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Tensor-based learning machine for remotely sensed
Image target detection
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Abstract: This paper proposes a new way to detect the targets in remote sensing images based on the tensor learning machine
(TLM). This method is based on tensor and tensor algebra. To utilize the multidimensional data of the remote sensing image, the
vector-based learning machine is generalized to the tensor-based learning machine which accepts tensors as input, then the con-
vex optimization theory and the alternating projection procedure are used to get the solution of the TLM. TLM is tested to target
detection using the hyperspectral remote sensing data and high resolution remote sensing data. The experiments demonstrate the
effectiveness of the proposed method, by comparing TLM with support vector machine, the tensor learning machine can
keep a high probability of successful detection and reduce the false alarm.
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1 INTRODUCTION

Target detection is a focused issue in remotely sensed image
processing. The support vector machine (SVM) has been
widely used in remotely sensed image target detection (Tan &
Du, 2008). As a vector-based learning machine, it aims to find
an optimal criterion to distinguish the target and background by
learning the training samples of spectral vector, and use this
criterion to classify all the pixels in the image. SVM for target
detection considers the spectral information of the target and
background. However, with the development of the spatial
resolution, spectral resolution and temporal resolution of re-
motely sensed data, many targets must be represented as a two-
dimensional or multidimensional array instead of a vector. In
this situation, the efficiency of SVM decreases, which is pre-
sented by the false alarm increasing. Consequently, a new data
model which could represent the multidimensional array must
be introduced instead of the vector for hyperspectral and high
resolution remotely sensed images target detection.

Tensor, as a data model which could represent the multidi-
mensional array, is considered to represent the target and back-
ground objects with several or more pixels better than the vec-
tor. Tensor learning is a new research direction in machine
learning and data mining. Some popular learning machines
such as the support vector (SVM) (Vapnik, 1995), the minimax
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probability machine (MPM) (Strohmann et al., 1993), and
Fisher discriminant analysis (FDL) (Duda et al., 2001), only
use the one-dimensional vectors as the input samples for train-
ing. However, the data is existed as the model of tensor in real-
ity (Li et al., 2008), so that the structure information would be
inevitable lost if we represent the data by vector. Therefore, the
tensor must be introduced as the training samples of the learn-
ing machine and the vector-based learning machine must be
generalized to tensor learning machine (TLM). In this paper,
the principle of tensor learning machine is presented and TLM
for target detection using hyperspectral and high resolution
remotely sensed images is discussed.

2 TENSOR AND TENSOR ALGEBRA

2.1 Tensor

Tensor X e R&*l2*bu represents a multidimensional
array (Tao et al., 2007). M is the order of tensor X and the i
dimension of the tensor is of size L;. An element of X is denoted
as X, .1, » Where I<E<L; and 1<i<M, |; denotes the

location of this element in the dimension or mode i.
For examples of the low-order tensors, a 0-order tensor XeR

is a scalar, a 1-order tensor Xe RY isa vector, and a 2-order
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tensor Xe R%*™ s a matrix, in which Xy, 1, (Ih<Lj) deno-

tes the element of the matrix at row |I; and column I,. The remo-
tely sensed image can be represented as a 3-order tensor

Xe R"%2 L, where L, and L, denote the height and the
width of the image and L3 denotes the number of the bands, and
the element X, , | stands for the digital number (DN) of

pixel at band I, row I; and column I(Fig. 1).

2-mode

1-mode

Fig. 1 3-order tensor represents a remotely sensed image

2.2 Tensor algebra

We have following definitions of the basic tensor algebra
(Lathauwer, 1997):
2.2.1 Tensor outer product (or outer product)

LyxLyx-xLy

The outer product of tensor Xe R and another

tensor Ye RH*-2**tu s defined by:
(X ®Y)|1'|zy, T X|1,|

"le ,|1,| Zv“'vl M

)

2v"'x|MYI'1,|'2,~-~,I'M,
2.2.2 Tensor contraction

The contraction of a tensor is obtained by equating two in-
dices and summing over all values of the repeated indices. The

contraction on tensor XeR wXlbwxbibrexlus gng
Y e Rk <L xWxxxLi s defined by:
[X®Y;1:M)A:M)]
L Ly )
- Ilzz:l . ‘IMZ::l(X)thv“'v'M Tolyly (Y)|11|2'...,|M AL

The condition of contraction is that tensor X and Y are the
same size at the specifically mode, in other words, the numbers
of the elements in tensor X and Y are equally at specifically
dimension. A contraction reduces the tensor order by 2. For
example, for a M+M’ order tensor X and a M+M" order tensor
Y, the result of M times contraction on X®Y is a M+M" order
tensor.

2.2.3 Mode-d product (4U)
It’s a special type of contraction because it happens on a

Lxboxxby - and a matrix U e R%*N | If the
size of the d mode of tensor X is Ly, then the mode-d product

XxqgU of a

tensor X eR

tensor X e R®*:2**lm  and a  matrix

U e R%"% is an tensor of size Lyx Ly r-xLgaxL/gxLgsgx - xLy
defined by:

(Xx d u )|1v|2v‘“!|d71!|c'| Al
= Z(XI1VIZV"'!Id—11Id Al U'é il ) @)
lg

The essence of this computation is a tensor contraction on a
M order tensor X and a 2 order tensor U. And the result of
mode-d product on Xx4U is a M order tensor.

The mode-d product also happens on a tensor

X e R*2*>bw and a vector @eR™, because a vector is a
special type of matrix. The mode-d product Xx4 ey of tensor X
and vector w is an M-1 order tensor; and the result of M times
mode-d products on tensor X and vectors @(1=1,2 ,M):

M
Xkaa)k is a O-order tensor, or a scalar. This operation is
k=1
very important in tensor learning machine and it will be used
many times in following.
2.2.4  Frobenius Norm

Ly xLyx-x Ly

The Frobenius Norm of a tensor X eR is de-

fined by:

X[ = VIX ® X5 (1:M)(L:M)]

(©)]
The Frobenius Norm describes the size of a tensor and its
square is the energy of the tensor.

3 TENSOR LEARNING MACHINE

3.1 Convex optimization

Learning models are always formulated as optimization
problems (Winston et al., 2002; Zangwill, 1969). Therefore,
mathematical programming is the heart of the machine learning
research. The convex optimization has been used in machine
learning successfully, such as linear programming used in linear
programming machine (LPM) (Pedroso & Murata, 1999), and
quadratic programming used for Support Vector Machine

(SVM).
A mathematical optimization problem has the form:
: L
min  f(X) X eR 5)
st. g;(X) i=12,---m

Here the functions gi(X)(1=1,2, ,m) are the equality or ine-

quality constraint functions and the function f(X) is the objec-
tive function.
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The simplest convex optimization is called a linear program
(LP) when the objective and constraint functions are all affine.
A general linear program has the form:

min  f(X)=CTX
X

s.t. A-X<B (6)
Ae- X =Be
Ib< X <ub

where, X=[ X, X4...., Xa]"; C, B, Be, Ib, ub are vectors; and A,
Ae are matrixes. The optimal point only appears at the vertexes
of the feasible set. So if we select all of the vertexes X; and
compute their f(X)=CTX, then we can get the solution of LP.

The convex optimization problem (5) is called a quadratic
program (QP) if the objective function is convex quadratic, and
the constraint functions are affine. A quadratic program can be
expressed in the form:

min f(X):%XTQX +CTX
X
st. A-X<B @)

Ae- X < Be
Ib< X <ub

where X=[ Xy, X,..., xn]T; C, B, Be, Ib, ub are vectors; and Q, A,
Ae are matrixes. In a quadratic program, we use the Lagrange
multiplier approach and KKT conditions to get the solution of
QP (7).

3.2 Support vector machine

Support vector machine (SVM) (Vapnik, 1995) is a machine
learning method based on structural risk minimization and op-
timization theory, which finds a classification hyperplane to
maximizes the margin between the positive measurements and
the negative measurements, as shown in Fig. 2.

Suppose the N training samples x;eR"(1<<i<{N) and their
labels y;e{+1, -1} are known, and we will find an optimal
hyperplane to classify the positive training samples from nega-
tive training samples. The SVM could find the projection vector
»<R" and beR through (Burges, 1998):

© © Support vectors

o Negative samples
Classification error ®
—_— >
¢ °

Classification
hyperplane
-

Positive samples e @

Margin

Fig. 2 SVM maximizes the margin between the positive and negative
training measurements

min Lo ey _
obé 2 il

st yile'x+b|=1-&, 1<i=N ®)
£=20

where &[&,&,....&] eR" are additional slack variable. By
introducing this additional slack variable, Eq. (8) could deal
with the linearly nonseparable problem (see Fig. 2). When the
classification problem is linearly separable, we can set &=0. If
we get the solution of Eq. (8), the decision function for classi-
fication is:
y(x)=a' x+b ©)

Afterward, we can use Eq. (9) to get the lables of unknown
samples x;eR(1<j<M).

We can use the following steps to get the optimal @ and b:

The Lagrangian function of Eq. (8) is:

L(@,b.&,a,x)

12, O N
=—|lof" +cX & - > xidi
2 i=1 i=1

—%ai(yi [a)Txi +b}—1+ fi)

i=1

17 > . T
=—m 0+ ngi — ZOq Yio X
2 i=1 =l
N
~ba'y + Zai —a'E-kTE
i=1 (10)
with Lagrangian multipliers ¢; and x (1<<i<<N). Then we can
get the partial derivative of function L by Eq.(10):

oL N

—=0 = ®=) gViXi

oo Ealyl i

oL T

—:0 = a :O 11
b y (11)
oL

=0 = c-a-x=0

24
Generally, we can first use the dual problem of Eq. (8) to get
the multipliers ¢; and «:

max min L(e,b & a k) (12)

ax obé
If we substitute the Eq. (11) into Eqg. (12), then it can simplify-
ing to the following form:

1 N N - N
max _Ezzy|ylx| xjaiaj +Zai
i=1j=1 i=1 (13)
s.t. aTy=O

0<a<c
If we set Q=[y;y;Xi Xjl1=ij=n, C=1n.1, Ae=y, be=0, Ib=0, ub=C,
then the dual problem of SVM is a QP with the optimization
variable a=[e1,a, , an]". We can use the convex optimization
to get the solution of QP Eq. (13), after that, by the Eq. (11), we
can get the solution of SVM.
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3.3 Tensor learning machine

If we already known the N training samples X; e Rb&*L2>*Lu

(1<<i=<N) (they are M order tensors) with their corresponding
labels y;e{+1,-1}, we must found a optimal tensor hyperplane
to maximizes the margin between the positive samples and the
negative samples. The tensor hyperplane (Fig.3) can be desc-

ribed as y(X Xkawk +b.
k=1

LixLyxLs

Tensor X;eR do the mode-d product with the

projection vectors @y, a», @y orderly at mode 1,2,3, and the
result is a scalar. Then we can distinguish the positive samples
from the negative samples.

To determine the tensor hyperplane, we can use this optimi-
zation to get the parameters @y, a», @; and b (Tao et al., 2007):

2
+CZ§,

min L ®wk
mk‘klbé 2]

k=1
£=0

M
s.t. y{Xinkwarb}Zl—éi,léiéN (14)

£eRN is slack variable to deal with the linearly nonseparable
problem. We can set &=0 if the samples are linearly separable.
The Lagrangian function for Eq. (14) is:

L(a)km/l:l,b,é’,a,lr)
2 N
+CZ§| _Z’Cigi
i-1 i1
N
-2.q (yi |:XiH><kwk +b}—1+ é]
i-1

k=1

1
®co
2 k

Mo N ;o
:EH@( y +c2§i -ba y+2ai
k=1 i=1 i-1
T T % M
—a &-x E- Y ayi| X[ [xcex
k=1 (15)

i=1

Negative samples

ST E

Classification hyperplane

Positive samples

Fig. 3 Tensor hyperplane for 3-order tensor classification

In which ¢ and x;, (1=<Xi<N) are Lagrangian multipliers. We
can get the partial derivative of function L by Eq. (15):

o =0 =
ow
M _
QJJ k#] Zia,y, X,ija)]
H(Ok Wy : - (16)
@zo = a'y=0
ob
%:O = c-a-x=0
o5
The dual problem for Eq. (15) is:
max min L(a)km/':l,b,é,a,x) 17
@K “’k‘m

It is a LP with the optimization variable a.

By the first equation of Eq. (16), the solution of a; depends
on a and ax(1<k<M, k=j). So we use alternating projection
method to get @ Tao (2007) had proved that this alternating
projection is converge. The alternating projection procedure is
executed as shown in Fig.4.

Generate initial value of a;and es (1 <<k<M) randomly

Use the first equation of Eq.(16) to calculate e through a: and e«
(1=k=<M and k), and substitute @; from the former to the later one.

Calculatea a: by the solution of Eq.(17) through e (1 <<k<<M), and
substitute a; from the former to the later one.

'

Converge

Yes

End
Fig. 4 Alternating projection procedure

3.4 Tensor-based learning machine for remotely
sensed image target detection

Remotely sensed image target detection could be considered
as a two-class classification, which classify the image into the
target and background. Use the training samples of target and
background, we can get the optimization hyperplane for classi-
fication by TLM. Take the hyperspectral and high-resolution
remotely sensed images as examples for target detection, the
procedures are as follows:
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(1) Choose the targets and backgrounds as training samples
in the preprocessed image, and convert them to 3 order-tensors
as inputs of TLM use the method describe in section 2.1;

(2) Classify the training samples and get the tensor hyper-
plane using TLM;

(3) Select the window of the same size as the training sam-
ples from the first pixel in the image, take it as the start position
of target detection;

(4) Convert the data in the window to 3 order-tensor, classify
it use tensor hyperplane. Label it if it’s classified as target, or
ignore it if it’s classified as background;

(5) Shift the window when the last window has been proc-
essed. Repeat the action in step 4;

(6) Finish the TLM when the last window in the image has
been processed,;

(7) Post-process the result of target detection. Merge the labels
where they corresponding to the same target.

Fig.5 is the flow chart of tensor-based learning machine for
remotely sensed image target detection:

Qutput the
result

Fig. 5 Flow chart of tensor-based learning machine for remotely
sensed image target detection

Tensor learning’

Input trainging
ample:

Post-process

4 EXPERIMENTS

4.1 Hyperspectral image experiment

In this experiment, the Nuance’s ground truth data is se-
lected for target detection. The Nuance imaging spectrometer
could obtain the images of the wavelength from 650nm to
1100nm, and the spectral resolution is 10nm. The targets in the
image are ten stones while the other objects in the background
including the soil, green grass, and withered grass, the spectral
curves of above objects are showed in Fig. 6. From Fig.6 we
know that the spectral information of target and withered grass
are quite closed (curve A and B).

160
140 | A Target
120 B Withered grass
2 100 F C  Soil
£ g0 b D Green grass
60 [
40

600 700 800 900 1000 1100
Wavelength/nm

Fig. 6 Spectral curves of the main objects in the hyperspectral remote
sensing image target detection experiment

The image in this experiment is 362 pixels width, 514 pixels
height. Consider the redundancy of hyperspectral data, we
choose 10 bands out of all 46 bands and the window size is set
to 13 pixels x 13 pixels. The 5 positive samples and 5 negative
samples are showed in Fig. 7. The tensor learning machine for
this experiment is executed in MatLab R2007a, while the con-
trast experiment of SVM is executed in ENVI 4.5.

The target detection result of the proposed method and SVM
are showed in Fig. 8. From Fig. 9 we can see TLM detect the all
the ten targets in the right place, and the targets with different
sizes could also be correctly detected. Because of the complex
environment in background, both the TLM and SVM make
incorrectly detections, from Fig. 8(a) and (b) we can see that
only one target is detected incorrectly in TLM, while a large
amount of pixels are misclassified into targets in SVM.

In order to quantitative evaluate the result of the proposed
method, successful rate and false alarm rate are introduced,
defines by successful rate = the number of targets which had
been correctly detected / the total number of targets exist in the
image and false alarm rate = the number of targets which had
been incorrectly detected / the total number of targets which
had been detected. The quantitative result of hyperspectral remote
sensing image target detection is in Table 1.

Fig. 7 Experiment data and the training samples
(a) Original image; (b) 10 Training samples in the image

(a) (b)

Fig. 8 Result of hyperspectral image target detection
(a) Proposed method; (b) SVM
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4.2 High resolution image experiment

In this experiment, the image is selected from GoogleEarth
at west California Union Oil Company(38°02'22.55"N,
122°15'01.25"W), which has the size of 1024 pixels width,
724 pixels height and 3 bands. The targets in the image are 15
oilcans and the other objects in the image including soil, roads
and roofs. The roads have the similar spectral information with
the targets so they are difficult to distinguish. The 5 positive
samples and 5 negative samples are selected for training sam-
ples with the size of 30 pixels x 30 pixels x 3 bands according
to the size of the targets. The location of the training samples in
the image is showed in Fig. 10.

In the high resolution remote sensing image target detection,
the high resolution helps to observe more texture and small
targets while cause the high intra-class and low inter-class
variances (Huang, 2009). At this time, the pixels that have the
similar spectral information with the target would be misclassi-
fied as target if we still take vectors as inputs and classify the
all pixels by SVM. However, if we take tensor as inputs, each
pixel would be constructed to 3-order tensor with the neighbor
pixels, which consider spectral and structure information, so the
probability of misclassify this tensor is decreased, that is the
reason why the proposed method could keep a high probability
of successful detection and reduce the false alarm.

Fig. 9 Locations of the targets which have been detected in the image

Table 1 Quantitative result of hyperspectral remote sensing
image target detection

1%
e UM The target detection result of the proposed method and SVM
Successful rate 100 100 are showed in Fig. 11. From Fig.12 we can see 14 targets with
False alarm rate 9.1 52.9 different sizes are correctly detected in right place without

Fig. 10 Experiment data and the training samples
(a) Original image; (b) 10 training samples in the image

0O O O

(a)

Fig. 11 Result of high resolution image target detection
(a) Proposed method; (b) SVM
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any false alarm, while large amount of pixels in the road are
misclassified to target in SVM, because they have similar spec-
tral information.

The quantitative result of high resolution remote sensing
image target detection is in Table 2.

Fig. 12 Locations of the targets which have been detected in the image

Table 2 Quantitative result of high resolution remote sensing
image target detection

1%
TLM SVM
Successful rate 93.3 100
False alarm rate 0 65.1

5 CONCLUSION

In this article a new way to detect the targets in remote
sensing image based on the tensor learning machine (TLM) is
proposed. The vector-based learning machine is generalized to
the tensor-based learning machine which accepts tensors as
input, alternating projection procedure is used to get the solu-
tion of the TLM. A great deal of experiments demonstrate that
TLM could achieve 90% successful rate and keep the false
alarm rate lower than 10%. Compare with the vector-based
learning machine, the tensor learning machine for target detec-
tion could get high probability of successful detection and reduce

the false alarm.
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Xty (ASESL ISiSM), I
i
) XeR
: Xe R4 ;
XE RL1><|—2 y X|1’|2 (1<|I<LI)
Xe RLlXLZ I |2
s Xe RL1><L2><L3 ,
Lo L Ly
' Il l I3
Il |2 1
B

ol
e REAE
1
( 3 )
2.2
(Lathauwer, 1997)
2.2.1
(outer product) : Xe
RL1><|—2><'"><LM ' Ye RLl’xLéxu-xLﬁ,I ,
(X ®Y)|1’|2,.A.]|NI U P = Xll,lz,m,IMY|'l'|'2'..i,|'M, (1)
2.2.2
(tensor contraction) : Xe

R lesz-uxLM><L'1xl_'2><~--><L'Mr Y e RL1><L2><~-><LMxLl"xLé’x---xL{N

[X®Y;@:M)1:M)]

L Ly
= MZ:;l ’ .IMzz:l(X)llsz‘“,lM ,|'1,|Izy‘“,|'M' (Y)Ilvlz"“'IM eI Ve (2)

X Y

: 2 2 ,M+M’
X M+M” Y M ,
M , M!+MH
223 d
d (mode-d product, qU)
X e RL1><|—2><'“><LM Ue RLéXLd d '
X d Lg
(X X dU)|1,|2,4..'|d71’|é N PR I
= %(Xllvlzr”'vld—lvld dgsg el Ulé il ) (3)
M
il M y
’ (M_l) 3 M
M 1
2.2.4
X e Rhboxbw (frobenius
norm)
X [l = ([ X ® X; (0 M)(@: M)]
4)
3
3.1
(Winston , 2002) ,
(linear programming machine,
LPM) (support vector

machine, SVM)

min  f(X) x e Rt 5)
st gi(X) i=12,---,m
m gi(X) ,
f(X)

(linear
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programming, LP), gi(X) f(X)

mxin f(X)=CTX
st. A-X<B (6)

Ae- X =Be

Ib< X <ub
X=[x1,%, X C, B, Be, Ib, ub A, Ae
(Boyd & Vandenberghe, 2004) ,
f(X),

LP

, (Boyd &

Vandenberghe, 2004) (Quadratic programming, QP)

m)gn f(X):%XTQX +CTX

st A-X<B %)
Ae- X < Be
Ib< X <<ub
X=[x1,%, X]": C, B, Be, Ib, ub :Q, A,
Ae QL
K-T
3.2

(support vector machine, SVM)
(Vapnik, 1995; Pedroso & Murata, 1999) ,

N : X eRY(1I<<i<N),

yi€{+1, _1}1 21
weR" beR (Burges, 1998) :

1 N
ol w3y
i=1
st. yi[a)Txi+b]21—§i, 1<i<N
£=0

wb,&

(8)

@ @ ik

eSS
A,

2 SVM

y 5:[511 52;

y i

(11)

K

y §N]T € RN )
( 2
&i=0

weR" beR
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1NN . N
max  —=> > ViyiX Xjaaj+ ).
2ia3a i=1
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, 2007) :
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@K ax, b.g B
(16) ’ ;, [24
ax (1<ksM k=j) :
w; Tao (2007)(Supervised Tensor Learning)
4
3.4
1) :
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