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Spatial local neighborhood index in hyperspectral remote
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Abstract: Hyperspectral remote sensing image provides not only abundant spectral information but also spatial detailed infor-

mation. For making full use of the information, this paper considered the variations of the spectral feature among pixels in local
neighborhood and researched on a kind of Local Neighborhood Spectral Similarity Measure Index to extract the spatial detailed
information. Furthermore, the spectral feature of endmember in local neighborhood was also considered. And a kind of Local

Neighborhood Independent Endmember Index was proposed. In experiments, these local neighborhood indexes demonstrated

excellent performance in the real hyperspectral image. Based on these work, it can further improve the capability of hyperspec-
tral target detection and identification by combining with spatial and spectral information.
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1 INTRODUCTION

Hyperspectral remote sensing stresses on the distinguishable
spectral features of the substances. It relies on its abundant
spectral resolution to differentiate the substances by their diag-
nostic spectral features (Tong et al, 2006). In application, hyper-
spectral remote sensing image also provides important spatial
information. The interested targets may exist in the image with
very low probability, but they can also occupy single cells with
high probability, or be interfered by the background with the
same spectral feature but different geometric feature. These
embarrass the application of hyperspectral remote sensing
analysis techniques, such as anomaly detection. In this case, the
capability of target detection and recognition can be greatly
improved when combining the spatial and the spectral features
of the targets.

The spatial information includes edge contour, texture, and
targets that occupy a whole pixel or are embed as sub-pixel. This
paper does not consider the texture information. The spatial
information gives rise to the significant variations between the
pixels in the image. The local neighborhood method, whose
application has widely covered image restoration, image seg-
ment and many other fields (Kenneth, 2002), is a well-known
technique for spatial information extraction in grad image analy-
sis. However, this is not the case in hyperspectral remote sensing
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image, since the significant variations are the spectral feature not
the grad. In this case, Kanade and Shafer (1987) detect the edges
in each channel independently and then combine the results by
I-norm, 2-norm or maximal-norm. Verzakov et al. (2006) re-
duces the spectral dimension of the hyperspectral remote sensing
image in order to satisfy the requirement of the small number of
the samples. And the multivariate techniques, such as Joint
Probability Density Functions of Neighbouring Pixels and Con-
ditional Probability Density Functions of Neighboring Pixels
Difference, are used to retrieve the spatial information. Gong
and Bi (2007) uses linear spectral unmixing technique and then
detects the edges from the abundance results of unmixing. The
latter two methods provide better improvement on spatial infor-
mation extraction for hyperspectral remote sensing image.

However, in the procedure of dimension reduction or linear
spectral unmixing, especially when a great amount of spectral
channels are reduced, the image information will be lost. And
the spectral unmixing error will be introduced in to the abun-
dance results. These factors have impacts on the accuracy of the
following analysis. Therefore, this paper considers the spatial
information extraction from the original spectral dimension of
the hyperspectral remote sensing image.

In this case, Bakker and Schmidt (2002) introduce com-
monly used measures including Euclidean distance, spectral
angle distance and intensity difference into weighted Laplace
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operator. It presents excellent results in extraction of homoge-
neous surface cover types. Take the case of this technique, this
paper first introduces spatial function of spectral measures in
Local Neighborhood and discusses a kind of Local Neighbor-
hood Spectral Similarity Measure-Index in more general sense.
Further, considering the Linear Mixture Model (LMM) of
hyperspectral remote sensing image, the variations between the
spectral feature of endmember and background in local
neighborhood are introduced into the definition of spatial in-
formation and a kind of Local Neighborhood Independent
Endmember-Index is proposed.

2 LOCAL NEIGHBORHOOD SPECTRAL SIMILARITY
MEASURE INDEX

Local Neighborhood Spectral Similarity Measure Index
(LNSSM-Index) focuses on the spectral measures. Spectral
measures or spectral similarity measures are used to determine
the similarity of two spectra, and also to measure the variations
between the spectra.

Let r=(ri;, M2, , Fi)" be a spectral signature of a pixel in

the hyperspectral remote sensing image and L be the number of
bands.

Spectral Distance Measure (SDM) calculates the distance
between two spectra, namely p-norm of spectral vectors (Bour-
baki, 1987) where

1-norm distance (or Taxicab Distance, TD)

TD(r.,r,-):i\nb—r,-b\ (1)
2-norm distance (Euclidean ];)i:sltance, ED)
ED(r.rj) = /(1 =)' (1, = 7)) @)
maximum-norm distance (Maximum Distance, MD)
MD(rrj) = max {[r, s} 3

Another spectral measure called Spectral Angle Measure
(SAM) calculates the vectors' angle between two spectral
(Robert, 2006)

SAM (1;,rj) 200871(”'”1 il H) @

And Spectral Information Divergence (SID) measures the
discrepancy between two spectral signature-derived probability
distributions (Chang, 2000)

SID(#,rj) =D || 7j) + D(rj [ 1) )
where
S g
D@ [ 7)) =Y gplog [b] (6)
b=l Po
and
L
Uy =T/ D K @)
1=1
L
Po=Tjp/ D.Fil (3)
1=1

Define SSM(r;, 1)) as a function of spectral measure, where
the smaller absolute value represents that the spectral signatures
are more similar, and vice versa. Specially, the value should be

or approach zero when the spectral signatures are the same.
Usually, it can simply take polynomial SDM, SAM or SID as
SSM. When it combines with more spectral measures such as
SID and SAM (Du et al., 2003) into LNSSM-Index, it should be
satisfied with the SSM.

The value of spectral measures varies with the spatial loca-
tion of the pixel in the image, which presents a spatial function
of spectral measures. Based on SSM, spatial function of spectral
measures presents the spectral variations in the local neighbor-
hood and extracts the spatial information of the image.

For example, in traditional edge detection technique, the
gray gradient represents the gray variations in the horizontal or
the vertical direction as follows

-1 0 1

4. =-a 0 a ©)
-1 0 1
-1 -a -1

4,=[0 0 0 (10)
1 a 1

where a is 1 or 2, corresponding to Prewitt or Sobel edge
operators respectively. In hyperspectral remote sensing image,
the spatial function of spectral measures in the corresponding
location represents the spectral variations as follows
dy(X,y)=SSMI(x+1,y-1),I(x-1,y-1))
+axSSM (I(x+1,y),I(x-1Y))
+SSM I (x+ 1L,y +1),I(x-1,y+1)) (11)
where I(X, y) is the spectral signature located at (X, y). It is
similar in the vertical case.
Similarly, in the case of second-order derivation, eight direc-
tions Laplace operator follows that

11
d>(y)= > X SSMUIX Y. I(x~-i,y— )  (12)
i=—1j=—1

In the case of weighted Laplace operator, it can refer to the
work of Bakker and Schmidt (2002).

By spatial function of spectral measures, the spectral varia-
tions in the local neighborhood can be determined and the spa-
tial information can be extracted. Nevertheless, LNSSM-Index
is not merely limited to edge detection technique. Any spatial
functions of spectral measures which express the spectral varia-
tions in the local neighborhood can be taken as LNSSM-Index.
For example, the spatial function of SSM between the mean
spectral in the local neighborhood and the spectral at the central
location of the local neighborhood, the spatial function of SSM
between the weighted mean spectral in the local neighborhood
and the spectral at the central location of the local neighbor-
hood can be further considered, and so on.

3 LOCALNEIGHBORHOOD INDEPENDENT ENDMEMBER
INDEX

By Linear Mixture Model (LMM), hyperspectral remote
sensing image can be modeled as
r=Ma+n (13)
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where r is the spectral signature of a pixel in hyperspectral re-
mote sensing image, M is the endmember matrix whose columns
are the endmember signature vectors, a is the fractional abun-
dance vector associated with », whose entries are the fractional
abundance corresponding to the endmembers in M, and n is the
additive observation noise vector. According to LMM, the end-
members reside at the extremities of the simplex volume occu-
pied by the image. When the substance in a pixel is differed
from those in other pixels (called background) within its local
neighborhood, its spectral signature vector is far from the sub-
space spanned by the spectral signature vectors of background in
the spectral feature space. This spectral signature vector is taken
as an independent endmember from its local neighborhood
background. Obviously, if the independent endmember has the
greater purity, the projection distance to the subspace spanned by
its local neighborhood background will be farther. Local
Neighborhood Independent Endmember Index (LNIE-Index)
takes the purity of the independent endmember as a measure for
the detailed spatial information.

The first type of LNIE-Index, called Endmember Back-
ground Distance Index (EBDI), obtains the projection distance
from the spectral signature vector in the center of local
neighborhood to the subspace spanned by the signature vectors
of its local neighborhood background as follows

EBDI(x.y) = |P"- 10 y)|, (14)

P=A"A (15)

Eq.(14) obtains the subspace projection distance by null

space (Luo et al., 2008a), where A is the matrix whose columns

are the spectral signature vectors of local neighborhood back-

ground, A is a base of null space determined by 4 and A"
is the Moore-Penrose pseudo-inverse of A .

Another type of LNIE-Index is called Cumulative Distance
Index (CDI) defined by

CDI;(x,y) =CDIl;_i(X,y) +d; (16)
CDIy(x,y)=0 17)
where i is from 2 to the number of the pixels in the local
neighborhood and
d; :max("Pi_lT r" ) (18)
r 2
Py =454 (19)
a; = argmax("Pi,lT ~r||2) (20)
r
A =[A4_,,a] 20
A =1(x,y) (22)

where argmax(e) is the spectral signature satisfied with the
r

maximum condition, r is arbitrary spectral signature vector in
the local neighborhood, A; is the matrix made up of endmember
signature vectors generated in the i-th step, d; is the maximal
projection distance from the subspace spanned by the column
vectors of Aj | and a; is the corresponding spectral signature
vector.

CDI cumulates all the maximal projection distances during

the iterations. When there exist more cover types in the local
neighborhood or the spectral signature in the local neighbor-
hood is more different from others, the CDI value is greater.
While the cover type in the local neighborhood is more homo-
geneous, the CDI value is less. By CDI value, the detail spatial
information can be determined.

4 EXPERIMENT

The AVIRIS (Airborne Visible/Infrared Imaging Spectrome-
ter) sensor has 224 channels over the 0.37—2.51um spectral

range with an average spectral resolution of 10 nm. In experi-
ment, we use a 400><400 pixels subimage of the Feb 20, 2002,

a naval air station in San Diego, California reflectance data set
with spatial resolution of 3.5m (See Fig. 1).

On the left bottom of Fig. 1 is the 3x zoom image for three
airplane targets. We first apply RXD-UDT anomaly detector
(Chang, 2002) on the image. The result (see Fig.2) shows that
the airplanes can hardly be detected.

Fig. 1 AVIRIS data in San Diego (display band: 458nm)

r

3X Zoom

Fig. 2 Result of RXD-UDT anomaly detection
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We calculate LNSSM-Indexes and LNIE-Indexes from the
image respectively (See Fig.3 and Fig.4). Infinity norm type
SDM-ED, SAM-ED and SID-EM are used in LNSSM-Indexes.
Sobel and eight direction Laplacian operators are used. EBDI
and CDI are used in LNIE-Indexes.

Comparing the Laplace operator and Sobel operator with
different spectral measures in Fig.3, there is different perform-
ance on the operators. (1) In SDM, Sobel operator extracts the
line edges better than Laplace operator while Laplace operator

Fig. 3 Results of Local Neighbor Spectral Measure Indexes (Up row:
Sobel operator; Down row: Laplace operator )
(a) SDM (MDY; (b) SAM; (c) SID

Fig. 4 Results of Local Neighbor Independent Endmember Indexes
(a) EBDI; (b) CDI

extracts the irregular edges, such as the edges of the building
and airplane, better than Sobel operator. (2) In SAM, the ex-
tracted edges are thinner than that extracted by other spectral
measures, but much information is missed, such as the edges of
the runways, the flat grounds and the buildings. And more in-
formation is missed by Sobel operator than Laplace operator. (3)
In SID, all the edges are clearly extracted by both Sobel opera-
tor and Laplace operator, even the small targets, such as three
airplanes in 3x zoom image and the small targets arrayed in the
flat ground in the bottom left of the image. However, there
exists noise in SID, especially in the result of Sobel operator.
The noise in the flat ground in up left is much greater than that
of Laplace operator.

In the results of Local Neighbor Independent Endmember
Indexes, all detail spatial information can be clearly extracted
by CDI, including the edges of flat grounds, the runways, the
buildings and the small targets. However, it does not work very
well by EBDI. The reason is that there is continuity between the
ground truths in the scene of the image and the spectral signa-
ture in the center of the local neighborhood is easily embedded
in the subspace spanned by the background spectral signature
vectors. While CDI cumulates all the maximal projection dis-
tances during the iterations, a part of similar spectral signatures
does not have a great effect on CDI. Therefore, CDI effectively
avoids the interfering made by the similar spectral signatures in
the local neighborhood.

5 CONCLUSIONS

This paper discusses on two kinds of local neighborhood
indexes, namely LNSSM-Index and LNIE-Index, to extract the
detailed spatial information from hyperspectral remote sensing
image.

In LNSSM-Index, SDM can be used to extract the line edges,
such as the edges of runways, but does not work well for the
small targets extraction. The edges extracted by SAM are thin-
ner than other spectral measures. But it is not suggested using
SAM to extract the line edges and the edges of a large region.
SID can be used to extract the small targets and the line edges.
But SID is easily interfered by the noise. When there is much
noise in the image, it is strongly suggested removing the noise
before using SID.

In LNIE-Index, EBDI is easily interfered by the similar
spectral signatures in the local neighborhood. Therefore, the
objects which have spatial continuity, including the line and
region continuity and the targets whose radiative region ex-
ceeds a pixel of the image, can not be extracted by EBDI. CDI
has the best performance for the line edges such as runways, the
edges of a large region such as flat ground and irregular edges
such as buildings. Therefore, CDI is suitable to extract all the
detailed spatial information.

Our future work will be: (1) to verify the indexes proposed
in this paper with different levels of spatial resolution; (2) to
introduce more suitable spatial function of spectral measures
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and develop more effective local neighborhood indexes; (3) to
combine the geometric feature and the spectral feature of the
targets to improve the accuracy of target detection and recogni-
tion, this is the work we will focus on.
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(Linear
Mixture Model, LMM) ,

ri=(rie, fia, M)’ I :
(Spectral Distance Measure, SDM)

3 p-
(Bourbaki, 1987):

1- Taxicab (Taxicab Distance, TD)
TD(rivrj)zbZL;|rib_rjb| 1)
2- (Euc]idean Distance, ED)
ED(r,rj) =4/(r —T; )T =r) (2)
(Maximum Distance, MD)
MD(r. 1) = max {[r, 1y (3)

(Spectral Angle Measure, SAM)
(Robert, 2006):
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(Spectral Information Divergence,
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