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Fast extraction of endmembers from convex simplex’s boundary
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Abstract:

Endmember extraction is one of the key problems for mixel classification of multispectral imagery. Existing algo-

rithms based on convex simplex often find endmembers within the whole convex simplex so that their speeds are slower when
more samples are used to obtain endmembers. Since only the vertexes of convex simplex are probably endmembers and they
must be located in the boundary of convex simplex,the search space will shrink a lot if finding endmembers is performed only
within the boundary points of convex simplex. According to this theory, this paper presents the endmember extraction algorithm
based on the boundary of convex simplex. The algorithm includes determination of boundary of convex simplex and fast finding
endmembers within the boundary points of convex simplex. Experiments show that the algorithm can find endmembers not only

correctly but also faster than existing algorithms.
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1 INTRODUCTION

Mixel classification is one of the difficult problems in remo-
tely-sensed image classification, in which endmember extrac-
tion is the key step that greatly affects the precision of mixel
classification (Miao & Qi, 2007). Since convex simplex con-
cepts were used in spectral unmixing of AVIRIS data by
Boardman (1993), the methods based on convex simplex have
been frequently used to extract endmenbers. For example, Pixel
Purity Index (Boardman et al., 1995) regards the pixel with the
biggest Pixel Purity Index as an endmember. N-FINDR (Winter,
1999) and Simplex Growing Algorithm (Chang et al., 2006)
regard the vertexes of the simplex with the biggest volume as
endmembers. Convex Cone Analysis (Ifarraguerri & Chang,
1999; CHU et al., 2007) regards the pixel matched with the best
vertexes of convex cone as an endmember. Sequential Maxi-
mum Angle Convex Cone (Gruninger et al., 2004) regards the
pixel with the biggest angle with respect to convex cone as an
endmember. Vertex Component Analysis (Nascimento & Dias,
2005; Bajorski et al., 2004) regards the extreme points as end-
members. Minimum Volume Transforms (Craig, 1994; Bowles
et al., 1998) regards the vertexes of simplex including all pixels
and having the smallest volume as endmembers. Successive
Projection Algorithm (Zhang et al., 2008) regards the average
spectrum of these pixels near vertexes of convex simplex as
endmember’s spectrum. The common characteristic of the
above algorithms is finding endmembers within the whole
convex simplex. In fact, only the vertexes of convex simplex
are probably endmembers and the vertexes of convex simplex
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must be located on the boundary of convex simplex. Therefore,
only from the boundary points of convex simplex, we can find
endmembers very fast because the number of boundary points
of convex simplex is much less than the number of all points
within the whole convex simplex.

According to the above theory, the new endmember extrac-
tion algorithm, called Simplex Boundary Algorithm (abbrevi-
ated to “SBA”), is presented based on the boundary of convex
simplex. It includes determination of boundary of convex sim-
plex and fast finding endmembers within the boundary points
of convex simplex. The comparison between SBA and
N-FINDR is also performed for demonstrating the correctness
and effectiveness of SBA.

2 EXTRACTION OF BOUNDARY OF CONVEX
SIMPLEX

Because acquiring the boundary of high-dimensional convex
simplex is much more difficult than two-dimensional convex
simplex, it is necessary to represent the boundary of high-di-
mensional convex simplex using the boundary of two-
dimensional convex simplex.

Let’s firstly observe the relationship between endmembers in
three-band images and boundary of two-dimensional convex
simplex. If any two bands of the images are expressed graphi-
cally in a two-dimensional spectral space, we can obtain three
two-dimensional scatter diagrams as shown in Fig. 1, where the
symbol “x” expresses the positions of endmember 1, 2, 3 and 4.

Fig. 1 illustrates that endmember 2, 3 and 4 are located on
the boundary of the left “cloud of points”, endmember 1, 2, 3
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Fig. 1 Positions of endmenbers in two-dimensional scatter diagrams

and 4 in the middle, and endmember 1, 2 and 4 on the right.
Although some endmembers are not located on boundary of
“cloud of points”, they are all in the union of all boundaries of
three two-dimensional “clouds of points”. Therefore all end-
members can be found from this union, that is, the boundary of
three-dimensional convex simplex can be substituted by the
union of all boundaries of these two-dimensional “clouds of
points”. It should be noted that the union of all boundaries of
these two-dimensional “clouds of points” are only part of the
boundary of high-dimensional convex simplex which includes
all endmembers.

Generally, we can obtain Cg,l two-dimensional scatter

diagrams using (p—1) -band images only including p categories,
each of which is generated using two bands of the images. We

can also obtain the union of the boundaries of all Cﬁ_l

two-dimensional “clouds of points” and further find p endmem-
bers from the union. Next we need only the following algorithm
to extract the boundary of two-dimensional “cloud of points” in
two-dimensional coordinate system.

(1) Compute the minimum Xmi, and maximum Xpax Of hori-
zontal coordinates of all points in two-dimensional “cloud of
points”.

(2) For Xe[ Xmin, Xmax], firstly find all points with the same x
coordinate and then find the points with maximum or minimum
y coordinate from it, which are regarded as a upper or lower
boundary point, respectively.

(3) Compute the minimum Y, and maximum Y., of verti-
cal coordinates of all points in two-dimensional “cloud of
points”.

(4) For ye[ Ymin Ymax), firstly find all points with the same y
coordinate and then find the points with minimum or maximum
x coordinate from it, which are regarded as a left or right
boundary point, respectively.

(5) compute the union of all upper, lower, left and right
boundary points, which is just the boundary of two-dimensional
“cloud of points”.

3 FAST EXTRACTION OF ENDMEMBERS FROM
CONVEX SIMPLEX’S BOUNDARY

For m-band images only including p categories, where p is

also the number of endmembers and m=p, we can obtain (p—1)
principal component images after applying Principal Compo-
nent Analysis (Keshava & Mustard, 2002) to it. We can further

obtain the union of the boundaries of all Cg_l two-dimen-

sional “clouds of points” and can find p endmembers quickly
from it.

Because the above algorithm for fast extracting endmembers
is mainly based on simplex’s boundary, it is called Simplex
Boundary Algorithm (abbreviated to “SBA”). Next we describe
SBA-algorithm in detail.

(1) If m=p, after applying PCA to m-band images only iclu-
ding p categories, (p—1) -band principal component images are
obtained. And further C,Z)_1 two-dimensional scatter diagrams

are acquired.
(2) Using two-dimensional simplex’s boundary extraction

algorithm, every boundary of Cg_l two-dimensional “clouds

of points” can be obtained. The union IT of all boundaries can
be regarded as search space for finding endmembers in next
steps.

(3) Pick p boundary points randomly from the union IT to
constitute a set of initial endmembers expressed

by{e{o),ego),...,e(po)} .

(4) For k=0, the volume of simplex with vertices

e{k),egk),...,e(pk) is calculated as follows
k) _(k k
V(el( ),eg ), ,eg))z
1 11 .1 @
TR ARCIRCIR0
(p-1)r | [l ) ... el
(5) For each boundary point in the union IT which is denoted
by (p-1) -dimensional sample vector r, recalcu-
k k k k
late V(r,e£),...,e(p)) V(el( ),r,...,e(p))

V (efk),egk),...,e(k) r) , each of which is formed by replacing

p-1
one endmember with r. Assume that
V(e§k),...,e(jk_)l,r,e(j'i)l,...,e%k)) is the greatest of these p re-

calculated volumes and it is denoted by Viax. If Vimax is not
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greater than V(efk),egk),...,e(pk)), then no endmember in

{e}k),egk),...,e(pk)} will be replaced. Otherwise the endmem-

ber eﬁk) in {efk),egk),...,egk)} is replaced with r and a

(k+1)

new set of endmembers {el (k+1)

(k+1)
-

b is pro-

(k+1)
i

(6) The algorithm ends until every boundary point in the
union IT are operated as above. The final set of endmembers is
wanted.

Although SBA is similar to N-FINDR (Plaza & Chang, 2005)
in the process of endmember extraction, N-FINDR finds end-
members from the whole convex simplex and SBA finds end-
members only from the boundary points of convex simplex.
Therefore SBA is much faster than N-FINDR because its search
space reduces a lot.

=rand eV =e forix.

duced by letting €

4 EXPERIMENTS AND ANALYSES

In this section, SBA is compared with N-FINDR, a typical
algorithm for endmember extraction, in order to demonstrate
the correctness and effectiveness of SBA. And some important
conclusions are also drawn from the following experiments.

4.1 \Verification of SBA’s correctness

In this experiment, the comparison between two groups of
endmembers extracted by SBA and N-FINDR is conducted in
order to demonstrate the correctness of SBA. The training images
in this experiment are six-band subimages with the size of 200
pixelsx200 pixels from Landsat-7 ETM+ images except the
sixth band. The training images mainly include four categories:
water, vegetation, bare soil and bare stone. Fig. 2 shows the
composite image obtained using three bands of the training
images.

Fig. 3 gives three two-dimensional scatter diagrams, each of
them is generated using two of three principal components of
the training images. The endmembers extracted by N-FINDR
and SBA are represented by the symbol “®” and “x”, respec-
tively. The boundaries of “clouds of points” are represented by

Fig. 2 The training images used for endmember extraction

the symbol “-”. Fig. 3 illustrates that two groups of endmembers
extracted by SBA and N-FINDR are all located in the union of
the boundaries of three “clouds of points”. Fig. 3 also illustrates
that endmembers extracted by SBA coincide with N-FINDR,
respectively.

Table 1 lists the coordinates of four endmembers extracted
by SBA and N-FINDR. Table 1 shows that the coordinates of
every endmember extracted by SBA are the same as N-FINDR.
This means the endmembers extracted by SBA are the same as
N-FINDR. The correctness of four endmembers are also visu-
ally checked by plotting their positions on the image using the
bright symbol “>" as shown in Fig. 2.

Although the endmembers extracted by SBA are the same as
N-FINDR, there are 40000 pixels which are used as search
samples in N-FINDR and only 676 pixels in SBA. Because the
search space reduces a lot, the time consumption of SBA is
much less than N-FINDR even if the time of boundary extrac-
tion is considered. Table 2 lists the time costs of N-FINDR and
SBA, in which N-FINDR costs 672 ms to extract endmembers
and SBA costs only 15 ms. SBA is much less than N-FINDR
even if 172 ms of boundary extraction are included.
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Fig. 3 Positions of endmembers and the boundaries of “clouds of points” in scatter diagrams
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Table1 Coordinates of endmembers obtained by N-FINDR and

SBA
Water Vegetation Bare soil Bare stone
N-FIDNR (101,120) (172,54) (185,195) (136,165)
SBA (101,120) (172,54) (185,195) (136,165)

Table 2 The number of samples and the time consumption of
N-FINDR and SBA

SBA
N-FIDNR Boundary Endmember
extraction searching
Number of samples 4x10* 4x10* 676
Time consumption /ms 672 172 15

4.2 The relationship between the speed of SBA and
the number of endmembers

In this experiment, the subimages with the size of 400 pix-
elsx350 pixels from 50-band AVIRIS hyperspectral images are
used for endmember extraction. There are many categories in
the subimages and their spectral resolution is 10nm and spectral
range is 1.96—2.51um. Fig. 4 shows the composite image of
three bands of the subimages. Twenty-two groups of endmem-

bers are extracted by SBA and N-FINDR for studying the rela-
tionship between the speed of SBA and N-FINDR and the
number of endmembers. The number of endmembers in each
group is from three to thirteen, respectively. Table 3 lists the
time consumption of SBA and N-FINDR for different number
of endmembers, where the time consumption of SBA includes
the time of boundary extraction and endmember searching. Fig.
5 illustrates the relationship between the number of endmem-
bers and the time consumption of SBA and N-FINDR. Fig. 6
illustrates the relationship between the number of endmembers
and the ratio of time consumption of N-FINDR to SBA.

Table 3 and Fig. 5 show that the time costs of SBA and
N-FINDR all increase rapidly while the number of endmembers
increases, and SBA is always faster than N-FINDR. Table 3 and
Fig. 6 show that the ratio of time consumption of N-FINDR to
SBA is greater than 3.5 for any number of endmembers. How-
ever the ratio of time consumption of N-FINDR to SBA doesn’t
always increase. It firstly decreases and then increases while the
number of endmembers increases. The turning point appears
when the number of endmembers is 5 in this experiment. This
study indicates that SBA has greater advantages than N-FINDR
especially when more endmembers are extracted.

Table 3 Time consumption of SBA and N-FINDR for different number of endmembers

Number of endmembers

3 4 5 6 7 8 9 10 1 12 13
N-FINDR /ms 1281 2156 3297 4954 7016 9391 13189 17641 22662 33891 42406
SBA /ms 312 578 938 1406 1969 2640 3438 4360 5437 6937 8360
Ratio of them 4.11 3.73 3.51 3.52 3.56 3.56 3.84 4.05 4.17 4.89 5.07

4.3 Relationship between the speed of SBA and the
number of training samples

In this experiment, seven subimages with 10°5x10%10%
5x10%10°5x10° and 10° pixels are cut from Landsat-7 ETM+
images and used for endmember extraction. There are only four
categories in every subimage. For each of the seven subimages,
two groups of endmembers are extracted using SBA and
N-FINDR, respectively. Table 4 records the time consumption
of every extraction. Fig. 7 illustrates the relationship between
the number of training samples and the time consumption of

e
f o
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Fig. 4 AVIRIS composite image used for endmember extraction
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SBA and N-FINDR. Fig. 8 illustrates the relationship between
the number of training samples and the ratio of the time con-
sumption of N-FINDR to SBA.

Table 4 and Fig. 7 show that the time costs of SBA and
N-FINDR all increase rapidly while the number of training
samples increases, and SBA is always faster than N-FINDR.
Table 4 and Fig. 8 show that the ratio of the time consumption
of N-FINDR to SBA is always greater than one for any size of
the subimages, and it always increases. However, this increase
becomes slower and slower when the number of training sam-
ples exceeds a value, for example 5x10* in this experiment.
This study means that SBA has more advantages than
N-FINDR when more training samples are used for endmember
extraction.

Table 4 Time consumption of SBA and N-FINDR for different
number of training samples

Number of training samples

1 2 3 4 5 6 7
N-FINDR/ms 16 78 171 828 1672 8437 16875
SBA/ms 15 31 63 219 406 1969 3890

Ratio of them  1.07 252 271 378 412 4.28 4.34
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Fig. 7 Relationship between the number of training samples and the
time consumption
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Fig. 8 Relationship between the number of training samples and the
ratio of the time consumption of N-FINDR to SBA

5 CONCLUSIONS

(1) SBA can find all endmembers using the boundary of
convex simplex as search space, and it can also finish end-
member extraction with less time consumption because of less
search space.

(2) Because all endmembers are in the union of all bounda-
ries of two-dimensional “clouds of points”, this union of
boundaries can be used as search space in SBA algorithm, and
all endmembers can be found from this union.

(3) With an increase of the number of endmembers or training
samples, SBA has greater advantages in speed than N- FINDR.
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