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Compression of SAR complex image with wavelet transform
block adaptive vector quantization
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Abstract: With the development of high-resolution SAR systems, it is necessary to develop image compression techniques to
compress these products because the volume of data in SAR systems is increasing rapidly. Unlike the compression of SAR real
images, the compression of SAR complex images usually needs to keep the phase information which is a difficulty task. In this
paper, the correlation of complex SAR images data before and after the wavelet transform is analyzed. Then the theory and
methodology of a wavelet-based compressing method for SAR complex images, the Wavelet Transform Block Adaptive Vector
Quantization (WT-BAVQ) algorithm, is presented. At the same time, as the compression is performed to a SAR complex image
with WT-BAVQ, the Average Spatial Correlation (ASC) and Average Phase Correlation Coefficient (APCC) are achieved and
the decompressed image is given. Moreover, the comparison of ASC and APCC is made with Block Adaptive Vector
Quantization (BAVQ), Wavelet Transform Vector Quantization (WT-VQ) and wavelet transform block adaptive quantization
(WT-BAQ). The experiments manifest that with the same compression ratio, the ASC of WT-BAVQ is higher than that of the
other three algorithms.
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1 INTRODUCTION

With the development of high-resolution SAR systems, it is
necessary to develop image compression techniques to com-
press these products in order to transmit them in real-time, be-
cause the volume of data in SAR systems is increasing rapidly.
There are three compression classes for SAR data: compression
of SAR raw data, compression of SAR complex images and
compression of magnitudes of SAR image.

SAR complex images, which are different from the optical
images, have three attributes. Firstly, they are complex, with
phase as well as magnitude. Secondly, they possess greatly high
dynamic range. Thirdly, they have abundant veins. Conse-
quently, image compression methodologies that offer good
performances on optical images generally do not produce
acceptable performance on SAR complex images. Historically,
the phase components of SAR images have been discarded.
Recently, several powerful new techniques relying on the full
complex nature of the imagery have generated, including auto-
focus and interferometry. Therefore the compression of SAR
complex images is of great necessity.

Up to now, only a few algorithms exist in compressing com-
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plex SAR images, and they are mainly transform-based image
compression techniques, such as algorithms based on frequency
domain (Eichel & Ives, 1999) and wavelet domain (Werness et
al., 1994; Brandfass et al., 1997; Ives et al., 1998; Zeng &
Cumming, 2001). The complexity of the former is lower than
the latter, but the performance is not as good as the latter.

Considering the coefficients of real and imaginary part of
SAR complex images are more correlated after the wavelet
transform is used, we separate the complex SAR images into
real and imaginary parts. First, we carry out wavelet transform
to the real and imaginary part. Then vector quantization to the
wavelet transform results are performed separately. Since the
real and imaginary part of SAR complex images both have a
approximate Gaussian distribution which is still a Gaussian
distribution after a linear transformation, we quantized the
wavelet coefficients of the real and imaginary part using a
block adaptive quantizer separately before the vector quantiza-
tion. In this way, a discrete Gauss distribution which have N
magnitudes (V is decided by quantization bits) is attained (Qin
et al., 2005). The data of the whole transmitting system have
the same standard deviation. As a result, it can save the encod-
ing time because only one codebook which is independent of
the data system is needed in vector quantization.
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2 WAVELET ANALYSIS OF SAR COMPLEX IM-
AGES

For a data block whose size is M X N , as the interval of
row is k , the correlation coefficient is:
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where, m is the mean of X(i, j). When the interval of array is &,
the correlation coefficient is:
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where, m is the mean of X(i, j).

The change of p before and after the wavelet transform of
two different SAR complex images can be analyzed. Image 1,
whose magnitude map is shown in Fig. 1, is a P-band complex
SAR image. The number of sampling points at direction of
azimuth and range are both 1024. After three decomposition
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iterations to the coefficients of real and imaginary part of Image
1 by using the biorthogonal Daubechies 9/7 wavelet filter
(Wang & Yuan, 2001), they both yield 10 sub-bands which are
LL3, LH3, HL3, HH3, LH2, HL2, HH2, LHI, HL1 and HHI.
Using the definition of Eq.(1) and Eq.(2), we compute p of
coefficients before and after the discrete wavelet transform. The
simulation results which are performed in MATLAB are shown
in Fig. 2. Processing a Ku-band complex image whose magni-
tude map is shown in Section 6, and the simulation results are
shown in Fig. 3. As the figures show, we can se¢ that p of the
coefficients is bigger after the wavelet transform is performed,
and enhancement is different for different images.

Fig. 1 Complex Image 1
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Fig.2 Comparison of correlation coefficient of Image 1
(a) Correlation in azimuth of real part; (b) Correlation in range of real part; (c) Correlation in azimuth of imaginary par;
(d) Correlation in range of imaginary part
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Fig.3 Comparison of correlation coefficient of Image 2
(a) Correlation in azimuth of real part; (b) Correlation in range of real part; (c) Correlation in azimuth of imaginary part; (d) Correlation in range of imaginary part

3 BLOCK ADAPTIVE QUANTIZATION ON WA-
VELET COEFFICIENTS

The real and imaginary parts of SAR complex images are
signals. Moreover, they have probability distributions close to
the Gaussian distribution. If a linear transform is performed to
an approximately Gaussian distribution signal, it is still an
approximately Gaussian distribution signal. In this paper, we
use a Block Adaptive Quantizer (Kwok & Johnson, 1989) to the
wavelet transformed results which are approximately Gaussian
distribution signals. The block size is 32x32. First, we make the
mean 0 and the variation | by doing standardization to each
block. Then perform 4 bit quantization to the standard normal
distribution data according the L-M algorithm. After this step,
we get signals with normal distribution which has 16 magni-
tudes. As a result, it can make vector quantization more expe-
diently. Because after BAQ to data of different images, the
signals we get have the same probability distribution. Then
when the vector quantizer is used on the data of different im-
ages, the codebook needed is the same. It can save the com-
pression time efficiently.

4 VECTOR QUANTIZATION

The performance of a vector quantizer(Linde et al., 1980) is
better when the input vectors are more correlated to each other.
As it is demonstrated before, p of the coefficients gets bigger

after wavelet transform is used. This result can improve the
performance of vector quantization at a certain extent. More-
over, vector conformation of the wavelet coefficients which are
to be quantized is also very important. It can not only decide
whether the complexity of vector quantization can be lower, but
also can effect the performance.

4.1 Vector conformation of wavelet coefficients

In this paper, we apply the method which is mentioned by
Chen (2002) to finish the vector conformation. After perform-
ing the wavelet transform, sub-images are isomorphic to each
other. This comparability does not only exist in the sub-images
which are in the same scale, but also exists between different
scales. Besides, the comparability is highest among the corre-
sponding sub-bands which are in different scales. To improve
the efficiency of a vector quantizer, we must utilize the correla-
tion sufficiently when we construct vectors. It is an effective
way to put isomorphic pixels of sub-band images into the same
vector. Considering that the information of high-frequency
sub-bands play an important role in improving the quality of
reconstructed images, the high-frequency sub-bands coeffi-
cients must be included in vector conformation. In addition, for
the sake of avoiding the to the
low-frequency coefficients, we put them together with the cor-

scalar quantization

responding high-frequency coefficients in a same vector. Ac-
cording to this idea, we put the data which are in the same loca-
tion of sub-images of different scales together to form a tree
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structure which is shown in Fig. 4. In this way, we can use one
codebook for the whole image. Fig. 4 shows the three-level
wavelet decomposition results which have ten sub-bands. We
pick up 1, 4 and 16 coefficients from each level separately. As a
result, we get 64-D vectors. Vectors with lower dimensions are
extracted from the 64-D vectors by nonlinear interpolative
techniques in references. But in this paper, we perform vector
quantization to the 64-D vectors because the energy of complex
SAR images are not concentrated distributed.
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Fig.4 Vector conformation

4.2 Generation of codebook

When the input source of vector quantizer has a uniform
distribution, we can get the optimal codebook by applying the
equal-probability principle. But if they are with arbitrary prob-
ability distributions, we can obtain the optimal codebook only
by using the equal-distortion principle. Obviously, the probabil-
ity distribution of input source in this paper is not uniform.
Therefore we adopt the Minimax Partial Distortion Competitive
Learning algorithm (Li & Jiang, 2004) to generate the code-
book.

4.3 Encoding algorithm

A fast encoding algorithm is got by utilizing characteristics
of distance between input vectors and the codewords, charac-
teristics of distance between codewords and partial-distortion
elimination criterion. It computes the sum of every codeword in
codebook C. And then generates ordered codebook Cs by ar-
ranging them based on the ascending order of the sum of their
vector components. The sums are also saved in the codebook
Cs. For every input vector, computing the sum and obtain the
tentative matching codeword. Then search is performed up and
down iteratively (Pan et al., 2003) and finish the encoding
process using rules of the fast algorithm.

5 QUALITY METRIC

In this paper, the Complex Spatial Correlation Coefficient
(Robert et al., 1999) is used to evaluate the performance of the
WT-BAVQ compression technique.

The definition of CSCC is:
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i J

\/zzu FGNIE-Y Y g )P
i i

where the indices i and j represent pixels in a neighborhood
area of pixel (x, y) respectively. The value of CSCC which
computed form Eq. (3) is in the range of [0, 1]. If every com-
plex value of the original image is equal to the decompressed
image in the neighborhood area, the CSCC of this pixel is 1.0.
It denotes that the two images are totally correlated in this pixel.
When the value of CSCC is 0, it means that two images are not
correlated to each other at all. For complex SAR images, this
hypothesis is correct when the size of the neighborhood is big
enough. We choose the size of the neighborhood 5x5 in this
paper. After computing the CSCC to every pixel, we can get an
intuitive evaluation of decompressed image quality comparing
to the original image on a local scale. If the CSCC is bigger, the
two images are more alike to each other. Computing the aver-
age of CSCC over the entire image with size MXN, we get the
Average Spatial Correlation:

1
ASC—ngc(X,y) 4

c(x,y)=

The ASC provides the extent of comparability of the entire
images, which can be used to evaluate the quality of the recon-
structed image on a global scale.

It is important to keep the phase information for the com-
pression of SAR complex images. The Average Phase Correla-
tion Coefficient is used in this paper to analyze the ability of
keeping phase information of the entire image. According to the
definition of Average Spatial Correlation, we definite the Aver-
age Phase Correlation Coefficient as:
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where f,(i, j) and g,(i, j) represent the phase in pixel (x, y) of the
original and the reconstructed images separately.

6 EXPERIMENTAL RESULTS AND ANALYSIS

The tested image is a Ku-band complex SAR image whose
magnitude map is shown in Fig. 5(a). The sampling points of
azimuth and range direction are both 1024. Four compression
algorithms BAVQ, WT-VQ, WT-BAQ and WT-BAVQ are per-
formed to this image respectively. The environment of these
experiments is: CPU: 2GHz; memory: 2G; operation system:
Windows XP. The programs are run in IDL 6.3. Table 1 gives
the ASC, APCC and run-time of the four techniques. The
codebook size of BAVQ, WT-VQ and WT-BAVQ are 256. That
is to say, the Compression Ratio (CR) is 64. The dimension of
the input vectors is 64. The training vectors which are used in
generating codebook are chosen from the input vectors and the
length of the training vectors is 1/8 of the total length. The
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BAQ step of BAVQ and WT-BAVQ both perform four bit L-M
quantization while two bit L-M quantization (CR=4) is used in
WT-BAQ. From Table I, we know that WT-BAVQ) obtains the
best performance. It has the same CR as WT-VQ and BAVQ,
but it produces the biggest ASC and APCC. Besides, run-time
of WT-BAVQ is almost the same as WT-VQ and BAVQ. Al-
though WT-BAQ has a shorter run-time, its ASC is smaller in
the condition of having smaller CR than WT-BAVQ. Moreover,
it is hard to get high CR. When the CR is 64, the magnitude of
original image and the decompressed image of these four algo-
rithms are shown in Fig. 5. Fig. 6 gives the magnitude of local
amplificatory of original image and the decompressed image.
Although the magnitude of the decompressed image which is
shown in Fig. 6 has lower quality than the original image, it can
keep the phase information effectively. And it can get a com-
promise in keeping the magnitude and phase information. We
can see this conclusion form the ASC and APCC which are
shown in Table 1.

Table 1 Comparison of simulation results of four algorithms

BAVQ WT-VQ WT-BAQ WT-BAVQ

ASC 0.640271  0.612013 0.726567 0.814378
APCC 0.598267  0.631823  0.594736 0.862700
Time/s 165.078 168.235 24.7500 169.953

(a) (b)

Fig.5 Magnitude of the original image and the image after
decompression
(a) Original; (b) After decompression

(a) (b)

Fig. 6 Magnitude of local amplificatory of original image and
the image after decompression
(a) Original; (b) After decompression

7 CONCLUSION

The algorithm proposed in this paper performs vector
quantization to SAR complex images in wavelet domain. It
makes use of the characteristic that coefficients of SAR
complex images are more correlated after the wavelet transform.
It also utilizes the correlation between the coefficients in
different frequency bands. As a result, it can improve the
compression performance. Moreover, because it apply BAQ
before vector quantization, the compression time can be shorten
at a large extent for generating the codebook only once. BAVQ
also has the predominance. As the simulation results show, this
algorithm can get high CR as well as keeping the quality of
SAR complex images. It is an efficient algorithm. The main
work in the future is to find a method which can also keep the
magnitude information effectively.
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HRERERGNSRHERE,

31 F SAR B BRMELE, HAREMRIFESR
HE, XM AV YA X R $(Average Phase
Correlation Coefficient) Xt % i P 1R #4 HH L R FFFe 1
HIT . BEEHTHARENE L, RITEX
WA A X R B APCC:

22 fG 08, G ))

APCC=—— -

MN Z% JZZII £,GDIE-Y Y lg, G, )P
i J i j
(5)
A, f,G6.) Mg, G, )ARRREBREBEZR
BMRAEARIT A (x, )AL BIHELL

6 MELWERDH

FFEEERREREATREA Ku BB SAR R/
R, FOLmMBER m L& S5 1024, WEE RN
H 5(a), 2 5HH BAVQ, WI-VQ, WTI-BAQ X
WT-BAVQ X% & BRH#HTRE B ERGELR,
LI IRIE R CPU 25 2GHz, WM 2G, Windows XP
BRIERA;, BFETHE:IDL63, 14T 45
R EREERYEYESEMEEME(ASC), i
F AL K R B(APCC) K i 17 i} & (TIME), H
BAVQ, WT-VQ, WT-BAVQ #iBH K FH K 256
(CR=64), REKERN 64, NELXBEMNFTHBA
REFERERY, NGRBRKEVTERAXR
KERY 1/8, BAVQ il WI-BAVQ H'iJ BAQ K45
SRF 4 4 L-M 16, WT-BAQ ¥, /N BEGH
A7 2 L-M #4k(CR=4). 13 1 i, WT-BAVQ i)
MR, HES#LS WT-VQ, BAVQ#R, —k/%
HEBEFIBNHETEEIGAEY, BRELEYS
AR EMEHRAMEXRER K, WIBAQ &
KafretE s, BREERSHT/NT WT-BAVQ
BRTVPHsHMXER/NT WEBAVQ, B
WT-BAQ RMELHMBELE L, B 5 BHMTRARE
K& WT-BAVQ EEZ AR, KN 64, B 6
HETREREBEZEEGHREHRARH. BR
WA 6(b)FT/RAIMR G B AR E RN T IRERE
—ERME, BRMFE 1 PiIHENEHHEEEER
PHEEAEXETR, AXEEEBARNRRES
BRI AROI R, 35 B BB AR 8 B FIAR L 45 R 45
EikETH,




42 Journal of Remote Sensing

#AFH/ 2010, 14D

®1 AMIEOHTRNERLE

BAVQ WT-VQ WT-BAQ WT-BAVQ

ASC 0.640271 0.612013 0.726567 0.814378
APCC 0.598267 0.631823 0.594736 0.862700
Bt @) /s 165.078 " 168.235 24.7500 169.953

(2) (b)

Bs JRERREEERE R EER
@FEAR; O)RELRAR

Ee JFERMSREESESRNDERKE
@EE®R ORESAER

BB EENEESS SAREHERHITRER
k., F & RS 7E /) B B 5 A R SR A
AR/ R BB SRR RS R BRARORA
KB, EHEIEBFRSFAT ETETHRE,
AR ESTAERELMNERNERE B TEXEER
W2 RIRA T BAQ, AHZEHMERERA 161MF
BEREBENSN, FEMAEEANFHNBHE
MER, FFUREERMR 1 KBH, SWELEE R
IATB B KR B B9 mL, BAVQ RIHERA X MAES. X
RiFH, ZEREERIIARRENERTEINS
R, R—AARNEE. T-SHIERMRRKN

o] 45 159 4 B 0 0o L PR WS E RO AR B 4 o
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