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Change detection using high spatial resolution remotely sensed
imagery by combining evidence theory and structural similarity
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Abstract:  This paper presents an evidence theory based change detection method capable of utilizing multiple image features.
With a moving window, we first get the structural similarities of both time phase image visual features and construct the basic
probability assignment function (BPAF) of D-S evidence theory. We then fuse all the evidence and get the changed image areas
with decision rules. Comparative work on different experimental areas, combinations of change evidence and with other meth-
ods has been carried out. It shows that our method prevents effectively the detection errors from only utilizing single feature and
thus improves the detection precision. Furthermore, since the image similarity is derived from image statistical features rather
than original grey, texture and gradient features, this method is robust to low calibration precision.
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1 INTRODUCTION

Remote sensing image change detection is to extract ground
feature changes using two phase images of the same region by
digital image processing and pattern recognition (Sing, 1989).
It has many applications including environment protection,
agriculture resource investigation and water conservancy con-
struction. The ground feature changes represent as the changes
of image gray value, structure, shape and texture features, and
they are the main clues for change detection. Since gray values
are the most feasible image feature, they are widely used in
change detection. A lot of methods have been proposed includ-
ing band ratio, band difference, regression model, NDVI, and
PCA (Lu et al., 2004). Among these methods, the band differ-
ence method is the simplest, which first obtains a difference
image by subtract one time phase image from the other, and

distinguishes changed or unchanged pixels with some threshold.

This kind of method has many shortcomings. Firstly, it is diffi-
cult to specify the threshold in many cases (Bruzzone & Prieto,
2000). Secondly, image features need to be precisely extracted
from the same position of different time phase images, which
puts forward rigid precision criterion to radiant calibration and
image registration (Lu et al., 2004; Zhong & Wang, 2005).
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With the rapid development of spaceflight, sensors and
computer technologies, the spatial resolution of remote sensing
has improved significantly. High spatial resolution remotely
sensed imagery is with voluminous data, more ground details,
and more serious spectral confusion. It makes traditional
change detection methods only relying on image spectrum not
applicable (Yuan & Song, 2007). In high spatial resolution re-
mote sensing applications, it has already become a hot spot to
develop new change detection methods based on steadier image
visual features.

Compared with image gray values, edge, texture and gradient
are steadier features which are less influenced by time phases.
Furthermore, different visual features are comple- mented evi-
dence for image interpretation. For example, texture is the desc-
riptor of image gray value distribution; gradient represents the
variation degree of neighborhood gray values, and edge often
locates on the boundaries of spatial objects. It might cause un-
detection or misdetection using single feature in change detec-
tion. Based on the above reasons, many non- gray-value- based
and multi-feature-based change detection methods have been
proposed. For example, Fang et al. (2005) proposed an edge
based change detection method; Liu et al. (2005) proposed a
method based on texture or gradient similarity validation. Neil et
al. (2001) and Zhong et al. (2006) implemented change detec-
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tion using line features; Yuan et al., (2007) carried out building
change detection combining image spectrum and textures; \Wan
et al. (2008) proposed a change detection method using texture
and spectral correlation coefficient, etc.

In this study, we propose a novel remote sensing image
change detection method comprehensively considering edge,
texture and gradient changes. We calculate the structural simi-
larity of the three features of both time phase images, create the
basic probability assignment function (BPAF) of evidence the-
ory for each feature, and implement multi-evidence fusion.
With decision rules, we get the changed image areas. Compara-
tive work on different experimental areas, combinations of
changed evidence and with other methods has been carried out.
It shows that our method prevents effectively the detection
errors from utilizing single feature and thus improves the detec-
tion precision.

2 METHOD PRINCIPLE AND STEPS

This method involves image visual feature extraction, fea-
ture histogram statistics, structural similarity calculation of
feature vectors, and multi-evidence fusion, etc. We first intro-
duce the basic principle of evidence theory and structural simi-
larity, and then give the method detailed steps.

2.1 D-Sevidence theory

D-S evidence theory is a mathematical tool for uncertainty
modeling and reasoning (Ruthven & Lalmas, 2003). It consid-
ers both the objectivity and subjectivity of evidence in prob-
ability reasoning, which is different to Bayesian theory. The
probability of evidence theory is the belief to a proposition
based on evidence. The theory implements induction and esti-
mation based on multi- source information, and then gives a
correct decision.

Given a non-empty set U, we call U a frame of discernment,
which is composed a series of mutual exclusive and exhaustive
elements. Given a proposition A in the problem domain, it be-
longs to 2". Define BPAF: m: 2Y - [0,1] in 2Y, and let

m(®) =0
> m(A)=1 @
AcU
where m(A) represents the belief exactly committed to the subset
A of U. (1) If AcU, m(A) denotes the determined belief to A;
(2) if A=U, m(A) denotes an uncertain assignment; (3) if AcU
and m(A)>0, A is called a focal element of m. D-S evidence
theory combines different evidence with orthogonal sum. Let
My, My,..., Mybe n BPAFs in 2Y, their orthogonal sum is denoted as
m=m&m,®--&m, (2)
and is defined as
m(¢) =0
> 11 mia)
NA=AL<j<n

m(A) = 1-k

(YAcU) 3)

where
k= T1 mi(a)
NA=¢1<j<n
and k is the conflict degree of evidence. Eq. (3) is called the
Dempster’s combination rule.

D-S evidence theory is an effective tool for uncertainty rea-
soning. It has many successful applications in the fields of re-
mote sensing, e.g., image classification, road extraction and
shadow detection from multicolor airborne images (Xiao et al.,
2006; Deng et al., 2007; Zhu et al., 2007). In this study, it is
used to combine edge, texture and gradient changes for
multi-feature image change detection.

2.2 Structural similarity

Structural similarity, which was first proposed by Wang et
al.(2004), has already been used in image quality evaluation.
The structural similarity of two vectors X and Y is defined as:

SSIM(X,Y) =[I(X,Y )17 -[e(X, V)P -[s(X. V)P (4)
where

|(X,Y): 22/uX:uY +C1 , C(X,Y)=20X6Y+C2

My +/‘$+CZ O')%O'YZ‘FCZ l
s(X,v)=-Ixy +Cs
Oy Oy +C3

Hx, Ly, 0%, Oy, cr)% ,03 and oyy are the mean, standard deviation,

variance and co-variance respectively, a, S and y are the
weights, and C;, C, and C; prevent zero division. When
a=p=y=1, C3= C,/2, Eq. (4) can be simplified as
(2ux v +C1)(2oxy +Cp)

(45 + 4 +C1)(o% +0% +Cp)

In our study, the BPAFs are derived from the structural
similarities of image features. Generally speaking, the similar-
ity of vector X and Y SIM(X,Y) should satisfy these conditions:
(1) Bondedness. For example, 0<<|[SIM(X;, Y)|<1. (2) Symme-
try. That is SIM(X, Y)= SIM(Y, X); (3) Single maximum. That
is SIM(X, Y)=1 if X=Y. Many commonly used similarity meas-
ures defined in vector space, including Euclidian, mahalanobis
and Minkowski distances, do not satisfy bondedness. Histo-
gram intersection does not satisfy symmetry. Correlation coef-
ficient, as a commonly used measure, does not satisfy the sin-
gle-maximum condition. As illustrated in Fig. 1, the correlation
coefficient of the two parallel but not very ‘close’ vectors
reaches 1.0. Because structural similarity is derived from the
mean, variance and covariance, and satisfies all the above needs,
it represents similarity better than correlation coefficient. In this
example, the structural similarity is only 0.64. For its advan-
tages, structural similarity is used to measure vector similarity
and create the BPAFs.

SSIM(X,Y)=

®)

2.3 Method steps

2.3.1 Data preparation
We first implement image registration and radiant calibra-
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Fig. 1 Two high correlated vectors

tion for two time phase images. In our case, histogram match-
ing is used to make pixel value distribution of an image close to
the other, which causes fewer disturbances to the detection of
image changes.
2.3.2 Feature extraction

We extract visual features for both time phase images.
GLCM contrast is used as image texture descriptor, Canny operator
to extract image edges, and Sobel operator to extract image
gradient.
2.3.3 Calculation of structural similarity

With a moving window, we calculate the texture, gradient
and edge similarities of the two time phase images. If the
original visual features are used for similarity calculation, they
are sensitive to the precision of image registration and noise.

- |

ol e """ "™

We thus construct derivate features with histogram statistics.
Firstly, we quantize the gradient and texture features with Eq.

(6):

he X—Mmin
max —min ©)
M=
L

where x is the original feature value, “max” and “min” are the
maximum and minimum values in this moving window respec-
tively, and L is the quantitative level. We then create the two time
phase feature histograms and calculate their structural similarities
S; and S, with Eq. (5). Since edges are binary formatted, we design
the edge pattern distribution histogram (EPDH) to calculate the
edge similarity. EPDH is a statistical relationship descriptor of
edge distribution patterns and their occurrence frequency. As
illustrated in Fig. 2, in a 2x2 sub-window, there are totally 14
edge distribution patterns. Traveling the edge map with these
templates and count their matching times, we get an EPDH. For
example, Fig. 3(a) is the edge map in a 9x9 window, and Fig. 3(b)
is the corresponding EPDH. We can then get the edge structural
similarity Sz with Eq. (5).
2.3.4 Evidence fusion and changed area extraction

We design the discernment frame U={Y,N}, where Y repre-
sents the changed classes, and N the unchanged classes. The
non-empty subsets of 2Vare {Y}, {N}, {Y,N}. Create the BPAFs
according to the structural similarities of texture, gradient and

Q)

| |

" m
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(12) (13) (14

Fig. 2 Edge distribution patterns
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Fig. 3 Edge map and its distribution pattern histogram
(a) Edge map; (b) Distribution pattern histogram
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edge with Eq. (7):
m ({Y}) =(L.0-S)xa,
m; ({N}) = Si X (7)
m({Y,N})=10-¢;, =123
where ¢; is the trust degree of evidence to the discernment
frame. Finally, we implement evidence fusion with Eq. (3).
Setting suitable BPAF thresholds for changed and unchanged
classes, we can then get the changed image areas.

3 EXPERIMENTAL ANALYSES

Our experimental data are ALOS imagery received in Nove-
mber, 2003 and December 2005 respectively, located in Ji-
angning, Nanjing, with spatial resolution 2.5m. As illustrated in
Fig. 5(a) and Fig. 5(b), the first experimental area ranges from
31°39'49.84"N —31°40'30.01"N, 119°2'9.66"E—119°3'44.74"E,
with 1012x477 pixels in size. The second experimental area
ranges from 31°52'45.40"N—31°54'4.47"N, 118°46'2.58"E—
118°47'35.97"E, with 999%963 pixels in size.

In the fist experimental area, we wanted to find the best evi-
dence fusion way by comparing the seven combinations of the

evidence of gradient, edge and texture. We also wanted to vali-
date evidence theory. The second experimental area was used to
verify our conclusion from experimental area 1. We thus used
uniform algorithm inputs in both cases. It was as follows: the
moving window size was 9x9, gray level 32, window size 5x5,
orientation 0°, and inter-pixel distance 1 pixel to calculate
GLCM contrast; the standard variance was 0.6, ratio of low to
high threshold 0.7, and ratio of pixels with values lower than
high threshold was 80%. The quantitative level was 14 to quan-
tize texture and gradient features; C; and C, were 0.3 and 0.6 to
calculate structural similarity; a;, a, and az were 0.9, 0.9 and
0.95 respectively for evidence fusion; the BPAF supporting
image changes was larger than 0.25, or that supporting
un-changes was less than 0.7.

3.1 Experiment1

After image registration and radiant calibration, we tested
the seven combination modes of evidence. Fig. 4(c) to Fig. 4(i)
are the detection results; Fig. 4(j) is the detection result of
similarity validation using gradient feature with similarity
threshold 0.7, and Fig. 4(k) illustrates the result by combining

Fig. 4 First experimental area
(a) ALOS image in 2003; (b) ALOS image in 2005; (c) Fusion of gradient, texture and edge; (d) Fusion of edge and gradient; (e) Fusion of texture and edge;
(f) Fusion of texture and gradient; (g) Detection with edge; (h) Detection with gradient; (i) Detection with texture; (j) Detection with similarity calibration;
(k) Output of implementing ‘OR’ operation
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edge and gradient with operator ‘OR’.

From Fig. 4(c) and Fig. 4(d), it was found that the fusion of
gradient, texture and edge, or fusion of edge and gradient issued
better detection, with most changed areas found. But they were
with different sensitivity to changes. For example, the three-
feature-fusion method recognized the bottom right area in Fig.
4(c) as a changed area which is with very tiny changes but the
two-feature-fusion method omitted it.

From Fig. 4(e) to Fig. 4(i), we found that the fusion of texture
and edge is very sensitive to changes, which detected most
changed areas but with a lot of misdetection. Fusion of texture
and gradient, which is not very sensitive to changes, detected a
lot of changed areas but with un-detection and a lot of misdetec-
tion (see an example in Fig. 4(f)). Single feature detection using
edge or gradient issued serious un-detection results. On the con-
trary, the method using single texture was with serious misdetec-

tion. As illustrated in Fig. 4(j), similarity validation method de-
tected many changed areas but with serious misdetection.

We combined the detection results using edge and gradient
features by operation ‘OR’, and compared it with that of the
fusion of edge and gradient method. As exemplified in the
marked changed area in Fig. 4(k), the former was with serious
un-detection results, while the two-feature fusion method issued
correct detection. It proves that evidence theory is an effective
method for uncertainty induction, not simple pileup of multi-
evidence.

3.2 Experiment 2

We used the same algorithm inputs in experimental area 2. Fig.
5(c) and Fig. 5(d) are the detection of fusing gradient, texture and
edge, and of fusing edge and gradient. We got fairly results with-
out any tuning of inputs. In this area, the three-feature-fusion

Fig.5 Second experimental area
(a) ALOS image in 2003; (b) ALOS image in 2005; (c) Fusion of gradient, texture and edge; (d) Fusion of edge and gradient; (e) Three features without
radiant calibration; (f) Two features without calibration
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method was more sensitive to image detailed changes, which
brought some misdetection, while the two-feature-fusion method
detected most changed areas but overlooked some detailed
changes.

To investigate the influence of preprocessing to the detection,
we carried out detection only with image calibration and left
out radiant calibration. The results are illustrated in Fig. 5(e)
and Fig. 5(f). Comparing them with Fig. 5(c) and Fig. 5(d), we
found the differences were very small (see Fig. 5(f)). It shows
that our method is robust to the precision of radiant calibration,
since the steadier statistical features, not the original image

visual features are utilized in change detection.

We got the actual changed areas by visual interpretation,
overlaid it with the auto detection results, and then got the pre-
cision statistics in the two experimental areas (see Table 1). We
found that the total detection precision in area 2 declines
slightly, which verifies that our method is robust to the algo-
rithm inputs. Furthermore, the three-feature and two-feature-
fusion methods show little difference in total detection preci-
sion, while the former issued 10%—15% false alarm. It is be-

cause texture is involved in the three-feature-fusion detection,
which makes it more sensitive to detailed changes.

Table 1 Detection precision

Experimental area Method Total accuracy Ch_amged Changed pixels d_etecte(_i and Unchanged pixels detgcted and
1% pixels correct detection ratio false alarm ratio
Similarity validation method 43.6 25015 45.4% 1012 1.8%
Fusion of edge and gradient 81.5 50057 90.8% 5178 9.3%
Fusion of gradient, texture and edge 82.8 55093 51239 93.0% 5627 10.2%
. Fusion of texture and edge 779 53189 96.5% 10293 18.6%
Experimental area 1 ) .
Fusion of texture and gradient 4.7 45698 82.9% 4527 8.2%
Edge 33.8 19085 34.6% 454 0.8%
Gradient 33.8 18954 34.4% 341 0.6%
Texture 66.7 55093 100% 18362 33.3%
Similarity validation method 47.1 56324 48.2% 1354 1.1%
Fusion of edge and gradient 75.4 89547 76.6% 1495 1.2%
Fusion of gradient, texture and edge 79.1 116839 109153 93.4% 16784 14.3%
. Fusion of texture and edge 59.0 90312 77.2% 21293 18.2%
Experimental area 2 . .
Fusion of texture and gradient 57.4 81564 69.8% 14527 12.4%
Edge 25.8 34121 29.2% 4054 3.4%
Gradient 30.0 38659 33.1% 3601 3.1%
Texture 68.1 116839 100% 37362 31.9%

4 CONCLUSION

In this study, we propose a novel remote sensing image
change detection method by fusing multi-features. We first get
the structural similarities of both images and construct the
BPAFs of D-S evidence theory. We then fuse all the evidence
and get the changed areas. Comparative work shows that our
method prevents effectively the detection errors from only util-
izing single feature and thus improves the detection precision.
Furthermore, since the image similarity is derived from image
statistical features rather than original grey, texture and gradient
features, this method is robust to low calibration precision. \We
also point out the openness of this method since we can easily
add and combine different evidence to improve its detection
precision and applicability.
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