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Hyperspectral image classification and application based on
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Abstract:
sifiers precisely in the high dimensional space with limited training samples. The detail of RVM is firstly discussed based on the
sparse Bayesian theory. Then four multi-class strategies are analyzed, including One-vs-All (OAA), One-vs-One (OAO) and two

The relevance vector machine (RVM) is used to process the hyperspectral image in this paper to estimate the clas-

direct multi-class strategies. In the experiments, the multi-class strategies are compared and RVM is further compared with sev-
eral classical classifiers, including the support vector machine (SVM). The experiments show that two direct multi-class strate-
gies occupy too much memory space with low efficiency. OAA has the highest precision, but is low in efficiency. OAO is the
best in efficiency and the precision approximates to OAA. Compared with SVM, RVM is low in precision, but sparser than
SVM. The sparse property is important when the test set is large, which makes RVM suitable for classifying the large-scale hy-
perspectral image.
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1 INTRODUCTION

The high spectral resolution of the hyperspectral sensor re-
sults in huge volume data and brings out new challenge of
processing the remote sensing image. Affected by the Hughes
phenomenon (Hughes, 1968), traditional classifiers could not
be estimated precisely in the high dimensional space with lim-
ited training samples, the maximum likelihood and artificial
neural network for instance. To solve the problem, sufficient
training samples are required. The collection of the training
samples is resource-consuming and not recommended in the
applications, which calls urgently for designing the limited-
training-samples classifiers. Recent development of this field
can be roughly classified into four categories: (1) regularization
of the covariance matrix (Tadjudin & Landgrebe, 1999); (2) feature
extraction and feature selection (Kuo & Landgrebe, 2004);
(3) semi-supervised methods (Dundar & Landgrebe, 2004;
Jackson & Landgrebe, 2001); (4) low-complex classifiers (Mel-
gani & Bruzzone, 2004), support vector machine (SVM) for
instance. SVM is the best supervised learning method at present
and can deal with the limited-trainingsamples problem in the high
dimensional space. SVM maximizes the margin between
classes, contributing to minimizing the training error and guar-
anteeing the generalization ability. In addition, the margin
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maximization rule ensures that the informative samples, also
named support vectors, always appear nearby the boundary of
classes. The non-informative samples are not involved in pre-
dicting the label of the test samples, thus the solution of SVM is
sparse. However, the sparsity of SVM is not obvious in applica-
tions. The quantity of the support vectors is proportional to that
of the training samples, which has a negative impact on the
efficiency of classifying the large-scale hyperspectral image.
Additionally, SVM contains the following defects.

(1) SVM could not output the probability of the prediction.
The probability density function is desired in the applications,
which can be used to measure the uncertainty of the prediction.

(2) The grid search and cross validation methods are used to
estimate the excessive parameters of SVM. It is a waste of the
computing resource.

(3) The kernel functions must satisfy the Mercer condition.

To avoid the defects above, Tipping (2000, 2001) derived
the relevance vector machine (RVM) from the sparse Bayesian
learning theory. RVM has been widely applied in the pattern
recognition fields, including the electronic nose monitoring
(Wang et al., 2009), spam classification (Yu & Xu, 2008) and
visual tracking (Williams et al., 2005). The application of RVM
in the remote sensing community emerged in the recent two
years. Demir and Ertiirk (2007) used RVM to classify the hy-
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perspectral image. The experiments showed that RVM is
slightly worse than SVM in precision, but the sparsity property
makes it efficient in classifying the large-scale hyperspectral
image. Foody (2008) discussed the multi-class ability of RVM
and compared it with decision analysis, decision tree, neural
network and SVM. Camps-Valls (2006) retrieved the oceanic
chlorophyll concentration with RVM, to monitor the water
quality of the coast. The aforementioned researches are ex-
ploratory and leave lots of unsolved problems, including the
training efficiency, the multi-class strategies and the un-
der-fitting problem. Beginning at the sparse Bayesian theory,
we analyze the detail of RVM and discuss four kinds of
multi-class methods in this paper. In the experiments, RVM is
compared with SVM in the aspects of precision and sparsity, to
reveal its ability of classifying the hyperspectral image.

2 SPARSE BAYESIAN LEARNING

For the samples {x,,},ﬁ’zl and outputs {tn},ilvzl, the super-

vised learning algorithms estimate the function #,=f(x,) to de-
scribe the input-to-output relationship, which is further used to
predict the outputs of new samples. The outputs are real values
in regression and class labels in classification. The function
could be defined as the linear combination of the basis func-
tions in the input space.

N
y(x;w) = Za),,K(x,xn)-i—a)o @9

n=1
where K(.,.) are the basis functions and @ = {a)n}f,\/:() are the
weights. The training procedure seeks the optimal parameters
{a),,},]:[:() , which can both reveal the characteristic of the train-

ing samples and be helpful for predicting the outputs of the test
samples precisely.

The parameters determine the complexity of the function f.
If w is dense, f will be complex enough to approximate the
training samples. However, because of the noise (regression)
and overlap (classification), the approximation of the training
samples could not guarantee the predicating accuracy of the test
samples. If the over-complex system is adopted to describe
limited training samples, it will usually cause over fitting and
the prediction will be unreliable. The learning system should
match the samples in complexity. It should be neither too sim-
ple (under fitting) nor too complex (over fitting).

The sparse Bayesian learning theory derives from the statis-
tical method. It adjusts the complexity of the function by add-
ing constraint on w, such as RVM, sparse multinomial logistic
regression (SMLR) and joint classification and feature optimi-
zation (JCFO). RVM uses the automatic relevance determina-
tion (ARD) framework (Tipping, 2001). It assumes that w,
obeys the Gaussian distribution with mean zero and covariance

a, ' SMLR adopts the Laplacian distribution and solves the

multi-class problem through the multinomial logistic regression
(Krishnapuram et al., 2005). JCFO adds the constraints on both

the parameters and features (Krishnapuram et al., 2004). Except
for the sparse property, it can also select the optimal features for
the classification.

3 RELEVANCE VECTOR CLASSIFICATION

For binary classification, the outputs are either 0 or 1. The
Bernoulli distribution is adopted to construct the conditional
probability density function p(f|w) and y(x) is mapped into [0, 1]
by the Sigmoid link function. Based on the definition of the
Bernoulli distribution, the likelihood function is shown in the
following. Equations.

N
ptlo)=]r" A=y ™" )

n=l1

where t=(t, &, )", @ =@, @, @), ¥, =0 {(x,;0)}

and o(y) is the Sigmoid function.

oc(y)=1/(1+e?) 3
Calculating the derivative of Eq. (2) with respect to w, the
maximum likelihood estimation of weights can be obtained.
However, this will cause the over-fitting problem. To ensure the

generalization ability, the weights are supposed to satisfy the
normal distribution.

0,a;,") )

N
p|la)=]][ N,
n=0

Based on likelihood function and prior probability, the posterior
probability density function p(ajt, @) of @ can be obtained by
the Bayes’ rule.
twpo|la
pit|@)p@|a) )
pt|a)

where p(#ja) is the evidence function. Maximizing the posterior

plolta)=

probability, the optimal weights {a)n}fzvzo and hyperparameters

{an}”N=0 can be found. In classification, the likelihood is not

Gaussian. Therefore the posterior probability density function
in Eq. (5) is not Gaussian too and is analytically intractable.
The posterior distribution could be approximated by the Lapla-
cian method (Tipping, 2001) and the flow is as follows.

(1) The evidence function is a constant. Therefore, p(alt, a)
is linear proportional to p(fj@) p(@la) and it is equivalent to
maximize the logarithmic likelihood function in Eq. (6). The
object function is a typical least square problem. The first item
controls the fitting error of the training samples. The second
item shrinks the candidates of @ to control the complexity of
the learning system and avoid over fitting. The matrix 4 in Eq. (6)

is A=diag{ag,0q, oy} .

log{p(t| w)p(@|a)}

N
= 341, logy, +(1-1,)log(l - )} - %wTAw ©)

n=1
(2) Fix o and maximize p(ajt, @) by the iteratively re-
weighed least-squares (IRLS) method (Tipping, 2001). Calcu-
late the first and second derivative of Eq. (6) with respect to w,
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the gradient vector and Hessian matrix in Eq.(7) and Eq.(8) are
obtained. The matrix B equals diag{f, /5, -8y}, Where

B,=y, 1-y,). @ isthe design matrix, in the form of [¢(x;),

¢(x2)7"':¢(xN)]T a.nd¢(x,,) = [LK(xn’xl)vK(xil’xZ)v"'7K(xna

Xy )]T . The optimal weights @y;p can be found through Eq. (9).
g=0"(t-y)- Ao @)

H=—(@"B®D + A) ®)

oy < o'~ H'g ©

(3) Use the Laplacian method to approximate the posterior

with the Gaussian distribution N(w‘pr,Z), where X =

—H". Thus the hyperparameter & can be estimated by Eq.

o

(10), where y,=1-2%9%, and %, is the n" diagonal

element of the covariance matrix X .

(a}MP )n
Following the procedure above, @ and a are iteratively up-
dated until convergence. During the optimization, many o, have
large values and posterior probability of the corresponding w, is
zero, which guarantees the sparsity. The training samples with
small-value hyperparameters a, are the relevance vectors and
used for classification.

4 MULTI-CLASS RVM

Similar to SVM, RVM is a binary classifier and can process
the multi-class problem by the one-against-one (OAO) or
one-against-all (OAA) methods. Additionally, RVM has the
ability of direct multi-class classification. For the K-class prob-
lem, the likelihood in Eq. (2) can be extended into the standard
multinomial form (Tipping, 2001)

N K
pxl@) =[] Tt (x;00)1 1n
n=1k=l1
where the “one-of-K” coding method ¢, = (0,0,~~,1,~~,0)T is

used for the sample x,. If x, belongs to the ™ class, the & ele-
ment of ¢, is 1 and the rest are set 0. The classifier has K deci-

sion functions {y,}& ;. Each function owns private weights

vector @, and hyperparameters vector a;. Eq. (11) is not the
true likelihood, because the sum of the probabilities of any
sample belonging to each class does not equal one.

K K
> p(x, @) =D oy (x, )} %1 (12)
k=1 k=1

The problem can be solved by the multinomial logistic regres-
sion (Foody, 2008). The likelihood is rewritten

N K .
Y exp iy, (x,i0,))
p=1

The multi-class RVM methods also use the hyperparameter
a to constraints the weights @ and the optimizing procedure is

similar to the binary. For the likelihood in Eq. (11), the poste-
rior probability of @ can be derived by Eq. (5). The maximiza-
tion of the posterior distribution is equivalent to maximize

log{p(t| @)p(@| @)}

N K 1 T
=ZZtnklogynk—Ea) Ao+ C
n=1k=1

(14)

where y,; =o{y (x,;m;)}, C is the constant unconcerned
with @, the vector £ is (¢, 80 ,--.t)" and #, = (to;. 1y
XN S\ )T . The structure of @ and a are similar to 7, the matrix
diag(A4y, -, Ax)

Calculating the derivative of Eq. (14), the first and second de-
rivative of the object functions are

g=Y(t-y)-Aw (15)

A equals and A, =diag(ag, -.an) -

H=—¥"BY + 4) (16)
The structure of y is the same as ¢. The matrix B is equals to
diag(By,---Bg) and each element By is diag{y;, (1-yy;),

< Yk (L= Y)Y - Yur 1s calculated by the sigmoid link function
o{y;(x,;@;)} . The design matrix is extended into ¥ = diag
(D, -, Py), where @, =@ . Based on the gradient and Hes-

sian matrix, the optimized @ can be obtained by Eq. (9) and the
hyperparameter a is updated by Eq. (10). The procedure is re-
peated until convergence.

The flow of multi-class RVM based on the multinomial lo-
gistic regression is basically the same as that using Eq. (11).
The difference only exists in the structure of B and y. The ma-
trix B is

B, B, - By
B B . B

R (17)
By, By, -+ Bgg

where Bj; equals diag{y;;(0; — »1;)s---»¥ni(P; —yn;)} and

Yk 18

- Kexp (i (x5 0} (18)

D exp{y,(x,:0,)}

p=1
where k=i,j. If i=j, p;=1. Otherwise, p;=0. The multi-class
RVM derived from Eq.(11) and Eq.(13) are named the binary
logistic regression (BLR) and multinomial logistic regression
(MLR).

5 EXPERIMENTS

5.1 Data description

The hyperspectral image of Indian Pine in Indiana State,
USA (AVIRIS, 1992) is used to test the methods. The image is
collected by the Airborne Visible/Infrared Imaging Spectro-
meter (AVIRIS) in 1992. The region contains sixteen kinds of
substances, seven of which have too few samples and are not
used in the test. 200 bands remain after eliminating the water
absorption and low SNR bands. Nine typical classes have 8489
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samples, as shown in Fig.l and Table 1. Several classes are
similar in the spectrum and hard to separate, three kinds of
soybeans and two kinds of corn for instance. The image is a
standard data and has been widely used to test the feature ex-
traction and classification algorithms. The radius basis function
(RBF) kernel, superior to the linear and polynomial kernels, is
adopted as the basis function of RVM. The experiments are
carried on a HP server, containing one Xeon 5110 processor
(dual core, 1.6 G) and 2 G memory. The following two parts are
carried out in the experiment.

(1) OAA, OAO, BLR and MLR are compared in the aspects
of precision, sparsity and efficiency. The multi-class methods
are implemented based on the Sparse Bayesian V1.1 package.

I -
N cs
I

c6
B cs
B

c3
B c:
=

®)

Fig. 1 Pseudo-color picture and typical classes distribution of
the Indian Pine test site
(a) Pseudo-color picture of band 24-12-5; (b) Distribution of nine
typical classes

Table 1 Information of the typical classes in Indian Pine
Class Type Number of samples

Cl Corn-notill 1265

C2 Corn-min 728

C3 Grass/Pasture 449

C4 Grass/Tress 671

CS Hay-windrowed 456

C6 Soybeans-notill 849

Cc7 Soybeans-min 2268

C8 Soybeans-clean 577

c9 Woods 1226

(2) RVM is compared with radius basis functions neural
network (RBFNN), K-nearest neighbor (KNN) and SVM in the
aspect of precision and sparsity. RVM is implemented based on
Sparse Bayesian V1.1, KNN and RBFNN are realized by the
knnclassify and newrb functions in Mathlab, and libsvm-2.89
package is adopted for SVM.

5.2 Multi-class methods

The four methods are compared in precision, sparsity and
efficiency. The memory consumption of BLR and MLR is
O(K*N?) and the time complexity is O(K°N?). K is the number
of classes and N is the quantity of the training samples. BLR
and MLR are inefficient for large K and N, thus fewer classes
and samples are first used to test the methods. Four classes are
selected, including Corn-notill, Soybeans-notill, Soybeans-min
and Woods. They have more samples than the rest and the crops
are hard to separate. We choose 2.5%, 5% and 10% from each
class for training respectively. The width § of the RBF kernel is
estimated by the 5-Fold cross validation method. The result is
shown in Table 2, where OA stands for the overall accuracy.
OAA and BLR are the same in precision, better than the others
and MLR is the worst. The methods are close in sparsity, as are
all sparse. OAO is the best in efficiency, followed by OAA.
BLR takes the third place and MLR is at the bottom. OAO
carries out K(K-1)/2 times binary RVMs, which processes fewer
samples each time. OAA only needs K times binary RVMs, but
each classifier deals with more samples. Therefore more con-
sumptions are involved. It is better than OAO only when deal-
ing with the fewest training samples (2.5%). The time complex-
ity of BLR and MLR is O(K°N*), K* times that of OAA. BLR
replaces matrix multiplication by dot product when computing
Hessian matrix and the time consumption is saved.

Affected by BLR and MLR, the classes and samples above
are not sufficient, thus the conclusion is unreliable. All nine
classes of the Indian Pine test site are used to further compare

Table 2 Performance comparison of OAO, OAA, BLR and MLR

Ttems 2.5% 5% 10%
OAO OAA BLR MLR OAO OAA BLR MLR OAO OAA BLR MLR
OA 0.77 0.80 0.80 0.76 0.82 0.86 0.80 0.86 0.88 0.88 0.85
RV 32 30 29 48 52 60 63 70 90 81 85
Time/s 59 5.45 21.0 53.1 7.9 78.1 231.1 219 62.6 488.4 1172.8
g 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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OAO and OAA. Table 3 gives the result. The percentage in the
table represents the ratio of the training samples to the total in
each class. The width B of the RBF kernel is estimated by the
5-Fold cross validation method and listed in the last row. OAA
acquires higher precision, but OAO is better in efficiency, par-

ticularly in the large-training-set circumstance (more than 10%).

The efficiency of OAA is acceptable only when the ratio is less
than or equal to 10%. The Hessian matrix of OAA takes too
much memory when the ratio reaches 40%, leading to memory
overflow. Additionally, once the ratio exceeds a limit, the Hes-
sian matrix of OAA may be ill-condition and the algorithm is
terminated.

Table3 Performance comparison of OAO and OAA

Ttems 10% 20% 30% 40% 50%
OAO OAA OAO OAA OAO OAA OAO OAA OAO OAA
OA 0.81 0.85 0.87 0.89 0.89 0.91 091 0.92
RV 202 165 266 242 326 306 379 Memory 446 Memory
Time/s 82.3 238.4 313.5 1707.1 588.1 47423 1291.6 Overflow 1700.8 Overflow
g 0.5 0.25 0.1 0.25 0.1 0.25 0.1 0.25

Summarizing the results above, the following conclusions
are given.

(1) BLR and MLR are inefficient, and have no advantage in
precision and sparsity. In a word, the two direct multi-classes
methods are not recommendable.

(2) OAO is best in efficiency and OAA is best in precision.
For fewer training samples, OAA is preferred for the higher
precision. Once too many samples are involved, OAA is ineffi-
cient and may cause ill-condition Hessian, thus OAO is rec-
ommended.

5.3 Compared with SVM, KNN and RBFNN

In this experiment, RVM is compared with several classical
hyperspectral classifiers in precision and sparsity, including
SVM, RBFNN and KNN. First, 50% samples of each class are
used to compare the performance of the methods. Based on the
result in section 5.2, OAO is adopted to construct the
multi-class RVM for its best efficiency. The parameters of
RVM, RBFNN and SVM are optimized by the cross validation
method.

The results are given in Table 4. The performance of RVM is
better than KNN, equal to RBFNN and only a slightly worse
than SVM. Same as the others, RVM exhibits better perform-
ance for the easy-to-separate classes, including C3, C4, C5 and
C9. For the hard-to-separate classes C1, C2, C6, C7 and C8, the
misclassified pixels increase. For the five kinds of hard-to
separate crops, RVM is inferior to SVM, especially at C2 and
C6. However, it is comparable or better than RBFNN and KNN
in the circumstance. Fig.2 shows the phenomena vividly. The
misclassified pixels concentrate at the crops. SVM has the few-
est misclassifications, and RVM is close to RBFNN.

Table 4 Compare RVM with SVM, KNN and RBFNN, 50% for
training, 50% for test

Accuracy of Each Class
Method OA
cl €2 €3 €4 C5 C6 C7 C8 C9
RVM | 092 0.83 095 099 099 0.84 088 092 099 | 0.92
SVM [ 093 093 099 1.00 1.00 090 092 096 099 | 095
KNN [0.70 0.73 094 099 1.00 0.77 082 0.66 096 | 0.83
RBFNN| 0.89 0.78 095 1.00 1.00 0.84 091 093 098 | 0.92

L

W

l‘:'

©

@

Fig.2 Classification images of RVM, SVM, KNN and RBFNN, 50% for training in each class
(a) RVM; (b) SVM; (c) KNN; (d) RBENN
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Fig.3 compares the sparsity of RVM and SVM under different
quantity of training samples. It is obviously that the relevance
vectors (RV) is far less than the support vectors (SV), especially
for the 50%-training-sample case. RV and SV decrease as long as
less training samples are involved. SV decreases dramatically, but
it is always more than RV. In the prediction of the test points,
only RV and SV are involved. The less the RV or SV are, the
faster the prediction takes. Therefore, RVM is more efficient in
predicting the large-scale hyperspectral data set. The quantity of
SV and RV can be explained from the theorem of the algorithms.
SV mainly appear around the decision boundary or at the mis-
classified region. The overlap between different classes of the
Indian Pine test site is severe. Therefore, lots of samples are at the
decision boundary, resulting in more SV. RV reflects the intrinsic
information of the training samples, which are far away from the
decision boundary. Compared with the boundary samples, the
intrinsic samples are fewer. Therefore, RVM is sparser than
SVM.

1600

I RVM
1200 B SVM
>
wn
S 800 b
a4
400 |
0 . . .
10 20 30 40 50

Training Samples/Total/%

Fig. 3 Compare RVM with SVM in sparsity

Summarizing the result above, the following conclusions are
extracted.

(1) For the easy-to-separate problem, the accuracy of RVM
is comparable to SVM, RBFNN and KNN. For the
hard-to-separate problem, RVM is slightly worse than SVM,
close to RBFNN and superior to KNN.

(2) RVM s sparser than SVM. In the prediction of the
large-scale hyperspectral image, RVM is more efficient. Krish-
napuram (2005) pointed out that the ARD framework always
prefers simple models, which guarantees the sparsity. The phe-
nomena may cause the under-fitting problem, thus decrease the
classification accuracy of RVM. The conjecture may explain
why RVM is a slightly worse than SVM in the accuracy. It needs
to be verified through theorem and experiments in the future.

6 CONCLUSIONS

RVM is applied to analyze the hyperspectral image in this
paper, to establish a high-precision classifier in the high dimen-
sional space with insufficient training samples. Beginning at the
sparse Bayesian theory, the detail of RVM is analyzed and the
multi-class methods are discussed. In the experiments, OAO,
OAA and two direct multi-class methods are compared and
RVM is further compared with SVM, RBFNN and KNN. The
experiments show that BLR and MLR occupy too much mem-
ory and are inefficient, which make them not suitable for the
real applications. OAA is best in precision, but inefficient when

more training samples are involved. OAO is worse than OAA
in precision, but it is more efficient and preferred for the
aforementioned case. The accuracy of RVM is slightly worse
than SVM. However, its solution is sparser and the prediction is
faster when more test samples are involved. Generally, RVM
can acquire good performance in the high dimensional space
with limited training samples. Additionally, its solution is
sparse, suitable for the classification of the large-scale hyper-
spectral image.
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