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New method for solving high accuracy surface modeling
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Abstract: High accuracy surface modelling (HASM) constructed based on the fundamental theorem of surface is more accu-
rate than the classical methods, but the computational speed of HASM is proportional to the third power of the total number of
grid cells in the computational domain. In order to decrease the computational cost and improve the accuracy of HASM, this
paper employed a modified Gauss-Seidel (MGS) to solve HASM. The fact that MGS is more accurate and faster than GS is
proved in terms of theorem. Gauss synthetic surface was employed to comparatively analyze the simulation errors and the com-
puting time of MGS and GS. The numerical tests showed that under the same simulation accuracy, MGS is faster than GS, and
the time difference between MGS and GS is approximately proportional to the second power of the total number of grid cells.
Under the same outer or inner iterative cycles, MGS is more accurate than GS. The computing time of MGS is proportional to
the first power of the total number of grid cells. Compared with the direct methods for solving HASM, MGS greatly shortens the
computing time of HASM. SRTM3 (36°—37°N, 107°—108°E) of Dongzhi tableland located in Gansu province was employed
as a real word example to validate the accuracy of HASM based on MGS. In the example, about 50% of SRTM3 was used as
validation points, the others for DEM simulation. The results indicated that RMSE of HASM based on MGS is about 2.4, 1.8,
1.3, 2.7 times less than those of KRIGING, IDW, TIN and NEAREST.
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1 INTRODUCTION

The computational process of high accuracy surface model-
ling (HASM) has been mature in terms of theory (Yue & Du,
20006). It can be divided into three processes including the coef-
ficient matrix formulating of Gaussian equation, sampling
equation formulating and solving the linear system of HASM.
When the computational domain is regular and the sampling
equation has one order truncation error, the solving method of
HASM equations has an effect on its computational efficiency
(Al-Kurdi & Kincaid, 2006, Yue et al., 2007). Former re-
searches indicated that the computational cost of the direct
method for solving HASM is proportional to the third power of
the total number of grid cells, which seriously influences its
wide application (Yue et al., 2007).

The iterative method has been accepted as an efficient
method for solving huge linear system (Saad, 2003). One of
those methods is Gauss-Seidel (GS), which only needs few save
volume, especially for solving huge sparse one (Bramble &
Pasciak, 1992; Ujevi¢, 2006). But the convergence speed of GS
is very low. So we used a modified GS method (MGS) for
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solving HASM. Gaussian synthetic surface was employed to
compare the efficiency of MGS with GS. In the real world ex-
ample, the SRTM3 of Dongzhi tableland was used to compare
the performance of HASM based on MGS with those of the
classical interpolation methods including IDW, TIN, KRIGING
and NEAREST with the default parameters performed in
ARCGIS 9.3.

2 MGS ITERATION

2.1 MGS formulation

Suppose HASM can be eventually transformed to solve a

Kl-pk where, S is a

linear system, which is expressed as,Sx
symmetric definitive matrix, SeR™", TeR", Kk is iterative times.
The process of solving the linear system of HASM is named
outer iteration, while updating the vector b is termed inner it-
eration. The detailed information about the formulation of MGS
can be found in the paper (Yue & Du, 2005).

The component process of solving HASM based on GS is

expressed as,
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for k =0,1,2,---// iterative times
y1 = X//the kth iteration

fori=1,2,--,n
Yi+1 :.Yi + i€ )
end for i
Xk+1 = Yn+1
stopping criteria
end for k

where,
_ T _ T _ T
e =(1,0,0,---,0)",8, =(0,1,0,--,0) " ,---,8, = (0,0,0,-, 1) (2)
<z =—&,Pi =(S;.y) - by 3)
"
If f has a second derivative at y;, in terms of Taylor expan-

sion, we have

f(Yie) = FOYi +ai€) = T(y;) + i (Sy; —b.g) +

1 1 “)
—af (Se. &) = T (y) +aipy +—af's;
2 2
Based on Eq. (3) and Eq. (4), we can get
1 pf
f(Yi+aiei)—f(Yi)=—Ef<0 (%)
1
ie.
1 p}
f(Yin) - f(yi)=—5f<0 (6
1
Eq. (6) indicates that GS can reach its convergence.
Let us consider the element
Zig = Yi +hi+7i0 (M

where, h; = —ﬂei , 7i €R,g; € R". In terms of Taylor expan-
Sii
sion, we have,

FO+hy+7i0) = £+ (F ()b + 7 +
%(S(hi +7i0). 1 + 7i0)
= F(yi) +(Syi —b.h) +7i(Sy; —b.gi) +
SO +73(S64.) + 77 (S0 )
= F(YisD) + 7il(Syi —b. i) + (S, h)] +

1
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We now define the function,
1
9(») = 7il(Sy; —b, &) +(Sa;,hy)] +5y3(8qi,qi> ©)

Such that, g'(y)=(Sy; —b,q;) +(Sa;,hy) +7;(Sq;.G;) ., 9"(»=
(S0i,0;) = 0 indicating that g(») has its minimum. From the
equation g'(»)=0, we get

__ (Syi —b.q;) +(Sgi.hy)

I (S0;,44)
From Eq. (9) and Eq. (10), we have
L8y = b.g) +(Sai. ) |

(S0;,4)
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2 (S99’
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From Eq. (8) and Eq. (11), we get
f(z ) - T =i - )
_ L[(Sy; —b,g) + (S, b))
2 (S0;.0;) (12)
Eq. (12) indicates that the element z;,, gives better reduction
of f than the element Yj;;. The pre-code of MGS for solving
HASM can be expressed as,

(11)

for k =1,2,---//iterative times
Z; = X; //the kth iteration
fori=1,2,---,n
Ziy1 = 2+ + 7405

13

end for i (13)
Xk+1 = Zn+15
stopping criteria

end for k

where,
hy :_%eiaﬁi =(5,z) - by,
n (14)

_ _(Syj —b,q;) +(Saj.hy)
(50i.0;)
From Eq. (1) and Eq. (13), we can get that MGS updates
two components of the approximate solution of GS at each

iterative cycle.

2.2 qdetermination

From the theory of MGS, we can see that g is an n-order
vector. In this paper,

0=e;, (i#)), s0 zi=zithit e (1)
where,
hy :_gei»ﬁF(SisZi)—bi (16)
(1]
(Sz; —b.ej)+(Sej,hy)
7= (Sej.e))
~ B
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Where, 5] :(SJ’Z|)_b] (18)

We can choose j in different way. In this paper, we choose

j:i_19 (i:2, 3a ,n)a J = n3(i = 1) 5
z,=7,+h  +y,.6,,
h,=-—e (i=12.)
Si_Lia (19)
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From Eq. (18) and Eq. (19), we get that
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From Eq. (17) and Eq. (20), we get,

Sicti—2 .~ Sija
Yi=Vico——thio— @21
I TSiia SiLiaiSi

3 GAUSSIAN SYNTHETIC SURFACE SIMULATION

In this paper, we employed Gaussian synthetic surface (Fig.1)
to validate the efficiency of MGS and GS for solving HASM.
The formulation of Gaussian synthetic surface is expressed as,

F(x,y) =3(1—x)2e X 70D
10x/5—x3 —yS)e X Y _e =y’ 3

The computational domain is [-3,3]x[-3,3], —6.5510<f(x, Yy)
<8.1062.

Fig. 1 Gaussian synthetic surface

The first test is that we fix sampling interval (m=4), inner
accuracy tolerance (rrila}x( fi'y - fif‘j”) <1077) and outer itera-
tive times (1 times), and change the number of sampling points
in the computational domain to compare the computational
efficiency of MGS with GS. From Table 1 and Fig.2, we can
get that the computational time difference of MGS and GS is
proportional to the second power of the total number of grid
cells, which indicates that the bigger the computational domain,
the more efficiency of MGS is. The relationship between the
time difference of MGS and GS and the number of grid points
is expressed as,

t=2.2336-3.5292x10"" gn +6.472x10" 3 gn>

(R? =0.9925)
where, t is the time difference of the two methods, gn is the
number of grid cells.
From Table 1, we can get that the inner iteration of MGS is
always smaller than that of GS. Although the iterative times
difference of the two methods becomes smaller with the num-

22)

ber of grid cells increasing, the time difference is still increase-
ing, which is due to the increasing time of each iterative cycle.

The second test is that we fix the sampling interval (m=4),
number of grid cells (1001x1001) and outer iterations (5 times),

Table 1 Efficiency comparison between MGS and GS

CPU time/S Time difference | Inner iteration

& GS MGS GS-MGS GS MGS
101x101 0.3997 0.3952 0.0045 160 96
301301 3.4381 3.1122 0.3259 131 81
501x501 9.5758 8.5352 1.0406 116 72
1001x1001 38.5613 34.0659 4.4955 90 56
2001x2001 157.3256 136.6111 20.7145 73 46
3001x3001 355.0508 310.8424 44.2083 63 40
4001x4001 984.5033 820.0605 164.4428 56 26

an/=10"

Fig. 2 Regression curve of time difference against total number of
grid cells

and change the inner iterations to compare the RMSEs of the
two methods. The test results are shown in Table 2.

From Table 2, we get that when the inner iteration is small,
MGS can obtain higher accuracy than GS. In this test, when the
inner iterative times are 320, GS can also reach its convergence.

The third test is that we fix the sampling interval (m=4), the
number of sampling points (1001x1001) and inner iterations
(50 times), and change the outer iterations to compare the
RMSE:s of the two methods. The results are shown in Table 3.

From Table 3 we can get that the lesser the outer iterations,
the more accuracy of MGS is. With the increasing of outer it-
erations, both GS and MGS can reach the same convergence.

In the fourth test, we fix the sampling interval (m=4), inner
and outer iterations (10 times and 5 times), and change the
number of grid cells to validate the computing time of MGS.
The results are shown in Table 4.

From Table 4 and Fig.3, we can get that the computing time
of MGS is proportional to the first power of the total number of
grid cells in the computational domain. The regression rela-
tionship between the number of grid cells and the computing
time can be expressed as,

Table 2 RMSE comparison between MGS and GS under different
inner iterations

Inner iterations GS/x107 MGS/x107 GS-MGS/x107

5 6.4517 3.9587 2.4390

10 3.4696 2.0536 1.4160

20 1.8455 1.3144 0.5311

40 1.2548 1.1298 0.1250

80 1.1217 1.1122 0.0090

160 1.1120 1.1119 0.0001

320 1.1119 1.1119 0

Table 3 RMSE comparison between MGS and GS under different
outer iterations

Outer

iteration GS/x107° MGS/x107° GS-MGS/x107°

2 15.524 15.178 0.3460
4 6.6014 6.4578 0.1436
8 3.4646 3.4426 0.0220
10 3.0331 3.0203 0.0128
20 2.1085 2.1065 0.0020
25 1.8870 1.8865 0.0005
28 1.7848 1.7848 0
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Table 4 MGS CPU time under different number of grid cells

Table 5 RMSE comparison among different methods

Number of grid cells CPU time/s Method HASM KRIGING IDW TIN NEAREST
101x101 0.289764 RMSE 9.8 24.0 172 129 268
201x201 0.805835 m
401x401 3.253838 Ratio 1.0 2.4 1.8 1.3 2.7
801x801 13.038501

1601x1601 52.220574 5 CONCLUSIONS
3201x3201 208.628482 o )
Former researches indicated that the computational cost of
t=2.036x107> gn+0.010 (RZ =1) 23) the classical HASM seriously influences its widespread appli-

Where, t is the computing time, gn is the number of grid cells.
In former researches, the sources of computing time of the clas-
sical HASM were mainly from the differential equation simulation,
inverse matrix computation, matrix multiplication, and linear sys-
tem solution (Yue et al., 2004). The DEM construction in Dafosi
Shaanxi province indicated that the computing time is about 10
hours to simulate 1500><1500 grid cells with the classical HASM
(Song & Yue, 2009). In this paper, we only used 208.63 seconds to
simulate 3201><3201 grid cells with HASM based on MGS. The

computing time of MGS decreases two order of magnitude com-
pared with the direct methods for solving HASM.

250

200

1504

1004

501

Fig. 3 MGS regression curve of computation time against total num-
ber of grid cells

4 REAL WORLD EXAMPLE

Dongzhi tableland (36°—37°N, 107°—108°E) was em

ployedas a real world example to compare the performance of
HASM based on MGS with those of the classical interpolation
methods including IDW, TIN, KRIGING and NEAREST with
the default parameters performed in ARCGIS 9.3. Dongzhi
tableland was located in Gansu province, in the middle of loess
plateau, north of jin river, south of malian river. The Dongzhi
tableland was incised to be a fragmented landform. The com-
plex landform is very suitable for DEM construction test. The
source of the data is from the SRTM3 with the resolution of 90
m. In this study area, the number of grid cells is about
1201x1201, half of which were randomly selected for DEM
construction, the others for DEM accuracy validation.

The simulation results of the DEM are shown in Table 5.
From Table 5, we can obtain that the RMSEs of KRIGING,
IDW, TIN, NEAREAST are 2.4, 1.8, 1.3 and 2.7 times as much
as that of HASM.

cation. In this paper, MGS was employed to solve HASM.
Firstly, we proved the efficiency of MGS in terms of theory;
secondly we compared the computational accuracy of MGS
with that of GS based on Gaussian synthetic surface. The results
indicated MGS is more accurate than GS. Dongzhi tableland in
Gansu province as a real world example showed that HASM
based on MGS is more accurate than the classical interpolation
methods including IDW, TIN, KRIGING and NEAREST.

The pre-smoother and post-soother of classical Multi-grid
method is GS. In this paper, we proved MGS is more efficient
than GS, so MGS can take place of GS as a smoother. HASM
has much potential in computing speed improvement. An adap-
tive method adapts the finite-difference mesh to place more grid
points in regions where high resolution is needed (Berger,
1989), while using fewer grid points in regions where a coarser
mesh is sufficient to adequately resolve the resolution, which
can save much space and computational cost (Piquet & Vasseur,
1998; Liu, 1995). So the future effort is toward developing an
adaptive method of HASM.
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101><101 0.3997 0.3952 0.0045 160 96
301><301 3.4381 3.1122 0.3259 131 81
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2001><2001 157.3256 136.6111 20.7145 73 46
3001><3001 355.0508 310.8424 44.2083 63 40
4001>=<4001 984.5033 820.0605 164.4428 56 26
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40 1.2548 1.1298 0.1250
80 1.1217 1.1122 0.0090
160 1.1120 1.1119 0.0001
320 1.1119 1.1119 0
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4 6.6014 6.4578 0.1436 93 5
8 3.4646 3.4426 0.0220
5 s MGS HASM
10 3.0331 3.0203 0.0128
20 2.1085 2.1065 0.0020 » KRIGING, IDW, TIN,
25 1.8870 1.8865 0.0005 NEAREST RMSE HASM 24,18,1.3
28 1.7848 17848 0 2.7
) X . R®5 BWMAZBER RMSE Lbi
£4 MGS 7 8 548 ol R 151 4G 5 b 5 i a
HASM  KRIGING IDW TIN  NEAREST
CPU /s
/m 9.8 24.0 172 129 26.8
101101 0.289764
1.0 2.4 1.8 1.3 2.7
201201 0.805835
RMSE HASM
401401 3.253838
801801 13.038501
16011601 52.220574 5
32013201 208.628482
, HASM
4 MGS HASM,
MGS GS R
(36°—37°N, R 4 , MGS
107°—108°E) s s GS s MGS
, HASM
, SRTM3
, , , , MGS HASM DEM
DEM
90m SRTM3, SRTM3 HASM
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(Brandt,1977) Piquet J and Vasseur X. 1998. Multigrid preconditioned Krylov
y subspace methods for three-dimensional numerical solutions
s (Berger,1989), of the incompressible Navier-Stokes equations. Numerical
( Algorithms, 17: 1—32

,1995; Piquet & Vasseur,1998)
HASM
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