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Abstract:

Some initial investigations are conducted to employ DNA computing for hyperspectral remote sensing data classifica-

tion. As a novel branch of computational intelligence, DNA computing expresses rich information of spectral features with DNA

encoding, and acquires the most typical DNA encoding of each class by DNA modulating and controlling mechanism. For each

pixel of the hyperspectral image, computing the distance between the pixel and the typical DNA sequence, finding the class property

of the minimum distance, set the class property of each pixel as the minimum distance class. An experiment was performed to

evaluate the performance of the proposed algorithm in comparison with other traditional image matching classification algorithms:

binary cording, spectral angles and spectral derivative feature coding (SDFC). It is demonstrated that the proposed algorithm is su-

perior to the three traditional hyperspectral data classification algorithms based on the experiment results.
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1 INTRODUCTION

Hyperspectral remote sensing is characterized by the inte-
gration of image and spectrum. Not only does it provide the
spatial distribution of different classes, but also it reflects the
significant spectral information. A hyperspectral signature pro-
vides significant spectral information for discrimination and
classification due to hundreds of contiguous spectral bands.
Based on the characteristic discrimination and classification
method, spectral matching techniques for the hyperspectral
remote sensing data, have been formed. Considerable attention
has been given to developing spectral matching techniques,
which allow remote sensing-derived spectrum to be compared
with spectrums that were previously collected in the field or in
the laboratory (Tong et al., 2006).

Encoding matching technique is a significant part of spectral
matching techniques. A simple technique is binary spectral
encoding matching (Mazer et al., 1988). Binary coding can be
used to transform a hyperspectral reflectance spectrum into
simple binary information. However, the simple binary coding
causes the loss of the spectral curve signatures, so that we can’t
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carry out discrimination and classification with high accuracy.
To address this problem, some general encoding approaches
have been investigated for hyperspectral signature characteriza-
tion. The encoding-based approach which encodes spectral
signatures as codewords and spectral analysis is then conducted
by using the Hamming distance as a spectral similarity measure.
Three such methods are notable. One is called spectral analysis
manager (SPAM) developed by Jia & Richards (1993), which
encodes an L-dimensional signature as a (2L-2)-dimensional
binary code word composed of the first L binary values used to
encode the sign of the difference between a signature and its
signature mean, and additional L-2 binary values used to en-
code the sign of the difference in spectral values between a
band and its adjacent band. The SPAM binary coding was fur-
ther extended to the so-called spectral feature-based binary
coding (SFBC) by Qian et al. (1996), who introduced addi-
tional L-2 binary values to encode a signature as a
(3L-4)-dimensional binary code word. The new added L-2 bi-
nary values are used to dictate whether the deviation of a spec-
tral variation from the signature mean is greater than a pre-
scribed threshold. Recently, a new signature coding method,
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referred to as spectral derivative feature coding (SDFC), has
been presented by Chang et al. (2009), which improves both
SPAM and SFBC in the sense of signature characterization.
These traditional encoding methods have demonstrated some
success in getting spectral signatures. However, when tradi-
tional encoding methods are used to discriminate and classify
the hyperspectral data with instability of the spectrum, the re-
sults is not satisfactory.

DNA computing is a novel intelligent method, and the initial
investigations and ideas about DNA computing are conducted
by Professor Adleman, University of Southern California, USA
(1994). DNA computing has been exploited successfully in
pattern recognition applications, fuzzy control, and decision-
making problems using DNA encoding and DNA population
control mechanism (Lipton, 1995; Faulhammer et al., 2000;
Ren et al., 2001; Chen et al., 2003; Benenson et al., 2004).
Based on the advantages of DNA computing model, a DNA
computing pattern recognition system for hyperspectral data
encoding matching classification was developed. The result of
hyperspectral classification is satisfactory.

2 BASIC CONCEPT OF DNA COMPUTING

DNA computing, inspired by natural evolution, presents a
transferring mechanism of organisms’ genetic information
(Adleman, 1994).

2.1 Transferring law of genetic information

In nature, the different species perform biodiversity, while
the same species present biological similarity. The phenomenon

is decided by the genetic material, Deoxyribonucleic acid, DNA.

DNA is a nucleic acid that contains the genetic instructions
used in the development and functioning of all known living
organisms and some viruses. DNA is composed by 4 kinds of
Nucleobases (adenine, A; guanine, G; cytosine, C; thymine, T).
The permutations of the Nucleobases perform extremely abun-
dant information. Though the biochemical reactions, the organ-
isms transfer the genetic information, which is the basis phe-
nomenon of organism.

It is the sequence of these four bases along the backbone that
encodes information (Fig.1). This information is read using the
genetic code, which specifies the sequence of the amino acids
within proteins. The code is read by copying stretches of DNA
into the related nucleic acid RNA, in a process called
transcription.

In the mathematics learning field, the value of a complex
computable function can be compound with a series of simple
functions. From the viewpoint of DNA computing, the solutions
of complex problems can be solved by the permutations of the
Nucleobases. This is a similarity between the mathematics and
biological intelligence (Ding et al., 2002).

2.2 Model, theory, method of DNA computing

Based on the background of biology, the initial idea of DNA
computing and simulating the genetic mechanism of organism,
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the information model of DNA computing is proposed. On the
traditional computer, it combines DNA computing with artifi-
cial intelligence to use the DNA coding and the controlling
mechanism of genetic information. The information model
based on the DNA coding, deepens the research on DNA com-
puting theory, and enlarges its applications. DNA computing
model has been used in the artificial immune system (Ren &
Ding, 2001), genetic algorithm (Shin et al., 2005)

2.2.1 DNA encoding and group initialization
DNA is composed by 4 kinds of Nucleobases, adenine (A),

cytosine (C), guanine (G) and thymine (T). The initialization of
DNA encode is the transformation from band values to DNA
encode, {T, C, A, G}.

The fitness of each DNA individual measures by the diver-
sity of amino acid sequences between training DNA sequence
and typical DNA individual.

2.2.2  Gene operation of DNA computing
Recombination is a significant part of gene operation. Re-

combination allows chromosomes to exchange genetic infor-
mation and produces new combinations of genes, which in-
creases the efficiency of natural selection. The mechanism of
gene operation can be considered as a process of optimization.

3 DNA COMPUTING CLASSIFICATIONS OF HYPE-
RSPECTRAL DATA

Combined with the spectrum matching and DNA computing,
the genetic information model is built up based on the DNA
encoding and genetic information controlling mechanism.
Therefore, a novel classification method, DNA computing clas-
sification for hyperspectral data, is proposed. The model trans-
forms the abundant information of spectrum curve by DNA
encoding, and controls and adjusts DNA encodes by DNA ge-
netic operations, finaly get the most typical DNA code. It is an
optimization process of the spectral matching classification.

3.1 DNA computing model initialization

DNA population parameter setting: Before performing the
DNA models for the classification, some parameter of the DNA
population must be stetted, including the quantity of individual
in population, Crossover probability, Mutation probability and
Loop termination condition.
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Sample Selection: the samples of DNA computing model
divided into 2 parts, the training samples and the validation
sample. Referring to the corresponding high resolution image
and ground-truth data, the samples can be acquired. The train-
ing samples and the validation samples, with fixed number, will
be selected randomly from the ground-truth imagery. And then,
the DNA initial individuals with fixed population can be se-
lected randomly from the training samples.

3.2 DNAencoding

The Primary problem of DNA computing for hyperspectral
data classification is the method of DNA coding. On the basis
of the characteristic of hyperspectral data, with multi-dimen-
sions, DNA code need to satisfy 3 requirements: (1) DNA code
adopt the form of 4 value code, and the code words represent
by {T, C, A, G}. The way of coding can retain much more
details of spectral curves. (2) DNA code can get physical re-
flection and absorption features of spectrum. (3) DNA code
performs the capability of noise tolerance, can weaken the in-
terference of noise, which influence the accuracy of spectrum
classification.

Combined with the spectrum coding method and the de-
mand of DNA computing model, a new coding method, DNA
coding for hyperspectral data, is proposed. DNA coding is
composed by two parts, named DNA A coding and DNA B
coding. DNA_A coding part measures overall trend of spectrum,
by using the mean of spectrum values; and DNA_B coding part
describes the diversification’s details of spectrum by using the
change of adjacent band values.

Details are as follows,

DNA_A part Firstly let Ty be the spectral mean of a hy-
perspectral signature, and divide the spectral value into 2 inter-
vals, [XminTo) and [Xo,Tmax)- Secondly, try to compute the
spectral means of 2 intervals respectively, T, and T,, there-
fore the spectral signature is divided into 4 intervals, [Xyin, 1),
[T, To), [To,Tr) and [Ty, Tiax), and then, coding the 4 intervals
with 4 code words, {T,C,A,G}, described by Eq. (1). Each band
value of hyperspectral signature of each pixel gets the code
word, according to the intervals that the band value is in. When
the number of band is L, the length of code words is also L.

T Sie [XminyTl)
S,DNA,A — C S| € [T| 7T0) (1)
' A Sie[To,Tr)

G Sie [Tr, Xmax]
DNA_B part It is developed to describe texture features

based on gradient changes in gray levels of three successive
adjacent pixels among these bands. More specifically, assume

that S =(Sl,52,...SL)T is a hyperspectral signature where L is

the total number of spectral bands and the S, is the I-th spectral
band. Also, let A be a desired spectral value tolerance. There are
four types of successive gradient changes in spectral values that
can be described as follows:

Type 1if |Si _Si—l ‘§ A and ‘SH—I —Si |§ A

Type 2if (ISj—Sj_; <A and s, —Sj [>A)
or (Isi =iy > A and [, —5; [< A)

Type 3if (Sj—Sj_; <-A and s, —S; <-A) )
or (S;—sj_; >A and sj,. —S;>A)

Type 4if(Sj—sj_; <—A and Sj, —Sj > A)
or (S;—sj_; >Aand Sj,; —S <-A)

Additionally, the A used in Eq. (2) can be set to

L
A:(l/(L—l))Z|ri -r 3)

1=2

According to degrees of successive gradient changes in
spectral values among three consecutive adjacent spectral bands,
the spectral encoding will fall into four types. The graphic rep-
resentations of these four types of gradient changes in spectral
values are illustrated in Fig.2 for visualization to better under-
stand why these four types of gradient changes can be more
effective in characterizing spectral variability among three
consecutive adjacent bands (Chang et al., 2009).

Typel: @—@—@

T2 o oot * %o e
Type 3: ./o/‘ °\o\.

Typed: ®—q -9 6 00

Fig. 2 Graphical representation of spectrum curve characteristics

Now we are ready to develop a coding technique to capture
spectral texture feature change in three consecutive adjacent
bands according to the four types of gradient changes in spec-
tral variation described by Eq.(3). For 1<i<L we define DNA_B
as

T if§;istypel

GPNAB _ C ifSjistype2

: A if S is type 3

G if§jistype4

“4)

By virtue of Eq. (1) and Eq. (4), we can encode the spectral
value, S| ofthe | -th spectral band as

DNA DNA A <cDNA B DNA A <DNA A
SDNA _ (SDNAA gDNABy _ (gDNAA GPNAA,

...’SII_DNAfA’Sé)NAfB’S;)NAiB’m’SIJ_)I\iAiB} )

We can interpret Eq.(5) as a set of 2L-2 quaternary code
words.

DNA coding conducts a transformation from the spectral
space to the DNA code space. The graphic representations of
this transformation are illustrated in Fig.3 for visualization to
better understand the process. Fig.3(a) represents original spec-
tral data, with the L bands (L=80), and the spectral range is
from 0.417 to 0.854um; Fig.3(b) represents code words after
DNA coding, with the length of 2L-2.
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Fig. 3 DNA coding for spectral data
(a) Original spectral data; (b) DNA coding words

DNA encoding is conduced by quaternary coding, describes
the absorption and reflection features and the overall tendency
of the spectrum, and extracts the physical feature from the hy-
perspectral curves; the control and adjustment of spectral value
tolerance A, reduce the influence of spectral noise, and make
DNA coding more stable.

3.3 DNA controlling mechanism of spectrum matching
for hyperspectral data

3.3.1 Transcription and translation
The genetic code is the set of rules by which information

encoded in genetic material (DNA or RNA sequences) is trans-
lated into proteins (amino acid sequences) by living cells (Ren
& Ding, 2001).

The operation of Transcription and Translation imitate the
process of Protein formation. Using the DNA encoding method,
we can translate the codons into the amino acids based on the
corresponding relationship between the codons and the amino
acids shown in Table 1. Then, the amino acids are translated

Table 1 Translation from the DNA codons into the amino acids

1st 2nd base 3rd
base T C A G base
Phe(0) Ser(2) Tyr(3) Cys(4) T
T Phe(0) Ser(2) Tyr(3) Cys(4) C
Leu(l) Ser(2) Stop(9) Stop(9) A
Leu(1) Ser(2) Stop(9) Try(9) G
Leu(1) Pro(5) His(6) Arg(8) T
c Leu(1) Pro(5) His(6) Arg(8) C
Leu(1) Pro(5) GlIn(7) Arg(8) A
Leu(l) Pro(5) Gln(7) Arg(8) G
Ile(11) Thr(12) Asn(13) Ser(2) T
N Ile(11) Thr(12) Asn(13) Ser(2) C
Met(10) Thr(12) Lys(14) Arg(8) A
Met(10) Thr(12) Lys(14) Arg(8) G
Val(15) Ala(16) Asp(17) Gly(19) T
Val(15) Ala(16) Asp(17) Gly(19) C
¢ Val(15) Ala(16) Glu(18) Gly(19) A
Val(15) Ala(16) Glu(18) Gly(19) G

into the design parameters of spectral signature. The translation
process in Table 1 imitates the translation process from DNA to
protein. Also, it is the basic framework for translating the
codons into the amino acids.

The major object of DNA translation is building the frame-
work of DNA operation. By employing the fuzzy rules, the
DNA encoding is translated into amino acids, and then trans-
lated into the design parameters; based on this translation, we
can conduct the classification operation on the training samples
and the image. Furthermore, the framework of DNA translation
enhances the stability and tolerance ability of DNA computing
model.

3.3.2 Fitness calculation

The fitness of each DNA individual measures by the diver-
sity of amino acid sequences between training DNA sequence
and typical DNA individual.

Assume that S and $*™™ as DNA codewords and amino
acid sequence respectively:

DNA Ami
S — S™M = {a,,8),8;,...,ar } (6)

Where T =[(2xL-2)/3]|anda; =0,1,2,-,19.

Calculate the fitness of training DNA individuals in Eq. (7).

N ) ) N T i
Fitness = Y | STain i — Sindividual [= 2, 213 —aj | (7)
i=0 i=0 j=0

amino

amino 1Al
Where S ={8j1,8j2," > &7 }> Sindividual = {81,82,""

Train_i
ar},and T = \_(2>< L—2)/3J And N is the number of training

samples.
3.3.3 Genetic operators
Based on the new DNA encoding method, we develop the
genetic operators in the DNA computing model. They are
crossover, mutation and updating of DNA individuals.
Crossover operation: Crossover is a process of exchanging
genetic information, which is important for the entire search
process. Studies have shown that signature codes crossover
seems to be a better method for crossover, and is often adopted
in the traditional Gas. For the reason, we adopt signature codes
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crossover operation in this model. An example is shown in
Fig.4.

- TGAGGCCGTAGTACGATACGTAGAT ---

"+ AGTATGAACTGCACGCCGTACTACT -+

*+0001110011001110001100011 -

U Signature codes crossover
- TGAATGCGCTGTACGATATATAGCTT -+

- AGTGGCAATAGCACGCCGCGCTAAT -

Fig. 4 Standard crossover diagram

Mutation operation: Any change in a DNA sequence is
called a mutation. They are point mutations and frameshift
mutation. Two kinds of point mutation exist in a DNA sequence,
such as transition mutation and transversion mutation. In order
to imitate the mutations of the biological DNA, we employ the
same point mutation manners in the DNA computing model.
During the process of practical implementation, we do the mu-
tation operation as follows:

Generate a random number, S, in [0, 1] at random, the base
at a selected place in a DNA individual will be mutated to:

1) T, if s€[0,0.25)

2) C, if s€[0.25,0.5)

3) A, if s€[0.5,0.75)

4) G, if s€[0.75,1]

Update of DNA generation: The fitness value of the DNA
individual is calculated, and the individuals that have low fit-
ness values are excluded from the generation sets. At the same
time, the same amount of new individuals are generated and
added into the new generation sets. And set the individual of the
highest fitness value as the best individual.

3.3.4 Stopping condition

When the best individual’s fitness value satisfies the thresh-
old, which is set before this process, or the number of evolution
generation reach the maximum number, the genetic operation
will be stopped. Otherwise the operation will be operating, until
the requirement is satisfied.

After conducting the gene operation, the typical DNA spec-
tral encoding can be optimized.

3.4 Classification

For each pixel of hyperspectral image, computing the amino
acids parameters distance between pixel and the typical DNA
sequence, finding the class property of the minimum distance,
set the class property of each pixel as the minimum distance
class.

Fig. 5 gives the process of DNA computing classification.

Hyperspectral remote
sensing data
‘ Population initialization

!

‘ DNA encoding ‘

h

‘ Transcription and translation ‘

!

‘ Fitness calculation ‘

‘ Selection |

I

Output l Crossover ‘
classified image l

l Mutation ‘
|

Fig. 5 Flowchart of DNA computing classification algorithm
for the hyperspectral data

4 EXPERIMENTS AND ANALYSIS

4.1 Experiment data

In this experiment, the data is airborne imaging spectrometer
(PHI) data, 80 bands taken from Xiaqiao test site which is a
mixed agricultural area in China. Eighty bands of PHI image
(340x390 pixels) were used in this experiment, and their spectral

ranges were from 0.417—0.854 m. Fig. 6 shows the experi-

mental PHI image. The observed image was expected to fall
into six classes: road, corn, rubble grounds, vegetable, grass-
land and water. The reference of Spectral Curves for six classes
is given in Fig. 7.

Fig. 6 Xiaqiao PHI image RGB(70,40,10)
Bands 80 (0.41—0.85pum)



870 Journal of Remote Sensing

#EAFEIR 2010, 14(5)

Spectral curves
; ' 1= Road

7| — Com

L i Vegetable

30f ] — Rubble

;//_/-/"—VHM 1 - Grassland
- / — Water

Reflectance/%

Wavelength/nm
Fig. 7 Reference spectral curves for six classes
Before conducting the experience, we need not to perform

pretreatment, such as radiometric correction, band selection and
filtering.

4.2 Input data

In the experience, we select randomly 180 samples for the
six classes, and the number of training samples is 80, while the
number of validation is 100.

The values of parameters set in Experiment. The details are
as follows: individual number in one generation as 20, cross-
over probability as 0.9, mutation probability as 0.02, maximum
generation as 200 and the threshold as 0.98.

4.3 Experiment result

Fig.8(d) illustrates the classification result using DNA com-
puting. Fig.8(a)—(c) illustrates the classification results using
binary coding, spectral angle matching and SDFC spectrum
matching method.

Il Road 9 Corn [ Rubble

Vegetable Grassland [ Water

Fig. 8 Spectral matching classification images for Xiaqiao PHI image
(a) Binary encoding; (b) Spectral angel; (¢) SDFC match; (d) DNA computing match

4.4 Accuracy comparison

The classification accuracy for the several classifiers is
given in Table 2 and Table 3 including producer’s accuracy,
user’s accuracy, overall accuracy and Kappa coefficient of
agreement based on the confusion matrixes (Foody, 2002).

Table 2 Comparison of four classification methods using
producer’s and user’s accuracy
/%

Class Road Corn Rubble Vegetable Grassland Water

Producer’s

Binary 97 51 65 86 75 100
. accuracy
encoding User’
matching SIS 8981 9273 97.01 5444 7732 91.74
accuracy
Spectral P;gi‘l‘r‘i’ys 100 76 91 66 93 73
angel User’s
mapper 91.74 95 86.67  68.75 7561 9241
accuracy
Producer’s o5 g9 87 68 45 93

SDFC accuracy

matching - User's 00 5509 g7g8 6126 7627 93

accuracy
pNa  Producer’s os 40 87 83 82 94
. accuracy
computing User’s
matching 100 8130 90.63 8737  9L1l  93.07
accuracy

Table 3 Comparison of four classification methods using over all
accuracy and Kappa coefficient

Method | Binary encoding Spectral SDFC  DNA computing
Accuracy matching angel mapper matching matching
Overall 79.00 83.17 81.17 90.17
accuracy/%
Kappa 0.7480 0.7985 0.7740 0.8820
coefficient

As shown in Table 2 and Table 3, the DNA computing clas-
sifier produces better classification results than traditional clas-
sifiers. The details are as follows: DNA computing improved
overall classification accuracy from 79.00% to 90.17%, an im-
provement by 21.17% and Kappa coefficient from 0.748 to
0.882, improving 0.134. Based on the above, we can make a
conclusion that DNA computing classifier is the good classifier
applied with hyperspectral remote sensing image spectral
matching classification. The reason of DNA computing classi-
fier’s advantage is that it is not only obtain the more details
about the spectral curves, but also the DNA computing model
can avoid the interference from spectral noise and make the
matching process optimal.
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5 CONCLUSION

In this paper, some initial investigations are conducted to
employ DNA computing for hyperspectral remote sensing data
classification. As a novel branch of computational intelligence,
DNA computing express rich information of spectral features
with DNA encoding, and acquire the most typical DNA encod-
ing of each class by DNA modulating and controlling mecha-
nism. For each pixel of hyperspectral image, computing the
distance between pixel and the typical DNA sequence, finding
the class property of the minimum distance, set the class prop-
erty of each pixel as the minimum distance class. The main idea
of DNA computing is the transformation from the spectral sig-
nature space to DNA codes space, just like Wavelet and Fourier
transformation; and the optimization process by DNA gene
operation.

The object of DNA computing matching classification is
hyperspectral data with reflectance curves. DNA computing
classifier is not only obtain the more details about the spectral
curves, but also the DNA computing model can avoid the inter-
ference from spectral noise and make the matching process
optimal. Because of these, we needn’t to conduct pretreatment,
such as radiometric correction, band selection and filtering.

The Xiaqiao PHI hyperspectral data experiment was per-
formed to evaluate the performance of the proposed algorithm.
It is demonstrated that the proposed algorithm is superior to the
three traditional hyperspectral data classification algorithms
based on the experiment results, and its overall accuracy and
Kappa coefficient reach 90.17% and 0.8820, respectively.

The genetic operations, used in the DNA computing
model, are some traditional biological intelligence operation,
such as selection, crossover and mutation. Because the aim of
this paper is examine the adaptability of DNA computing for
hyperspectral data. We will research new gene operation like
inversion and separation in the future work.
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