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Selection of optimal scale in remotely sensed image classification
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Abstract: The effect of scale is continuously attracting attentions in geomatics, bionomics and environmentology. Many
methods have been developed for the selection of optimal scale, including those based on local variance, variogram and trans-
formed divergence. However, there are some problems associated with these methods, which limit their applications in practice.
This paper presents a new method for optimal scale selection, based on information entropy. The novelty of this new method is
that the multi-spectral information is fully used to define the optimal scale. In this method, (a) information entropy is introduced
to quantify the uncertainty in image classification; (b) the spatial distribution is also taken into account. This new method has
been evaluated and also compared with the existing methods, i.e., those based on local variance, variogram and transformed di-
vergence. Two types of image are used, i.e. TM (Thematic Mapper) which has relatively low resolution and Quickbird image
which has high resolution. The experimental results show that the proposed algorithm is capable of effectively determining the
optimal scale for these images. In the case of classification of Quickbird image, objected-oriented classification technology is
used and the results prove that the new method not only works well with traditional classifiers but also performs with ob-
ject-oriented classifiers for high resolution images. A comparative analysis shows that the new method performs much better
than existing methods.
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1 INTRODUCTION

Scale effect has been considered as the first challenge in the
earth observation (Raffy, 1994). The fundamental reason for the
continuing interest in scale in remote sensing is that spatial
resolution is the primary scale of measurement (Atkinson &
Aplin, 2004). In early 1980s, Markham and Townshend (1981)
pointed out that the effect of spatial resolution on the classifica-

tion accuracy of remotely sensed data was related to two factors.

One is the change of the number of mixed pixels which locate
near the boundaries among classes and the other is the change
of the spectral variations within classes. While the spatial reso-
lution of remotely sensed data becomes finer, the number of
mixed pixels will decrease, which is positive for classification
accuracy. However, the spectral variation within classes will
increase, which is negative for classification accuracy. The net
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effect of these two factors is a function of the environment of
the image scene. Thus, it is necessary to explore the net effects
of the change of spatial resolution on the classification accuracy
of remotely sensed data (Bo et al., 2005).

Much research has been conducted on identifying the ‘opti-
mal’ spatial resolution for a particular purpose or investigation,
where there is a prior assumption that the features under inves-
tigation are scale-dependent. Woodcock and Strahler (1987)
degraded an image with relatively fine spatial resolution to
successively coarser spatial resolutions to identify the most
appropriate scale of observation. Variogram based method was
used to identify the optimal scale (Woodcock et al., 1988a,
1988b; Atkinson, 1997; Atkinson & Curran, 1997; Atkinson &
Tate, 2000; Treitz, 2001). The methods based on local variance
and variogram make use of only a single waveband. It was
found that substantial differences may exist between the statis-
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tics obtained for different wavebands. This is a serious problem
because usually only a single spatial resolution will be chosen
for a given multi-spectral or hyper-spectral sensor and this lim-
its their application in practice (Bo et al., 2005).

Recently, Bo et al. (2005) have developed a more complex
method in which statistical sperability was used to explore the
scale effect of remote sensing data classification and to deter-
mine optimal scale. In their work, Landsat TM image with 30m
spatial resolution was degraded to different spatial resolutions
and the samples for each land use class were taken at each scale.
The transformed divergence at each spatial resolution was cal-
culated with the multi-spectral information of the samples. The
average transformed divergence was defined to describe the
mean value of statistical seperability among every pair of
classes in the situations with more than 2 classes. The scale
with the highest averaged transformed divergence is finally
selected as optimal for image classification. A similar experi-
ment using Jeffry-Matusita (J-M) distance as the measurement
of statistical seperability was also conducted. The results
showed that the statistical seperability solved the problem asso-
ciated with the selection of waveband in the single-waveband
based methods (local variance and variogram). A severe prob-
lem is that the averaged divergence does not take into account
the spatial distribution pattern of all land cover types (Sun et al.,
2002). Therefore, it is necessary to analyze the spatial distribu-
tion patterns in the image so as to identify the optimal scale.
Indeed, it is more appropriate to develop new method on the
identification of optimal spatial resolution.

The aim of this paper is to illustrate an entropy-based
method for the selection of optimal scale in image classification.
In this new method, entropy, which is computed with the
multi-spectral information in the image, is used to describe
uncertainty in image classification. The key idea of the en-
tropy-based method is to choose optimal scale with minimal
average entropy of separability from the entropies of
multi-scale image data in the same region. The main advantage
of the proposed method is that the spatial distribution pattern is
taken into account because the entropy of all pixels in the im-
age is obtained.

2 ENTROPY-BASED APPROACH FOR DETER-
MINATION OF OPTIMAL SCALE
2.1 Information entropy

In information theory, entropy is a measurement to describe
uncertainty. Let X be the random message variable, if the prob-

abilities of different message choices are Py, P, , P;, Py, the
entropy of X is computed as follows:
n
H(X)=H(P,P,,P) == RInR ()
i=1

Statistically speaking, H(X) reveals how much uncertainty
the variable X has on average. When the value of X is certain,

Pi=1, then H(X)=0. H(X) is at its maximum when all messages
have equal probability (Li & Huang, 2002). Entropy can be
used to describe the separability between classes in image
classification.

Some researchers have used the entropy concept for de-
scribing separability in image classification. Let ¢ be the total
number of classes, x the pixel to be classified,

def
P(@[x) = p;(i=12--, c)the posterior probability of x for

C
each class and Z p; =1. The entropy of the pixel which is used

i=1
to describe the separability is then as follows:
def c
He(x) = He(p)=-2_piInp, )
i=1

All posterior probabilities being equal means that nothing is
known about class membership, and the entropy value reaches
the maximum. If, on the other hand, one of the probabilities
equals 1 (and the others 0), class membership is completely
determined, which is reflected in entropy value 0. Therefore,
we iterate each pixel in the image and compute their entropies.
The average of all these entropy values is used to express the
global uncertainty of the whole image. The average entropy
was calculated as follows:

Ha =y 2o () ®

where, H, denotes the average entropy, n denotes the numbers
of pixels in image, and H¢(x;) denotes the entropy of a pixel (i.e.
i™), which is the same as H(x) in Eq. (2).

2.2 Algorithm procedure

The main advantage of average entropy is that the spatial
distribution pattern of classification uncertainty in the image is
taken into account because the entropy of each pixel is consid-
ered. It can be imagined that, due to the scale effect, there must
be differences between the classification uncertainties of
multi-scale image data in the same region. Thus, it would be
sound to select the scale with lowest average entropy as optimal
scale for image classification (Han et al, 2008).

Based on the ideas described above, a procedure is designed
as follows:

(1) Image aggregation: The original image with fine resolu-
tion is degraded to successively coarser resolutions by aggrega-
tion.

(2) Selecting training samples: As application oriented, the
entropy-based method requires a priori information about the
type of classes to be extracted. That is, training samples for
each class are selected from the image at original resolution.

(3) Estimating the parameters of the probability distribution
function (PDF) for each class: The Expectation-Maximization
(EM) algorithm was employed to estimate the PDF of the
classes on the image.

(4) Computing the entropy which describes the seperability
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between the classes: Based on the estimated PDF in Step 3, all
pixels on the image are iteratively used to compute the posterior
probability for each class.

(5) Averaging the entropy value of each pixel on the image
to get the mean of the entropies which indicates the seperability
of the whole image.

(6) Finding the scale with the lowest averaged entropy in the
serial images and specify it as the optimal scale, at which the
desirable overall classification accuracy can be achieved.

The flowchart of the entropy-based method is shown in Fig.1.

‘ Aggregating image |

]

| Selecting training samples |

|

| Estimating parameters of PDF |

l

I Computing separability entropy of each pixel l

l Averaging separability entropy of each pixel |

}

I Choosing optimal scale with the lowest averaged entropy |

Fig. 1 Flowchart of the entropy based approach for the choice of
optimal scale in image classification

2.3 Expectation-Maximization (EM) algorithm

A common task in image processing is the estimation of the
parameters of a probability distribution function. In this study,
the Expectation-Maximization algorithm is used to estimate the
PDF of each landcover class which is assumed to belong to
normal distribution, as the EM algorithm is proved to be ideally
suitable for this sort of problems in many cases (Ju et al., 2003;
Ju et al., 2005). The EM algorithm consists of two major steps,
i.e. first an expectation step and then a maximization step. The
expectation is with respect to the unknown underlying variables
and is predicted by using the current estimate of the parameters
and conditioned upon the observations. The maximization step
then provides a new estimate of the parameters. These two
steps are iterated until convergence (Moon, 1996) is reached.
The flowchart is illustrated in Fig.2.

The convergence of the EM algorithm means that, at every
iteration, the estimated parameter provides an increase in the
likelihood function until a local maximum is achieved, at which
point the likelihood function cannot increase any more (but will
not decrease) (Moon, 1996).

For the EM algorithm, parameter initialization is a problem
to be addressed. We give an initial value to each of the parame-
ters of PDF at the beginning of the iteration, which is computed
by using the selected training samples. However, the number of
pixels in training areas will decrease with a decrease in spatial
resolution. It is worthy of noting the small sample size problem

Choose an initial parameter

'

E-Step: estimate unobserved data <

!

E-Step: compute maximum likelihood estimation
of parameter using estimated data No

!

Converged?

[
Yes

v

Stop

Fig. 2 Flowchart of the entropy based approach for the choice of
optimal scale in image classification

will have impact on the iteration of the EM algorithm for the
density estimation. At least 12 training samples for each class
are required to ensure that the EM algorithm iterates ad
nauseum. If not, the iteration of the density estimation would
not be normally carried on.

3 EXPERIMENTAL DESIGN

To conduct experiments properly, it is essential to select
some sets of appropriate image data and make proper design of
the experiments.

3.1 Description of test area and data sets

In this project, we selected two types of images, i.e. TM
with medium resolution and QuickBird with high resolution.
The TM image covers Guangzhou and its surrounding areas
(Fig.3) and was acquired on 20 November 2001 with spatial
resolution of 30m. The image consists of pixels. This TM image
was colleted with six bands. Six main classes of land covers are
present, i.e., water, forest, farmland, built-up area, grassland
and bare soil.

Fig. 3 Experimental TM image
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The Quickbird image (Fig.4) covers an area in Hefei (China)
and consists of four multi-spectral bands with 2.4m resolution.
The image size is 551x599 pixels. The main land cover classes
include road, country-road, water, garden plot, built-up area,
farmland and bare soil.

Fig. 4 Experimental QuickBird image

3.2 Design of experiments

A number of strategies need to be considered such as the
proper selection of classification methods, aggregation of images
and use of ground truth.

It was decided to use the maximum likelihood (ML) classi-
fier for the TM image classification because this is the most
commonly used on medium resolution. Six classes are designed
for the TM image classification, i.e. water, forest, farmland,
built-up area, grassland and bare soil.

In the case of QuickBird image, a method called support
vector machine (SVM) is employed as the classifier. In use of
the SVM classifier for the QuickBird experiment, the kernel
type was defined as Radial Basis Function; the Gamma value
was set as 0.333; and the penalty parameter was 100.

The Bicubic aggregation method is used for aggregation of
the images from the original resolution to new images with a
range of resolutions. For the TM image, a set of new images are
generated with aggregation with different window sizes, i.e.
2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9, 10x10. That is, the
resolutions of new images are, 60m,---, 300m. For the Quick-
Bird image was gradually degraded with four different window
sizes (2x2, 3x3, 4x4, 5x5). As a result, the resolution ranges
from 4.8 mto 12 m.

In order to check the validity of the new method, a com-
parison with those which are based on local variance,
variogram and transformed divergence is also carried out. In

experiment on local-variance-based method, we set the size of
the moving window as 3><3. In experiment on variogram-based

method, the spherical model is selected to fit onto the
variograms.

3.3 Experimental results

A number of strategies need to be considered such as the
proper selection of classification methods, aggregation of images
and use of ground truth.

3.3.1 Results on the TM image data set

The result computed by the entropy-based method from the
TM image is shown in Fig.5. It can be found that the lowest
average entropy is at 60m, which is indicated with rectangle
point. The overall accuracy and the classification Kappa coeffi-
cient are shown in Fig.6 and Fig.7. From Fig.6 and Fig.7, it can
be found that the classification accuracy increases from the
original resolution 30m to 60m, with a peak at 60m. As resolu-
tion increases further, the Kappa coefficient gradually becomes
lower, except at 300m at which the overall accuracy is higher
than that at 270m. That is, the classification accuracy reaches
the maximum when the resolution is 60m. The highest classifi-
cation accuracy is highlighted with rectangle point in the figure.
This test results show in an absolute sense that 60m defined as
the optimal scale by the proposed method is the resolution at
which highest overall classification accuracy is reached.
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Fig. 5 Relationship between average entropy and resolution in
the TM experiment
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Fig. 6 Relationship between overall classification accuracy and
resolution in the TM experiment
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Fig. 7 Relationship between Kappa coefficient and resolution in
the TM experiment

In order to assess the superiority of the proposed method, we
compared the results obtained by existing methods. The expe-
rimental results are shown in Fig.8, Fig.9, Fig.10, respectively.
In the case of local-variance based method, it is found that sub-
stantial differences may exist between the statistics obtained
from different wavebands (Fig.8). The local variance reaches its
peak at 60m in the TM 5 waveband and at 180m in the TM 3
waveband. Therefore, no unique solution could be obtained. In
the case of variogram-based method, a similar phenomenon is
seen to that in local variance. That is, there are differences in
the variograms between wavebands. For example, the semi-
variogram for TM 2 waveband reaches maximum at approxi-
mately 355m implying the size of dominant objects in the study
area. For TM 4 waveband, the semi- variogram reaches maxi-
mum at approximately 280m. (Fig.9). In the case of trans-
formed-divergence-based method, as shown in Fig.10, the aver-
age transformed divergence reaches its peak at 90m, which
indicates that 90 m is the optimal scale. But this does not match
the result of image classification experiment conducted above.
Indeed, this result indicates that the transformed-divergence-
based method would lead to wrong conclusion. On the other
hand, the entropy based method is capable of predicting the
optimal scale reliably, i.e. with high overall classification accu-
racy reached.
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Fig. 8 Local variance as a function of resolution for the different
TM band image

3.3.2 Results on the Quickbird Image Data Set

Fig.11 is obtained by the entropy-based method from the
Quickbird image. It can be found that the average entropy curve
reaches the lowest value at 2.4m. The results of classification
of the sequential images by using SVM are shown in Fig.12 and
Fig.13. From the classification accuracy figures, it can be seen
that, among the five scales, the highest overall accuracy is obtained
at the original resolution (2.4m). By comparing Fig.11 with
Fig.12 and Fig.13, it can be noted that the accuracy curve is
highly similar to entropy curve. It is clear that the proposed
method is also effective in the case of classifying high-resolu-
tion images with advanced classifier, such as SVM.
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Fig. 9 Comparison of the maximum distance of variogram of the
six band images
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resolution in the TM experiment
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Fig. 11 Relationship between average entropy and resolution in the
Quickbird experiment
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Fig. 12 Relationship between overall classification accuracy and
resolution in the Quickbird experiment
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Fig.13 Relationship between Kappa coefficient and resolution in the
Quickbird experiment

4 CONCLUSION

In this paper, an entropy-based method is described for the
determination of the optimal scale in image classification. In
this method, (a) entropy is used to describe the uncertainty in
image classification; (b) multi-spectral information is used as
multi-dimensional variable so as to overcome the limitation
caused by existing methods which make use of only a single
band; (c) spatial distribution is also taken into account by cal-
culating the entropy of each pixel. In order to assess the effec-
tiveness of the proposed method, two experiments were con-
ducted. From these tests, we can conclude that (a) the new
method is capable of determining optimal scale (resolution)
reliably both for medium- and high-resolution images; (b) the
new method produces more reliable predictions than existing
methods which have the waveband selection or multi-classes
problems; (c) moreover, the new method is adaptive because
the optimal scale will vary with the number of classes.
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