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Abstract:  Ship detection is one of the important areas in remote sensing applications. However, many ship detection ap-
proaches often face a difficult dilemma between low detection rate and high false rate, because of the un-matching between ob-
ject and its features caused by the complicated characteristics of remote sensing images. Therefore, this paper proposes a novel
detection algorithm based on Probabilistic Latent Semantic Analysis (PLSA). It firstly describes the object in terms of the prob-
ability combination of latent aspects generated by PLSA, then discriminates the latent aspects model of object by statistics rec-
ognition method to obtain the final detection result. The generated latent aspects model represents the joint probability of objects
and their features, and gives an explanation for the above un-matching problem by the probability distribution of latent aspects.
The performance of the proposed algorithm is demonstrated through the ship detection in various optical remote sensing images,

and substantiated using quantitative criteria.
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1 INTRODUCTION

Ship monitoring is one of the traditional tasks for coastal
countries. As an active microwave sensor, synthetic aperture
radar (SAR) is one of the commonly used techniques for ship
monitoring in current years, because it is independent of the
weather condition and time of day (or night). Accordingly, lots
of SAR image ship detection algorithms are proposed (Wanielik
& Stock, 1989; Tello et al., 2005; Li & Chong, 2007; Tian et al.,
2007; Yang et al., 2008). However, it is more possible to moni-
tor ship based on optical remote sensing images for real-time
surveillance considering the significantly increasing amount of
optical sensors and the wide cover and high spatial resolution of
the images acquired by these sensors. As a result, some re-
searchers (Zhao et al., 2008) have paid attention to this prob-
lem.

Information in remote sensing images is often disturbed be-
cause of the change of season, weather and work condition of
sensor. In the images of complicated ocean area, there are lots
of false alarms which have similar characteristics with ship
objects, such as ocean waves, clouds, islands, etc. In addition,
the ship objects also represent various characteristics under
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different image resolutions and imaging mechanism. Therefore,
it is a challenging difficulty to eliminate these false alarms in
ship detection. Traditionally, researchers often consider it as a
binary-detection process. For example, Yang et al. (2008) and
Zhao et al. (2008) converted an image into a binary image by a
heuristic threshold. Li and Chong (2007) and Tian et al. (2007)
validated the probable ship after estimating the ship model
based on prior distribution. However, because of the simple
modeling strategies of these methods, they do not represent
diversities between ship objects and false alarms. As a result,
they have to face a difficult dilemma between low detection
rate and high false rate, or can not lead to qualitatively con-
vincing results while being robust and operational.

A prospective approach to solve this problem, in our opinion,
is to translate the ship detection into multi-class problem based
on statistics learning. Taking advantage of Support Vector Ma-
chines (SVMs) (Vapnik, 1998), we can fulfill ship object detec-
tion process by combining multiple effective features. In prac-
tical classification, however, there exist two typical phenomena:

Phenomenon 1 corresponds to the case that the samples
with the same class category possess different characteristics,
such as various ship samples shown in Fig.1(a).
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Fig. 1 Disturbance of various samples in real classification
(a) Phenomenon 1; (b) Phenomenon 2

Phenomenon 2 corresponds to the case that the samples
with the different class categories possess similar characteristics,
such as the samples of cloud and ocean wave shown in Fig.1(b),
which have some similar characteristics with ship.

Although the classification-based approach can overcome
the effects of phenomenon 1 by analyzing the distribution of
sub-class in a class category, it can not deal with phenomenon 2
for associating labeled patterns directly with their extracted
features when recognizing these patterns. In other words, when
there are fewer training samples, it is difficult to make the SVM
classifier closer to real object model; when there are more
training samples, it is impossible to fulfill the learning process.

According to the above discussion, this paper first intro-
duces the Probabilistic Latent Semantic Analysis (PLSA)
(Hofmann, 2001) into ship detection. When modeling ship ob-
ject, PLSA does not represent object directly by its extracted
features, but generates a latent aspects model by learning “ob-
ject-feature” co-occurrence frequency matrix (feature frequency
matrix for short). Then it uses this model to represent object in
terms of a probabilistic decomposition of latent aspects. In this
way, we can give an explanation for the previous phenomena
by probabilistic diversities of latent aspects in different objects.
Modeling object based on PLSA not only simplifies the work of
labeling training samples but also reduces the difficulty of the
training and predicting of SVM classifier. Meanwhile, we also
use an adaptive method to select an optimal temperature control
parameter for Tempered Expectation Maximization (TEM) in
order to improve the model fitting of PLSA. The performance
of the proposed algorithm is demonstrated through the ship
detection in various optical remote sensing images, and sub-
stantiated using quantitative criteria.

2 PLSAMETHODOLOGY

Stemming from a view of Latent Semantic Analysis (LSA),
PLSA possesses a solid foundation in mathematical inference
and a well-used generative data model. Its main idea is to dis-
cover topics in a collection of documents that are represented
by the frequencies of words from a vocabulary. The PLSA
model has been widely used in applications such as statistical
text analysis (Hofmann, 2001) and content-based image re-
trieval (Quelhas et al., 2007; Wang et al., 2009), and has been

proved to provide better words matching in information extrac-
tion. In our case, the documents correspond to the identified
objects, the vocabulary corresponds to the feature frequency
matrixes of shape and texture, and the topics to be discovered
correspond to the different kinds of objects, such as ships,
ocean waves, clouds, islands, etc.

Suppose we have a collection of objects O = {01,02,---,0N}
represented by a feature set F={f,f,,---, f,}, and accord-
ingly summarize the data in a rectangular NxM feature fre-

quency matrix N :(n(oi,fj)),_, where n(0;,f;) denotes the
ij

number of times the feature f; occurred in object o;. Each ob-
servation (0;,f;) is associated with a group of latent aspects

(topics) Z ={z,2,,--,z¢} , where K is a constant. The PLSA
technique uses a graphical model (as shown in Fig. 2) for the
joint probability P(o;, f;,z,) of the objects and their features.
The filled nodes in Fig. 2 indicate observed random variables,
whereas the unfilled node is unobserved. The generative model
P(0;,f;) for the feature content of objects can be computed by
using Eq.(1):

P(0.f,)=P(0)P(f|0),
P(fj‘Oi):gp(fj‘zk)P(zk‘oj)

where P(0;) denotes the probability of observing a particular

@

object 0, P(f;|z,) denotes the conditional probability of a
specific feature f; conditioned on the unobserved topic vari-

able z,, and P(zk\oi) denotes an object specific probability

distribution over the latent variable space. We should note that,
this model introduces a conditional independence assumption,
namely that o; and f; are independent conditioned on the state of
the associated latent variable z, (Hofmann, 2001).

@
P(f)z)

Fig. 2 Graphical model representation of the PLSA
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Following the likelihood principle, one determines the pa-
rameters of PLSA model by maximization of the log likelihood
function in Eq. (2):

L= in(oi,fj)logP(oi,fj) )

=1

Mz

Il
N

The standard procedure for maximum likelihood estimation
in PLSA model is Expectation-Maximization (EM) algorithm.
EM alternates two steps: (1) an expectation (E) step where pos-
terior probabilities are computed for latent variables, based on
the current estimates of the parameters, (2) a maximization (M)
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step, re-estimate the parameters in order to maximize the ex-
pectation of the complete data likelihood. By applying Bayes’
formula, one can obtain E-step as follows:

2o f.)= [P(fil2)P(z]o)]
P( A .,f,) zl'il[P(fj|zl)P(zl|oi)J

In the M-step, one has to maximize Eg. (2) and then

®

re-estimate parameters P(f,]z,) and P(zo,) as follows:

P(f-|zk) Z (0"f1) (Zk|0" J)
J Zm 12.1 0i» m (Zklol’ m)

P(Z |0)_ z’;/ll (O" fJ) (Zk|0" J)
k™)™ M

(o))
The E- and the M-steps are iterated until the criterion, which

is defined in Eq. (6), is less than a threshold or the number of
iterations exceeds a predetermined value.
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3 DETECTION ALGORITHM DESCRIPTION

The proposed ship detection algorithm includes two stages
(as shown in Fig. 3) and the arrows with marker at the begin-
ning in Fig. 3 show the detection flow. The first stage is ship
candidate region detection, which firstly identifies the ocean
region by ocean-land segmentation, then extracts the probable
objects according to some prior distributions of ship features,
such as gray scale, edge or texture. The second stage is ship
candidate region recognition, which aims to distinguish the ship
objects in candidate regions by using object recognition ap-
proach. Detailed implementations are described in section 3.1
and 3.2.
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Fig. 3 Overview of the proposed ship detection algorithm

3.1 Ship candidate region detection

In the process of ship detection from optical remote sensing
image, some pixels of land area are often detected as ship ob-
jects. Therefore, we should firstly partition the ocean and land
in order to eliminate the influence of land area. This paper iden-
tifies the range of land area by using the information in GIS
database. When obtaining the ocean detection area, we apply

the following steps to carry out the ship candidate detection
based on the characteristics of ship’s edge and shape.

Step 1: Image pre-processing. To enhance the distinction
between the ship and sea in the image, we choose a new
method for computing a mixed image Mixu(x,y) as defined in
Eq. (7):

Mixu(x,y)=u(x,y)+aMagu(x,y) ™

where u(x,y) denotes the gray value of the image pixel (x.y),
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Magu(x,y) denotes the gradient magnitude of this pixel in terms
of Sobel operator. « is a coefficient, equaling 1 in our experi-
ments.

Step 2: Image coarse segmentation. First of all, the mixed
image Mixu(x,y) is operated with a threshold which is adap-
tively obtained by Otsu’s maximum variance method (Otsu,
1979). Then, morphologic operating is adopted to fill holes
within regions, and to eliminate some very thin lines. Lastly,
some singular regions are filtered out according to the ratio
Rregion Of the length to width of the region bounding rectangle
and region size Sigion. In this paper, the value of Ryegion is 1.5
and the value of Syeion is related with the image resolution.

Step 3: Image refined segmentation. Although the thresh-
old in coarse segmentation is adaptively set, it is still a global
statistic, and then the result of segmentation must have some
boundary localization errors. Level set with the Chan-Vese
model is adopted to refine image segmentation in this paper.
Chan and Vese (2001) propose an algorithm based on the

(a)

(<)

Mumford-Shah model, which could gives an optimal partition
of two classes, and the simplified energy function of this algo-
rithm is defined as follows:

F(C)=FR(C)+F(C)=

Jinside((:)‘u(xl y) ~C

where ¢, is the mean value inside of the curve C, and ¢y is the
mean value outside of the curve C. The minimum of the
Chan-Vese’s model energy will be an optimal piecewise smooth
approximation of the edge.

Fig. 4 gives the intermediate results of ship candidate detec-
tion. In Fig.4, (a) is the original image, (b) is the new mixed
image Mixu(x,y), and (c) is the final detection result. Three
small patches from left to right in Fig. 4(d) and (e) correspond
to the original images, the initial segmentation results and the
refined segmentation results of two objects in Fig. 4(c), respec-
tively. It is easily concluded that the refined segmentation re-
sults via level sets approach are closer to the true object edges.

®)

2 dxdy + J.omside(c)‘u (x,y)- cb‘Z dxdy

Fig. 4 Detection of ship candidate region

3.2 Ship candidate region recognition

Considering the aim of ship candidate region detection is to
locate all probable objects, many false alarms must be produced.
Therefore, in order to eliminate these false alarms in the fol-
lowing stage, i.e. ship candidate region recognition, we first
employ the PLSA technique to model the candidate objects, and
then recognize the generative model by using SVM classifier.
Since the PLSA model is generated from the feature frequency
matrix, we should explain how to compute this matrix before
describing the detailed recognition method.

3.2.1 Feature frequency matrix computing

This paper computes the feature frequency matrix based on
two kinds of features-shape and texture. Shape feature, which is
computed from the binary image obtained after image refined
segmentation, mainly represents the object characteristics. Texture
feature, which is computed from the candidate region, represents
some context information as well as the object characteristics.

Shape frequency matrix

Considering the different spatial resolutions of remote sens-
ing images, we select the following rotation- and scale-invari-
ant shape features: rectangularity, eccentricity and the first three
invariants of Hu moment. In order to form the feature fre-
quency matrix, we quantize each shape feature s into a certain
value v; of vocabulary V according to a nearest neighbor rule:

s Q(s)=v, «>dist(s,v,) < dist(s,vj),vj e{l-,N,} (9)

where dist(x,y) denotes the Euclidean distance between x and y,
and N, denotes the size of vocabulary V. More specifically, we
apply the k-means algorithm to each shape feature extracted
from training images, and keep the means as the values of cor-
responding vocabulary V, then quantize the feature into a v; of
its vocabulary according to Eq. (9). Finally, the shape feature
frequency matrix H(s) is constructed by Eq. (10) based on the
obtained v;:

H(s)=(h'(s)),, () =(R ().h(s). bl (5)) (20)
where hi(s)=1 when Q(s)=v;, otherwise h;(s)=0. L denotes the

category of shape feature (L=5 in this paper) and N! denotes

the vocabulary size of the I-th shape feature.

Texture frequency matrix

Currently, numerous texture descriptors have been presented,
and local-binary-pattern (LBP) operator (Ojala et al., 2002) has
been proved to be a theoretically simple yet very effective
multi-resolution statistical texture descriptor in terms of the
characteristics of the local structure. However, the extension to
the LBP operator based on “uniform” patterns still has some
shortcomings: it discards some important texture information
and is sensitive to noise. Thus, this paper uses a novel extended
LBP operator presented in the previous work (Zhou et al.,
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2008). It further assigns proper labels to different non-uniform
patterns according to the measures of similarity and structure so
as to improve the description ability of the LBP operator. For
brevity, some detailed definitions can be found in references
(Ojala et al., 2002; Zhou et al., 2008). Meanwhile, the texture
feature based on LBP operator is a discrete histogram, and after
normalizing this histogram, we can use it as the texture feature
frequency matrix.
3.2.2 Object discrimination

The object recognition process includes two steps: training
process and predicting process, which are illustrated at the bot-
tom of Fig. 3. Training proceeds in two sub-steps. First, the

train
i

model parameters P(f|z,) and P(z[o") are generated

by fitting the PLSA model to the set of training samples based
on EM algorithm, and each training sample is then represented

by a K-Dimension vector P(z|0-"a‘“) . Second, a SVM classi-

fier is trained given the vector P(z|o"a‘”) of each training

object and its class label. We use the LIBSVM package (Chang
& Lin, 2001) to implement the SVM classifier and the model
parameters of SVM are obtained by cross-validation.

Predicting process also proceeds in two sub-steps. First,

P(2]0"™") of the test samples are achieved by running EM in a
similar manner to that used in training process, but now, only

the coefficients P(z/0"") are updated in each M-step with the
learned P(f,|z,) kept fixed. The result is that the test sample

is represented by a K-Dimension vector P(z [0*'). Second,

each P(z |oi‘e5‘) is then predicted by the SVM classifier to get
the final recognition result.

In order to avoid overfitting in a standard procedure of EM
algorithm, this paper use the Tempered Expectation Maximiza-
tion (TEM) (Ueda & Nakano, 1988) for model fitting. By ap-
plying TEM algorithm only the E-step is modified as follows:

8
f. )
P(zJo. ;)= [KP( f)Plalo) 7
Z.:{P( fj|z,)P(z, |°i)}
where f(0</<1) is the temperature controlling parameter.

However, a better fitting result based on TEM algorithm can
not be produced at any g in practice. Thus, according to

(11)

(a) (b)

Hofmann (2001), this paper uses the following method to select
an optimal g

(1) Set p=1 and perform EM until the perplexity defined in
Eq. (12) stops descending.

(2) Decrease pand set S=np, where n=0.95.

(3) As long as the perplexity improves (non-negligible) con-
tinue TEM iterations at this value of S, otherwise goto step 2.

(4) Selection stopping on g, i.e., stop when decreasing g2
does not yield further improvements.

In the above process of iteration, the perplexity is a measure
to assess the generalization performance of a model (Hofmann,
2001), and it can be defined as Eq. (12):

Y2 (o f)P (o] )
(o)

where n”(o,,f;) denotes the feature frequency matrix of

perplexity = exp

(12)

hold-out data. In this paper, we select the same amount of sam-
ples from the test data to construct the hold-out data.

4 EXPERIMENT RESULTS

In this section, many different remote sensing data were
used to demonstrate the performance of the proposed ship de-
tection algorithm. We firstly introduced the testing environment
of the experiments and the quantitative evaluation measures,
then investigated the various choices of some important algo-
rithm parameters, lastly compared the results of our algorithm
with those of two other commonly used classification methods,
i.e. PCA+KNN and Feature+SVM.

4.1 Experiment setup

316 optical remote sensing images acquired by CBERS and
SPOT4, the spatial resolutions of which were different from
10m to 5m, were utilized in the experiments. Some typical
testing images were shown in Fig. (5), including different false
alarms such as clouds, islands, ocean waves, etc. 1653 image
patches were obtained by ship candidate region detection, and
they contained all ship objects presented in the testing image.
495 image patches were random selected as the training sample
set and the rest formed the testing sample set. All experiments
involved were executed on a 2.66 GHz Intel Pentium IV work-
station and the proposed detection algorithm was implemented

(d)

Fig. 5 Typical samples of the testing image
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in VC++6.0. Some detailed implementation had been described
in section 3 and the setting of important parameters would be
specified in section 4.2.

This paper used Recall and Precision of ship object to evalu-
ate the performance of different detection approaches. For the
given test image set, |Wg| is the number of ship objects labeled
by human, and |Wy| is the number of ship objects detected by
certain approach where |W¢| is the number of correctly detected
ship objects. Then, Recall and Precision can be defined as:

Recall 5|W, |/ |W; |,Precision =|W, | /|W,, | (13)

Recall represents the detection completeness of ship objects,
while Precision evaluates the tendency of the algorithm for
false alarms.

4.2 Algorithm parameters analysis

In this section, we mainly investigated two key parameters in-
volved in our algorithm, temperature controlling parameter S and
latent aspect number K. We would carry out a set of experiments
under different conditions to select optimal parameter setting.

4.2.1 Optimizing the parameter 3

We had carried out four experiments (two experiments for
texture and two for shape) to validate the feasibility of the op-
timal g selecting method. The result of each experiment is
shown in Fig. 6(a) and (b), respectively. In this figure, vertical
coordinate corresponds to the value of perplexity defined in Eq.
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(12), horizontal coordinate corresponds to the number of itera-
tion and each curve represents the convergence results at dif-
ferent . For clear expression, we only marked the result of =1
(i.e. the result of standard EM algorithm) and that of optimal g,
which are emphasized by the curves through circles and penta-
grams, respectively. According to the experiment results, the
perplexity value of model fitting based on TEM are obviously
lower than the value of standard EM, i.e. the model fitting per-
formance of TEM is better than that of EM.

4.2.2 Optimizing the parameter K

In the PLSA technique, K is the number of latent aspects Z,
which should be specified by human. It determines the algo-
rithm performance as denoted in references (Quelhas et al.,
2007; Wang et al., 2009). Therefore, we should first analyze the
diversities of detection results with different number of latent
aspect. Shape and texture feature were respectively tested. We
test 20 times at each number of K and then computed the mean
and variance of each group of results. Fig. 7 shows the experi-
ment results. Meanwhile, to further illuminate the advantage of
TEM algorithm, we also gave the detection result of EM algo-
rithm in this figure.

In Fig. 7, the square points and diamond points correspond
to the average result with each K based on TEM algorithm and
EM algorithm respectively, the line segment between two cross
markers of each point represents the double-times variance of
the result with corresponding K, and the dashed line denotes the
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Model fitting results with different feature occurrence matrixes by using TEM and EM algorithms, respectively

(a) Shape feature; (b) Texture feature
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Fig. 7 Detection results with different K by using TEM and EM algorithms, respectively
(a) Shape feature; (b) Texture feature

changing tendency of the detection results with K varying. Ac-
cording to Fig. 7, the mean of Recall and Precision based on
TEM is obviously larger than that based on EM. On the other
hand, the variance of the former is almost lower than that of the
latter. In other words, the performance of TEM algorithm is
much better and more robust than that of EM algorithm. On the
whole, the detection results of TEM algorithm change little
with the various K.

In Fig. 8, we also gave the average time for fitting the train-
ing set and the testing set with different K, respectively. This
figure shows that the model fitting time of TEM algorithm is
often longer than that of EM algorithm. This is mainly because
TEM algorithm has to estimate the optimal temperature con-
trolling parameter S and implements additional exponential
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operation in E-step. Therefore, to balance the performance and
computational burden, K was set as 32 in the following experi-
ment, where the number of shape latent aspect was 19 and the
number of texture latent aspect was 13.

4.3 Detection performance analysis

In order to further evaluate the performance of the proposed
algorithm, we compared it with two other existing approaches.
The first is the traditional PCA+KNN approach in which prin-
ciple component analysis is carried out on the extracted features
and then the analysis results are recognized by KNN classifier
(the number of neighborhood is 7). The second is the com-
monly used Feature+SVM approach in which extracted features
are directly recognized by SVM classifier and then final results

Value of K

- -
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Time of fitting the testing set/s
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Fig. 8 Model fitting times with different K by using TEM and EM algorithms, respectively
(a) Shape feature; (b) Texture feature
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are obtained. Meanwhile, we also test two different detection
strategies: (1) binary detection, i.e., ship objects are labeled as
one category and other false alarms are assigned into the same
category in training process; (2) multiple classification, i.e.,

each kind of false alarms as well as ship objects are label as one
category in training process. Table 1 and Table 2 list the detec-
tion results on different feature sets under strategy 1 and 2,
respectively.

Table 1 Performance evaluation of different methods based on strategy 1
Recall /% Precision /%
Feature category
PCA+KNN Feature+SVM Our method PCA+KNN Feature+SVM Our method
Shape 79.39 79.15 81.27 55.27 62.39 60.52
Texture 86.52 90.10 91.52 60.09 67.46 68.27
Shape + Texture 88.23 89.39 88.51 60.28 70.08 71.55
Table 2 Performance evaluation of different methods based on strategy 2
Recall /% Precision /%
Feature category
PCA+KNN Feature+SVM Our method PCA+KNN Feature+SVM Our method
Shape 75.78 79.14 82.38 68.65 70.29 71.24
Texture 76.26 84.89 87.41 81.80 83.98 84.97
Shape + Texture 77.34 86.48 88.77 82.98 81.45 83.03

Totally speaking, strategy 1 can yield higher Recall but
much lower Precision. All Precisions under strategy 1 are no
larger than 70%. However, increasing the training samples of
false alarms cause Recall decreasing quickly. The main reason
is that the used detection algorithm could not efficiently model
ship and false alarms under strategy 1 and then can not yield
better Recall while keeping Precision higher. Therefore, we
paid our attention to analyze the results under strategy 2. Ac-
cording to Table 2, the detection results on texture feature are
better than which on shape feature for the reason that some
false alarms, such as cloud and ocean wave, indeed have similar
shape characteristics with those of ship objects. In other words,
the phenomenon 2 described in the introduction often exists in
shape feature. On the other hand, combining the shape and
texture feature will improve Recall of each approach for the
reason that the information provide by them is complementary.
However, for the effect of the previous phenomenon, Precision
of each approach decreases.

Table 2 also indicates that the proposed algorithm outper-
forms the other two approaches. Compared with PCA+KNN
approach, our algorithm increases Recall with 7 points at least
on different feature sets while producing higher Precision.
Compared with Feature+SVM approach, our algorithm in-
creases Precision with about 3 points while producing compa-
rable Recall. Although the increase for Feature+SVM approach

is not very large, the proposed algorithm still improve the
whole performance of detection considering its less time of
training and testing in model discriminating which is listed in
Table 3. In addition, PCA+SVM belongs to a non-parameter
approach and it does not need offline training, so Table 3 do not
list the training time of this approach. However, the testing time
of PCA+SVM is the longest of the three approaches and its
performance is the worst.

5 CONCLUSION

This paper proposes a novel ship detection algorithm for op-
tical remote sensing images based on model generating and
discriminating. On the basis of quick detection of ship candi-
date region and effective extraction of various features, it first
generates the description model of ship candidate region in
terms of latent aspects by using the PLSA technique, and then
constructs the discrimination model of ship candidate region by
using SVM classifier. For one thing, the proposed algorithm
can overcome the difficulty of representing object caused by the
un-matching between the object and its extracted features. For
another, it can relieve the complexity of the classification by
SVM in the process of ship candidate region recognition, and
decrease the time of training and testing for discrimination
model. Meanwhile, the designed method of adaptive parameter

Table 3 Training and testing time for object recognition by using different methods

Training time /s Testing time /s
Feature category
PCA+KNN Feature+SVM Our method PCA+KNN Feature+SVM Our method
Shape — 10.297 7.266 0.515 0.250 0.203
Texture — 7.328 4.875 0.453 0.375 0.324
Shape + Texture — 14.187 7.437 0.647 0.421 0.391
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selection can obtain the optimal g of TEM algorithm so as to
significantly improve the performance of model fitting. As the
experiments demonstrated, the proposed algorithm can provide
satisfactory ship detection results for optical remote sensing
images in various complicate conditions.

Although more accurate, the proposed algorithm still face to
address some problems, such as how to confirm the optimal
number of latent aspect and how to quantify the extracted fea-
tures to effectively compute feature frequency matrix. In addi-
tion, another method to improve the detection performance, we
believed, is to introduce some proper prior constraints into the
PLSA model.
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