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Shape feature representation of ground objects from high-resolution

remotely sensed imagery base on Fourier Descriptors
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Abstract:

The traditional Fourier Descriptors (FDs) are normalized in this paper to make it independent of translation,

rotation and scale changes. Four typical objects i.e. building, paddy, road and river are selected and their boundaries are
expressed as sequences of complex numbers. FDs are obtained through one-dimensional Fourier transform. The characteristics
of the frequency spectrum, contribution rate and the shape reconstruction are analyzed. The results show that the different
frequency ranges have different contribution rates; the Direct Component (DC) reaches a proportion of more than 70%; the Low
Frequency (LF) and High Frequency (HF) totally reach 7%~24% while the Medium Frequency (MF) merely 2%—4%. The LF
components (descriptors 1-—5) make a commendable reconstruction of objects’ shape and these descriptors are applied to the
object-oriented classification. The overall classification accuracy is 98.48% with a Kappa coefficient 0.9714.
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1 INTRODUCTION

High resolution remotelysensed image segmentation
techniques automatically classify the neighboring pixels into
the meaningful regions based on homogeneity or heterogeneity
criteria respectively. These meaningful regions are called image
objects. Multi-features such as spectrum, texture, shape, and
topology are needed to be extracted and represented so that they
can be used for improving the accuracy of the succeeding
object-oriented classification. Shape is an important visual

feature among the multi-features obtained from the image

objects (Pierce, et al., 1994; Luo, et al., 1999; Benz, et al,, 2004,

Huang, et al., 2007; Zhang, et al., 2008). Methods of shape
presentation in current research or softwares are mainly based
on some indexes such as area, aspect ratio, compactness ratio
(Chen, et al., 2006), roundness and convexity (Werff & Meer,
2008), shape index (Wei, et al., 1999, Chen, et al., 2004).
Fourier Descriptors (FDs), advanced by Cosgriff in 1960, is
a method that belongs to contour-based shape techniques. FDs
refers to the coefficients of Fourier transform of objects’
boundaries (Wang, et al., 2002). The boundary of an object can
be counted as a discrete complex function of periodic signal,
and one-dimensional Fourier transform can convert this
function from spatial domain in to frequency domain. Since it
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was used for shape description of planar closed curve, lots of
applications have been attempted in many different fields. The
examples of FDs used in image processing field include hand
gesture recognition (Feng, ef al., 2003; Liu, et al,, 2005; Ge, et
al., 2005), gait recognition (Stuart, et al., 2003; Cheng, et al,
2008), image matching (Govindu, et al, 1998; Duan, et al.,
2008), image retrieval and classification (Rui, et al, 1998;
Wong, et al, 2007, Yadav, et al, 2007). However, the rare
research can be seen for applying this method for shape
representation of remotely sensed imagery.

The high resolution IKONOS multispectral imagery is used
as data source. After normalization, FDs are used to represent
the shape feature of the four kinds of objects as follows:
building, paddy, road and river. Characteristics of the frequency
spectrum, contribution rate and shape reconstruction are anal-
yzed. The shape parameters finally used in the object-oriented
classification based on decision tree and high accuracy is
obtained.

2 THE PRINCIPLE OF FDs

A digital boundary with X points is shown in Fig.1. Take an
arbitrary point as starting point, the coordinates (xo, Yo), (X1, y1),

(%2, ¥2), ***» (-1, ¥ 11) represent a series of boundary points
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Fig. 1 A digital boundary

and these coordinates can be expressed as x(k)=x;, y(k)=y.
Therefore, the digital boundary itself can be represented as the
sequence of coordinate s(k)=[x(k), y(k)], for £=0,1,2,"**,K-1.
Moreover, each coordinate pair could be treated as a complex
number so that s(k)=x(k)+jy(k), for k=0,1,2,--<,K~1. A 2-D
problem is reduced to a 1-D one.

According to the principle of Fourier transform for single
variable discrete function (Gonzalez and Woods, 2002), the
Discrete Fourier Transform (DFT) of s(k) is:

aw)=— Y stk 2mr /K 1)
k=0

where u=0,1,2,---,K—1. The complex coefficients a(u) are called

the FDs of the boundary. Likewise, the inverse Fourier

transform of a(u) is:
K-1
S(k)= Z a(uijHMk/K (2)

u=0
where & =0,1,2,--*,K—1. Furthermore, suppose that instead of all

the Fourier coefficients, only the first Lcoefficients are used,
and the inverse Fourier transform is the following expression:

L-1 .
(k) = Z a(u)eﬂnuk/K (3)
u=0

where k =0,1,2,-*,K-1. Although there are merely L terms to

calculate each element of s(k), the range of value of k remains
to be 0 to K-1, that is to say, the number of points in the
approximate boundary is the same as in the original one, but as
for the reconstruction of each point, only the first L coefficients
are chosen. The more coefficients used, the more approximate
for the landscape to the original boundary because lower
frequency descriptors represent general information of the
shape and the higher frequency the details in Fourier domain.

3 NORMALIZATION OF FDs

A good shape descriptor must be insensitive to translation,
rotation and scale changes (Zahn & Roskies, 1972), and this
anti-sensitivity is especially important for shape feature
representation of ground objects from remotely sensed imagery.
Though they are similar in shape, the different objects with the
same ground feature may have different scales or directions.

Comproving roads and buildings, roads are similar-appearing
but different in directions, buildings are mostly rectangle-like
but the size and directions of those rectangles are always
different. Therefore, FDs should be normalized in order to
make it insensitive to translation, rotation and scale changes.
Fig.2 are used to explain the translation, scale changes and
rotation of the boundary in Fig.1.

(d)

()

Fig.2 Translation, scale changes and rotation
(a) Original shape; (b) Translation; (c) Scale changes; (d) Rotation

As shown in Fig.2(b), s(k) changes into t+s(k) after ¢ units
(t=Oc+jdy) transfering, and the Eq.(1) changes into the
following equation:

K-1 ,
au) =-IlZ Y [+ skyIxe S 2kIK )
k=0

Eq.(4) can be reduced to Eq. (5):
K-1

au)=au)+ Z txg amkiK 5
k=0
K-
where u=0, a(0)=a(0)+ Z txex0=Krt , while for u>0,
k=0
K-l _
() =a(u)+ Z txe 2K = o(4) +0=a(u) . It can be seen
=0

from this that translation is only related to #=0, so the Oth
coefficient or rather the Direct component (DC) should be
excluded to eliminate the effect of translation.

As shown in Fig.2(c), the original shape is enlarged
for m times, or s(k) is multiplied by factor m, then Eq.(1)
changes into the following equation:

6(u)=i1(il[me(k)]xe_j2Mk/K
Ko
=mlez_:ls(k)xe—j2’wk/K
K k=0
=mXa(u) (6)

It can be seen from Eq.(6) that a(x) has been enlarged
for m times. Here, suppose there is another shape which is

a(u)

multiplied by factor n, then 5(u)=n><a(u) , SO
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Therefore, in order to make it independent of scale changes,
FDs should be divided by the absolute value of the Oth
coefficient.

As shown in Fig.2d, s(k) changes into e/s(k) after angle
@ rotation. According to the property of one-dimensional
Fourier transform, only the phase information is influenced by
rotation, so after doing modular operation to all the coefficients,
the effect of rotation can be eliminated. The following research
is based on the normalized FDs that have been dealt with
through the above three steps.

4 SHAPE FEATURE ANALYSIS OF GROUND OB-
JECTS BASED ON FDs

Four objects i.e. building, paddy, road and river are selected
as the research objects, the boundary of each object are
obtained by image segmentation. Fig.3 shows the boundary
contours of the four objects. Shape feature analysis is done
through the following three aspects: Characteristics of the
frequency spectrum being obtained using FDs, the contribution
rate of FDs with different frequency ranges, and shape
reconstruction with a certain coefficient.

)

() (b)
© @

Fig. 3 Boundaries of the four objects
(a) Building; (b) Paddy; (c) Road; (d) River

4.1 Characteristics of the frequency spectrum

According to the principle of FDs and the process of
normalization explained above, the boundary coordinates of the
four objects are represented as sequences of complex numbers,
which are then transformed using DFT. These complex
coefficients are all called the original FDs, which are dealt with
using the following three steps to make them insensitive to
translation, scale changes and rotation as follows.

Step 1 The original complex coefficients are being MOD

malized by dividing the Oth Fourier coefficient;

Step 3 The Oth Fourier coefficient is thrown away and only
coefficients from the 1th were chosen. Here, the value of the Oth
coefficient equals to 1 because of the normalization in step 2.

According to Eq.(3), suppose L indicates the first L terms of
FDs (L begins with 0) , take L as horizontal axes and magnitude
as vertical axes, the frequency spectrums of the four objects’
boundaries are drawn in Fig.4. It should be noted that the Oth
coefficients are still in the spectrums, as is for the purpose of
making it more clearly for readers to understand. Fig.5 shows

the comparison between the four when only the first 1—15

terms are used. Some characteristics can be obtained according
to Fig.4 and Fig.5:

(1) The consistency between Low Frequency component
(LF), Medium Frequency component (MF) and High Frequency
component (HF): It can be seen from Fig.4 that the distribution
of LF, MF and HF of the four objects are roughly the same. LF

is mainly located in 1<XL<5, which can also be verified from

Fig.5; After that, with the increase of L, the magnitudes equal to
almost zero until the last several nonzero coefficients of high
order, and this Almost Zero part is called MF, whose
contribution to shape feature is very few; HF is mainly located
in K—-6<L<K-2, that is to say, the last 2—6 terms. In addition,

there is a cocked “tail” in the spectrum when L=K-1, which has

nothing to do with object’s shape but owing to the influence of
the zig-zag of raster image. So it is just thrown away in the
following analysis.

(2) The similarity between spectrums of shape-identical
objects: Building and paddy are both rectangle-like, it can be
seen from Fig.4(a) and Fig.4(b) that the numbers of these two
boundaries are both between 0 and 210, and the maximum
magnitudes are both between O and 0.05 except the DC
components; Road and river are both slender in shape and have
greater elongation, the numbers of boundaries are between 0
and 510, and the maximum magnitudes are both between 0.14
and 0.2 except the DC components.

(3) The unlikeness between spectrums of spectrally identical
objects: A common challenge in remote sensing is the
classification of objects spectrally similar but represents
physically different types of ground cover, such as building &
road, or lake & river. Take building & road as an example, it
can be known from the above analysis that the two have
obvious differences in the numbers of the boundaries, or in the
magnitudes. Therefore, it is feasible to distinguish the spectrally
identical objects using shape-based method.

(4) The reducibleness of the spectrum: it has already been
mentioned in Section 2 that only the low-order coefficients are
enough to capture the gross shape. Meanwhile, Fig.3 shows that
the shape of image objects are often very complex with lots of
details. There are hundreds of points to form the boundaries,
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Fig.4 Fourier Spectrums of the four objects
(a) Building; (b) Paddy; (c) Road; (d) River
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Fig. 5 The first 1—15 FDs of the four objects

howerver the general shape turns out to be regular. For example,
roads are slender while buildings are mostly rectangle-like;
rivers are curving and slender while lakes are mainly short and
ellipse-like. Paddies are usually regular rectangle-like and have
large areas. As a result, the numbers of FDs can be reduced and
only the gross information is used to distinguish different kinds
of ground truth.

4.2 Contribution rate

The frequency spectrums of the four kinds can be divided
into four frequency ranges according to the characteristics: DC
(L=0), LF (1<L<S5), MF (6<SL<K-7) and HF (K-6<L<

K-2). The Contribution rate (Cr) of FDs with the different

frequency ranges can be defined as Eq.(7):
K=2
Cr,=MagZ;| Y MagZ, )
L=0
where Cr; represents the Cr of the L th FD while MagZ,
represents its magnitude, 0SS L<K-2.

Table 1 The contribution rates of different frequency ranges

object

building  paddy  road river
Frequency

DC 0 88.73 8757 71.87 8071
1 423 1.68 1339 11.82
2 0.60 0.85 0.76 0.00
3 091 1.82 1.32 1.16
LF 4 0.14 0.12 0.54 0.03
5 041 032 0.02 033
total 6.29 479 16.03  13.34
MF 6—(K-T) 285 497 4.60 i
HF K6 0.17 028 047 004
K-5 0.06 051 1.39 0.76
K4 0.18 0.10 0.82 0.03
K-3 141 0.55 364 1.99
k-2 0.31 123 1.18 0.02
total 2.13 267 7.50 2.84

The calculated Cr is shown in Table 1. In the table, The DC
component has the highest Cr with more than 70% for each
object, and the Cr of building has even reached 88.73%; The LF
and HF components have the second highest Cr with 7%—24%,
take road as an example, whose Cr of LF is 16.03% and HF
7.5%; On the other hand, The MF component get the lowest Cr
with merely 2%—4%, despite of its hundreds of points. In
addition, because of its relation to translation of the shape, the
DC component is neglected, and the HF component is also
neglected due to its only representing the details of the shape. It
can be seen from Fig.5 that only the LF component is enough to
distinguish those spectrally identical objects, that is to say, only
the LF is applied to represent the shape feature of ground object
from high-resolution remotely sensed imagery.
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4.3 Shape reconstruction

The results of shape reconstruction with different values of
L are shown in Fig.6. As for Fig.6(a), 6(b), 6(c) and 6(d), the
first figure in the top left corner stands for the original shape,
and the succeeding nine figures stand for the results of shape
reconstruction when L equals 0, 1, 2, 3, 4, 5, (K-2)/4, (K-2)/2
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Fig. 6 Shape reconstruction with different values of L
(a) Building; (b) Paddy; (c) Road; (d) River

and (K-2), respectively. The results show that all of them

become perfect circles when L=0 because the DC components
represent mean values. The four reconstructed shapes become
smooth ellipses when L=1 with different flattening, building

and paddy have a smaller flattening than road or river; With the
gradually increasing of L, the reconstructed shapes become
closer to real ones, and they have got a perfect alikeness till

L=5 except for some details. The results of details reconstruc-
tion using MF and HF are shown when L equals (K-2)/4, (K-2)/2
and (K-2), respectively, and the recurrence of shapeoccurs

when L= K-2.

5 APPLICATION IN OBJECT-ORIENTED CLAS-
SIFICATION

5.1 Classification of IKONOS multispectral image

The very high resolution IKONOS multispectral image with
acquisition date of May 12, 2000 is considered, which covers
some area of Nanjing (118°46'E, 32°03'N), Jiangsu province,
China. The product number is 21249 and the size of the
multispectral data is 1751 columns by 1751 rows pixels. The
image has a good quality with cloudless condition. A test area of
476x443 pixels is chosen for classification based on decision
tree. Fig.7 is pseudo color image and Fig.8 is the segmented
image.

Convolve the segmented image with each band of the
multispectral image so as to obtain the range of each object in
each band, and then the mean gray values of each object in each
band is calculated. The results are stretched into 8bit images.
The image filled by mean gray values is shown in Fig.10. In the
original order, band blue, green, red and NIR are marked as
band G1, G2, G3 and G4, respectively; The FDs of each object
in Fig.8 are calculated and the 1—>5th FDs that stand for LF are

Fig. 7 The original IKONOS image

Fig. 8 Results of image segmentation
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intercepted. These FDs are then evaluated to each object to
form another five 8bit images, which are marked as band §;, §;,
83, S4 and Ss; Band GI, G2, G3, G4, S|, S5, S5, Sq and S;s are
stacked to form a new image which is used to build the decision
tree (Fig.9). Here, shadows of buildings are divided into an
independent class because of their spectrally similarity to water.

No Yes
l building & road l [ shadow & water J

| s> |
No Yes No Yes
[ building Ir road 4[ r shadow JLwater J

Fig.9 The decision tree

[ Gasososes)>sn |

Firstly, the image is divided into two classes based on
NDVI—vegetation and non-vegetation; Then, the non-vege-
tation areas are divided into building & road, shadow & water
based on values of NIR (G4); Finally, the spectrally identical
objects i.e. building & road, shadow & water are distinguished
by using the five bands S, S5, S5, S5 and Ss. It needs to be
pointed out that the threshold values in the decision tree are all
stretched into 0—255 and cannot be used directly in other
images or test areas. The final classification results are shown
in Fig.11. Colors representing different classes are explained in
Fig.9. For comparison, another classification model that
involves only the mean gray value is established as a control
group, whose clustering results are shown in Fig.12. It can be
seen from Fig.12 that building & road, shadow & water cannot
be classified correctly.

5.2 Assessment of accuracy

Qualitatively speaking, the spectrally identical objects are

Fig. 10 Image filled by the mean gray values

mainly clustered with the help of FDs in the classification.
Because of its insensitivity to translation, rotation and scale
changes, the normalized FDs can well describe shape feature
despite of the objects’ difference in location, size or direction.
For example, although different buildings have different sizes,
geopolitical locations and arrays, they are all parallel] to regular
rectangles of a certain aspect ratio, and this coherence can be
better represented using FDs. Besides, from the reconstruction
results of building and road in Fig.6, we can see that both of the
reconstructed images are parallel to regular rectangles when
L=5, but the both can be clustered respectively according to
their different aspect ratios, which can be expressed in band §;
of the decision tree in Fig.9. In Fig.11, some wrongly classified
objects are marked out with the white squares. The far right
square shows an object of shadow that is wrongly classified
into water because of its shape-alike with river. In the same way,
a water object is classified into shadow because it is split when
choosing the test area, also a building object in the far left
square is wrongly classified into road because of its slender in
shape.

Quantitatively speaking, the assessment was done using

Fig. 11 Classification results

Fig. 12 Classification results of the control group

confusion matrix and image object is take as minimum
assessment unit. The confusion matrix and the Kappa coef-
ficient are shown in Table 2: the overall classification accuracy
is 98.48% and the Kappa coefficient is as high as 0.9714, just as
the analysis above, this is an accuracy that models relying only
on spectral feature could not achieve. Thus it can be seen that the
accuracy of the classification can be better improved when
adding shape information into classification model, and the FDs
of LF component can well represent the shape feature of ground
objects in remotely-sensed imagery.

Table 2 Confusion matrix and Kappa coefficient

the ground truth
vegetation building road water shadow producer
accuracy/%
classification results
vegetation 184 3 0 0 0 98.40
building 5 542 0 0 0 99.09
road 0 1 2 0 0 66.67
water 0 0 0 6 2 75.00
shadow 0 0 0 2 111 98.23
user accuracy/% 97.35 9927 100 75.00 9823 —
overall classification accuracy =845/858 = 98.48%
Kappa =0.9714
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6 CONCLUSION

In conclusion, FDs is introduced to represent shape feature of
ground objects from the high-resolution remotely sensed
imagery, after normalization, shape feature representation is
discussed in the Fourier frequency domain. Building, paddy,
road and river are chosen, and characteristics of the frequency
spectrum, contribution rate and shape reconstruction are analy-
zed. Finally the 1—5th FDs that stand for LF are applied to the
object-oriented classification of the test area. The conclusions
are as follows: (1) the DC reaches the highest contribution rate
to shape with a proportion of more than70%, the LF and HF
totally reach 7%—24% while the MF merely 2%—4%;
(2) Only the LF components (descriptors 1—S5) is enough te
make a commendable reconstruction of objects’ shape. The DC
component is thrown away because of its relation to translation,
and the HF and MF components are also not adopted; (3) The
1—>5th FDs are applied to the classification model using
IKONOS multispectral image of Nanjing, and the overall
classification accuracy is 98.48% with a Kappa coefficient
0.9714. Applications of shape feature representation using FDs
in object-oriented classification can be further explored.
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