计算速度的基 础上,利用像素的灰度值、像素邻域的均值和方差 等特征值进行分类。在实际计算中,像素邻域大 小为 5×5,取 *m*=1.38, *c*=4。图3给出了一个 聚类结果,图3(a)为美国 Sandia 实验室提供的原 始SAR 图像数据,图像大小为245×250个像素, 分辨率大小为1 m,主要包含华盛顿城市区域复杂 的道路网络,分别近似水平和垂直方向。利用 FCM 聚类后的道路类像素二值图如图3(b)所示。

2.2 中心线提取与跟踪

由图 3(b) 所示聚类结果可以看出, 用 FCM 系类后的道路具有一定宽度。为突出道路形状特 证 减少冗余信息,更好地提取道路中心线,我们 Pub

利用细化算子对聚类结果进行细化。细化方法以 迭代方式消除满足下列要求的点:¹ 非边界端 点;④ 不会破坏连通性的点; 四 不会导致道路过 分腐蚀的点。对于利用 FCM 聚类后的二值道路 图像,假设道路像素点的取值为 1,非道路像素点 的取值为 0。设图像中任一点的一个 3×3 邻域 内的各点分别标记为 *P*₁, *P*₂, .., *P*₉,其中 *P*₁位 于邻域中心,如图 2 所示。

P ₃	<i>P</i> ₂	P ₉
<i>P</i> ₄	<i>P</i> ₁	$P_{\rm g}$
P ₅	P ₆	P ₇

图 2 3×3领域及标记

Fig. 2 A 3×3 neighborhood and labels

具体细化算法如下: 如果 P_1 = 1(即道路像素 点), 且同时满足¹ 2 $\leq N(P_1) \leq 6$; ④ $S(P_1)$ = 1; 四 $P_2P_4P_8$ = 0或者 $S(P_2) \neq 1$; ½ $P_2P_4P_6$ = 0 或者 $S(P_4) \neq 1$, 则删除 P_1 , 即令 P_1 = 0。其中, $N(P_1)$ 是点 P_1 的 3×3 邻域中非 0 像素的个数, 即 $N(P_1)$ = P_2 + P_3 + L + P_9 ; $S(P_1)$ 是在有序序 列 P_2 , P_3 , L, P_9 中, 像素 取值发生 0~ 1 转换的 次数, 同理, $S(P_2)$ 和 $S(P_4)$ 分别表示以 P_2 和 P_4 为中心的 3×3 邻域中各像素点取值发生 0~ 1 转 换的次数。对图像中每一点重复以上步骤, 直到 所有点都不能删除为止。图 3(c)为细化所得的 道路中心线。

由于斑点噪声、建筑物阴影等的影响, FCM 聚类所得道路包含有许多非道路像素, 同时一部 分道路像素被去掉了。因此, 图 3(c)所示道路中 心线不连续, 而且有许多短线段。由道路具有一 定长度的特性, 我们利用跟踪算法将中心线二值 图中的短线段去除。具体跟踪步骤如下: ¹ 参数 初始化, 根据图像中道路的特征, 设定跟踪线段的 长度门限及各分支线段的长度阈值。在跟踪过程 中长度小于 10 的线段将被视为伪道路线段而被 去除; ④按光栅扫描方式对图像进行扫描, 寻找 图像中的道路像素点, 即像素值为 1 的点。当找 到了这样的点, 便把它作为"现在点", 并作上标 记; (四检查"现在点"的 3 × 3 的邻域, 寻找道路像 素点: ¹/4 当邻域内存在道路像素点时, 取其中一

征。减少冗余信息,更好地提取道路中心线,我们 素点;¼ 当邻域内存在道路像素点时,取其中一

个作为新的"现在点"并作上标记,而将其他点存 储起来,供以后继续跟踪,返回第(四步;½ 当邻域 内不存在道路像素点时,若存在分叉点尚未跟踪, 则该分支线段的跟踪结束,判断"现在点"至最近 分叉点的长度,当大于门限则保留该分支,否则将 其视为伪道路线段而被去除,同时取最近一个分 支点邻域内的道路像素点为"现在点",重复第(四) 步进行跟踪。若全部分支点处待跟踪的道路像素 点均已跟踪完毕,则该线段的跟踪结束,判断该线 段的长度是否大于门限,同时返回步骤④继续跟 踪;¾ 当整幅图像扫描完毕,则结束跟踪。对图 3 (④应用跟踪算子,跟踪结果如图 3(d) 所示。

(a) 原始图像 (Washington, D.C. Area Images)
(a) Original SAR image (Washington, D.C. Area Images)

(b) The road pixels

(b) 道路类

(d) Results obtained using

tracing algorithm

(c) Results obtained using thinning algorithm

图 3 SAR 图像分析

2.3 应用 Snakes 模型提取道路网络

最初由 Kass 等人引入的 Snakes 模型是用矢 量 V(s) = (x(s), y(s))表示的曲线, 其中 s 为弧 长, x、y 为图像中的曲线坐标。Snakes 模型根据 其受力 情况改变位 置和形状。通常, 作用在 Snakes 上力包括图像力、内力和外力 3 类。图像 力与图像特征有关, 在其作用下, Snakes 不断逼 近边缘、直线等图像特征; 内力使 Snakes 保持分 段光滑的特性; 外力使 Snakes 趋向于某一希望达 到的局部最小。当 Snakes 的某一节点所受各种 力的矢量和 F 不等于零时, 根据 F 的方向和幅度 大小, 节点位置发生变化。在整个过程中, Snakes 不断改变其形状, 以寻找某种最佳位置, 使其所受 各种作用力相互抵消。为了找到这种最佳位置, 将 Snakes 的状态表示为能量的形式, 对应 3 种作 用力分别有图像能量、内部能量和外部能量。 Snakes 的最佳位置, 即其所受外力相互抵消的状 态, 对应 Snakes 总能量的最小值。因此, Snakes 的最佳位置搜索问题就转化为求解总的能量函数 的最小值问题。

利用 Snakes 模型检测道路网络时, 定义总的 能量函数为

$$E = \int (\alpha(s) E_{\text{cont}} + \beta(s) E_{\text{curv}} + \forall (s) E_{\text{image}}) ds$$
(6)

式(6)中, E_{cont} 为连续性能量, E_{curr} 为曲率能 量,它们对应 Snakes 模型的内部能量。设 v_i = (x_i, y_i) 为 Snakes 上任一点, 定义该点的连续性 能量 $E_{\text{cont}} = \overline{d} - |v_i - v_{i-1}|$, 其中 \overline{d} 为相邻节点 间的平均距离,对于一个有n个节点的Snakes模 型,相邻节点间平均距离 $\overline{d} = \sum_{i=1}^{n-1} \frac{|v_{i-1} - v_i|}{n-1}$ 然,相邻两节点间距离与平均距离越接近, E cont 就 越小。因此,连续能量保证迭代过程中节点趋向 均匀分布。定义 Snakes 模型节点的曲率能量 $E_{curv} = |v_{i-1} - 2v_i + v_{i+1}|^2$, 当节点均匀分布时, E_{curv} 能给出相对合理的曲率估计值。 E_{image} 为图 像能量,通常由表征图像特征的量(如梯度幅度) 来描述。这里,我们将已提取的中心线二值图的 像素值作为迭代过程中使 Snakes 逐渐逼近道路 中心线的图像能量。设提取的道路中心线像素灰 度值为 255. 非道路中心线像素灰度值为 0。给定 任一点的灰度值f,其邻域内像素灰度值的最大、 最小值分别为 Max 与 Min, 利用(Min-f)/(Max - Min) 归一化图像灰度值。显然, 若该点为道路 像素,则 E_{image}= - 1, 否则 E_{image}= 0。也就是说, 当Snakes 模型节点与道路像素点相匹配时, Eimage取最小值。

式(6)中参数 α 、 β 和 Y 用于确定 E_{const} , E_{curv} 及 E_{image} 对总能量影响的相对大小。当某一参数 相对较大时,相应能量将在总能量中起主导作用。 例如,当 β 相对较大时,曲率能量相对比其他两 项大,在迭代过程中当总能量达到最小时, Snakes 提取道路时,适当选择离道路较近的点初始 化 Snakes 模型,利用贪婪算法迭代求取新的能量 最小的节点位置,具体步骤如下: ¹ 参数初始化, 确定总的节点数及能量函数中各系数的大小; ④对每一节点,计算其邻域内各像素点的能量, 并将该节点重新定位至能量最小的像素点; (四若 发生位置变化的节点数大于某一阈值,返回步骤 ④ ¹4</sup> 若所需移动节点数小于某一阈值,则停止搜 索,结点的连线即为搜索的最优道路。图 4 是利用 Snakes 模型检测的道路网络。从图 4 可以看出,原 始图像中主要的道路基本上都准确地提取出来。

图 4 利用 Snakes 检测的道路网络 Fig. 4 Road networks obtained using Snakes algorithm

图 5 为华盛顿城区某三角岔路口,主要包含 弯曲程度相对较大三条道路段。图 5(a)为 230× 240 个像素的原始 SAR 图像,分辨率大小为 1 m。 图 5(b) 是用文中所述算法检测的道路。显然,对 于弯曲度较大的道路,该方法同样能够将其比较 准确地提取出来。

Fig. 5 Road detection

3 结 论

高分辨率 SAR 图像中细节丰富, 加上其固有 的相干斑噪声, 使得目标背景异常复杂。本文通 过分析高分辨率 SAR 图像的道路特征, 提出了一 种提取复杂城市道路网络的算法。该算法首先利 用 FCM 对 SAR 图像进行聚类分析, 从复杂背景 中将在空间结构上具有一定宽度的道路像素从图 像中分类出来, 使问题得到简化。然后, 对聚类结 果进行细化和跟踪, 去除图像中的部分非道路线 段, 从而保证了能准确检测道路中心线。由于斑 点噪声、建筑物阴影等的影响, 获得的道路中心线 不连续。以道路中心线二值图的像素值作为图像 能量, 应用 Snakes 模型检测得到连续的、圆滑的 道路网络中心线。通过实际 SAR 图像验证, 文中 算法可以准确快速地检测复杂的城市道路网络。

参考文献:

- BONNEFON R, DHERETE P, DESACHY J. Geographic Information System Updating Using Remote Sensing Images [J]. Pattern Recognition Letters, 2002, 23(9): 1 073-1 083.
- [2] GEMAN D, JEDYNAK B. An Active Testing Model for Tracking Roads in Satellite Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(1): +14.
- [3] TUPIN F, MANGIN J F, NICOLAS J M, et al. Detection of Linear Features in SAR Images: Application to Road Network Extraction [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2): 434453.
- [4] JEON Byoung-ki, JANG Jeong-Hun, HONG Ki-sang. Road Detection in Spaceborne SAR Images Using a Genetic Algorithm [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 22-29.
- [5] JEON Byoung ki, JANG Jeong hun, HONG Ki sang. Road Detection in Space Borne SAR Images Based on Ridge Extraction[A]. IEEE International Conference on Image Processing[C]. [s.l.]:[s.n.], 1999. 735-739.
- [6] ACQUAF D, GAMBAP. Detection of Urban Structures in SAR Images by Robust Fuzzy Clustering Algorithms: the Example of Street Tracking [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2 287-2 296.