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Abstract:
radiosity principles and OpenGL. Each component fraction’s variation regime was examined by computer simulation in different

Thermal anisotropy regime for urban targets was investigated using a simplified urban structure model based on the

observation zeniths, azimuths and distances between the sensor and targets. Results indicate that: (1) significant field of view
(FOV) effect exists in the DBT (directional brightness temperature) ground-based platform observations. It is able to reach the
maximum values near the plane perpendicular to the solar main plane. (2) Analysis about FOV effect for a physical model of
typical urban surface and cover patterns at different spatial locations and time series reveals that it can achieve several centigrade
or so in a sunny day. (3) There is a significant “scale effect” in near-ground observations and it varies along with the distance
between the sensor and urban targets. (4) The FOV effect cannot be neglected in comparisons between DBTs observed in
ground-based field experiments and in images acquired from satellites.
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1 INTRODUCTION

Urban surface temperature is a key parameter for urban cli-
mates. Understanding thermal anisotropy regime for urban
surfaces is necessary for accurate estimation of surface tem-
perature distribution since different DBTs (Directional Bright-
ness Temperature) of the same targets are observed from remote
sensing multi-angular thermal sensors. Thermal anisotropy of
urban targets is closed related with the sun-urban surface
targets-sensors geometrical conditions, urban structure and
physical properties of ground targets (Zhou et al., 2009). In
addition, it is strongly influenced by the scope of FOV (field of
view), components emissivities anisotropy and environmental
irradiance (Lagouarde et al., 1995; Wang et al., 2000; Voogt &
Oke, 2003; Fan et al., 2003). This effect, which suggests dif-
ferent parts of the same target are “seen” and different DBTs
are measured due to FOV variation, is named as FOV effect
(Zhang et al., 2000; Yu et al., 2004; Huang et al., 2007a, 2007b).

In order to eliminate the influence of FOV effect, Zhang et
al. (2000) proposed a so-called “thermal imager-fix area
method”. The distance between the thermal sensor and observa-
tion targets is always limited in near-ground DBT measur-
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ements for urban surfaces, sensors with broad FOVs were usu-
ally used since land cover patterns in FOVs were then repre-
sentative in such an extreme condition (Soux et al., 2003;
Lagouarde et al., 2004; Voogt, 2008). However, there are great
differences in imaging mode between near-ground platforms
and satellite levels. The FOV for a single pixel observed from
the satellite level is extremely narrow and the distance between
the sensor and the targets is enormous compared with the size
of the pixel, all of which will lead to the change of observation
targets and result in significant FOV effect. This phenomenon
attracts many researchers’ interests. Yu et al. (2004) preliminar-
ily analyzed FOV effect of row crops using a simplified
two-dimensional structure. Li L et al. (2006) studied row crop
FOV effects based on a grid model. However, further studies
are still necessary for FOV effect estimation.

Currently, quantitative researches about FOV effect mainly
concentrated on vegetations. Researches for urban targets are
still relatively rare. In addition, many studies are still limited
to two-dimensional simulations. In this study, the component
fractions of urban targets in FOV were simulated using a sim-
plified three-dimensional urban structure model based on the
OpenGL and radiosity principles (Soux et al., 2003; Voogt,
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2008; Ma et al., 2008). Combined with component tempera-
tures and DBTs observed from field experiments and physical
models for urban targets, the extent and impacts of FOV effects
have been examined thoroughly based on simulations of DBTs
observed by sensors onboard satellites and near-ground plat-

forms.

2 METHODOLOGY

2.1 DBT and component temperature

The directional radiance acquired by a sensor can be mod-
eled by the following equation (Noman & Becker, 1995):
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where B(T, (6,¢)) is the directional radiance, 4, and A, are the
lower and upper wavelengths of the IRT (infrared thermometer)

(M

in channeli , respectively. fi(4) is the spectral response of the
IRT detector. C;=3.7404x10°W-pm*m™2; C,=14387um-K;
T, (6,¢) is the brightness temperature in the corresponding
channel.

Based on the assumption that a pixel is composed by several
components, the relationship between DBT of the targets and
component temperatures in such a pixel satisfies the following
formula (Menenti et al., 2008; Yu et al., 2006a; Huang et al.,
2007b):

N
By(Ty(0.4) = Y 1 (6.4);B;(Ty.) (2)
k=1

where B(T,(6,9)) is the Plank’s function; 7,(6,¢) is the direc-
tional brightness temperature; fi(6,¢) is the fraction of a certain
component k, and fi+f,+...+fj=1; & is the emissivity of com-
ponent k; T is the component temperature. Eq. (2) reveals that
component classification criterion and the fraction of each
component are two main factors that influencing the directional
brightness temperature.

2.2 Simplification for urban targets

Typical urban targets were simplified into a series of
three-dimensional rectangular elements in this study (Soux et
al., 2003; Ma et al., 2009) and the radiosity was utilized to
calculate different component-fraction areas. In Fig. 1, O is the
sensor; S| represents the area in a single pixel of an image ac-
quired from a satellite infrared sensor, which may consist of
varieties of urban surfaces; S, is a hemisphere centralized at O
and have a radius equals to 1 unit; while S; is the “equivalent
focal plane” of the sensor. P, is the roof of a building, and P,
represents the projection curved surface of the building roof in
S5; P; is the projection of P, in “equivalent focal plane” S;.

The components fraction of the roof f,,s can be expressed
analytically as follows (Baum et al., 1989):

3
1
Froof =;;| ¥.I| 3)

Fig. 1 Geometrical meaning of component fractions (Sun et al., 2005)

where ¥is the normalized vector of S;, the magnitude of I
equals to the angle &; formed by the vectors R; and R;;;, which
is measured by radians; while the direction is given by the cross
product of vectors R; and R;;. The geometrical significance of
component fraction f;,,r means the ratio between P; and S; (Sun
et al., 2005).

3 COMPONENT FRACTION SIMULATION

Research has shown that component physical properties,
weather being illuminated by sun, the angle formed by sun light
and component plane are main factors influencing the tempera-
ture features and variation of urban targets. (Jackson et al.,
1979; Li & Strahler, 1985; Li et al., 1995; Yu et al., 2005). Yu
et al. (2006b) divided the urban surface into five classes:
light-soil, dark-soil, light-roof, dark-roof, light-wall and
dark-wall according to his field observation. Based on the
similar regulations, the typical urban targets were partitioned
into five classes in our study: light-ground, dark-ground,
light-roof, light-wall and dark-wall on the basis of our field
experiments using the infrared thermometer (Ma et al., 2008).

After some detailed survey and statistics for buildings’ sizes,
directions and the street widths, some typical urban residential
blocks in Beijing metropolitan area were selected for analyzing
urban thermal anisotropy, we used a computational model to
simulate the fractions of varieties of components based on the
“Urban Targets Entity model” produced in 3DSMax (Ma et al.,
2008). The main modeling parameters are listed as follows in
Table 1.

3.1 Viewpoint located on satellite level

When the viewpoint is located on satellite levels, FOV (field
of view) for a single pixel in an image is extremely narrow, and
the distance between the senor and targets is almost infinite
versus near-ground platforms. Fig. 2 shows a fraction-
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Table 1 Attribute parameters of simulation model

Model parameters Value

2008-08-22 10:40 am
(local time, beijing)

Observation time

Building width from east to west /m 15
Street width from east to west /m 5
Building width from north to south /m 10
Street width from north to south /m 12.5
Building height /m 13
FOV /(°) 20

polarization graphs of sunlit walls and shadow walls when the
senor is on the satellite. The angular-coordinate is the sensor
azimuth ranging from 0° to 360°, while the distance-coordinate
is the sensor zenith that ranges from 0 ° to 60 °. S is the location
of the sun.

Fig. 2 demonstrates that the extreme values of light-wall and
dark-wall in the polarization graph almost lied near the solar
main plane, which indicates that these two components frac-
tions are strongly influence by sun position. For sunlit walls,
the maximum values concentrate near the “hotspot”, whereas
the shadow walls have opposite features. On the other hand,
these two components have a definite “step” feature along with
the azimuth angle, while they have not such clear characteris-
tics in zenith angle. For instance, the sun position at 10:40 am is
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shown in Fig. 2(a), the component fraction of sunlit walls is
low when azimuth ranges from 270° to 360°, but its value in-
creases rapidly when the azimuth ¢ equals 270° or 360°. Simi-
larly, the sun position at 14:30 pm is illustrated in Fig. 2(b);
component fraction of sunlit walls is low when azimuth ranges
from 90° to 180°, but its values change abruptly at the edge
when the azimuth ¢ equals 90° or 180°.

Since azimuth of the sun ranged from 90° to 270° between
these two moments, average values of sunlit grounds are higher
in south hemi-plane than in north hemi-plane, while the shadow
grounds is contrast to sunlit grounds. These two components
were not influenced apparently by sun position compared with
sunlit and shadow walls.

3.2 Viewpoint located near-ground

3.2.1 Variation of zenith and azimuth

Compared with the viewpoint being located on satellite lev-
els, the limited distance between the sensor and targets will lead
to abrupt variation of component fraction in DBT observations
when the thermal imager is from near ground platforms. Fig. 3
shows the component fraction-polar plot when the senor is
located near the ground (IFOV = 17°; observation distance =
300m). The range of azimuth and zenith is the same as Fig. 2. §
represents the sun position n in Fig. 3.
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Fig. 2 Component fraction-polarization figure when the senor is on the satellite level
(a) Sunlit walls; (b) Shadow walls
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Fig.3 Component fraction-polar plots of the sensors from near-ground platforms (IFOV = 17°; observation distance = 300m)

(a) Sunlit walls; (b) Shadow walls
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From Fig. 3, sunlit walls and shadow walls are still strongly
influenced by sun’s position. The distribution component frac-
tions for sunlit and shadow walls are similar to Fig. 2, but the
minimum values in Fig. 3 distributed in a more extensive re-
gion and its “step” feature is not as distinctive as in Fig. 2. Fur-
thermore, the component fraction changes more slowly relative
to Fig. 2.

More simulation and analysis has manifested that the com-
ponent fraction of sunlit roof is not influenced by sun position,

its variation ranges from 0.30—0.38, narrower than in the con-

dition when thermal imager is located on satellite level.
Differential values between near-ground and satellites are high
enough and they do not have the same distribution rule in po-
larization figure. This phenomenon also suggests apparent FOV
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effect exists in field DBT observation experiments.
3.2.2  Variation of observation distance

Fig. 4 demonstrates the change of component fraction along
with the observation distance (the observation zenith and azi-
muth are 10° and 120° respectively), where the distance be-
tween thermal imager and the targets represents x-coordinate
(unit: m); while component fraction value is the y-coordinate.
The solid line in Fig. 4 denotes the component fraction when
viewpoint is situated on a satellite.

Fig. 4 shows that component fraction take a rapid change
along with the increase of distance between thermal imager and
the targets. It is reasonable that the sunlit wall component frac-
tion is higher than the shadow wall because the viewpoint situ-
ates in the direction of sun (hotspot direction). Since the
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Fig. 4 Variation of components fractions along with the observation distance (the observation zenith and azimuth are 10° and 120° respectively)
(a) Sunlit walls; (b) Shadow walls

shadow walls component fraction is so low that it alternates
slightly with distance’s increase. The differential values be-
tween near-ground and on satellite level are negligible when the
observation distance is 800m if the modeling parameters are
designed as in Table 1, this will be proved again in the follow-
ing experiments and validation.

4 EXPERIMENTS AND VALIDATION

A new concept named DBTDV (Directional Brightness
Temperature Differential Value) is defined for estimating the
extent of FOV effect, implying the DBT differential values
when thermal imager are located between near-ground and on
satellites. FOV effect will be more evidently if the absolute
DBTDV is higher, on the other hand, FOV effect will be less
apparently in the opposite situation. Computational simulation
about the component fractions is the basis of analyzing the
extent of FOV effect, and it is necessary to calculate the
DBTDV numerically and explore the FOV effect variation re-
gime analytically in detail to measure this effect due to compo-
nent fraction discrepancies between near-ground and on satel-
lite levels.

Consequently, field observations were held at Fangshan
experimental bases, Beijing Normal University in August,
2008. Multi-angle thermal infrared radiation near-ground ob-
serving system was designed and used in this experiment

(shown in Fig. 5). The thermal imager holder could rotate
angularly in accordance with the gauge for warranting accu-
racy. Blackbody was used to calibrate the thermal imager

Digital camera

(type: Sony, H50
Lo ! ) Thermal Imager

Fluke Ti55FT-20
accuracy: 0.05°C

Fig. 5 Multi-angle thermal infrared radiation near-ground

observing system
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hanged at the end of the control-rod. Temperature values after
calibrations were taken as the standard observation data. The
thermal Imager is accurate enough (accuracy: 0.05°C) to satisfy
the analysis and application.

The physical model is composed by some concrete cuboids
about real urban targets with the scale 1 © 50 and it was lined
on the flat ground regularly (as shown in Fig. 6(a) and Fig.
6(b)). A round aluminum frame was utilized to denote the study
area due to aluminum’s low emissivity. The model-size pa-
rameters are shown in Table 1 (scale: 1 : 50). Fig. 6(a) and Fig.

6(b) illustrate images of physical model about real urban targets

in visible and thermal infrared band respectively. In Fig. 6(b),
the brighter color represents the higher temperatures.

Field experiments and computational simulation are both
used to analyze the FOV effect variation regime along with the
zenith, azimuth and observation distance. Component tempera-
tures are indispensable for input parameters in computational
simulation model, so a portable infrared thermometer (type:
Testo-845) was applied to measure component temperatures at
10:40 am and 14:30 pm respectively. The component tempera-
tures are listed in the following Table 2 after a similar calibra-
tion for the IRT.

(a)

(b)

Fig. 6 Images of physical model about real urban targets in visible and thermal infrared band (the scope of IFOV is shown by an

aluminum frame; scale: 1:50)
(a) Image in visible band; (b) Image in thermal band

Table 2 Temperatures of each component

. Sunlit Sunlit Sunlit Shadow  Shadow
Obs:rvatlon ground wall roof ground wall
me /C /C /C /°C /C
10: 40 36.8 48.9 51.2 26.5 333
14: 30 41.0 48.2 50.3 30.7 37.0

4.1 FOV effect in different azimuths and zeniths

Fig. 7 shows the DBTDV-polar figures under the simulation
model with component temperatures at 10:40 am and 14:30 pm
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respectively (the observation distance is 300m). The DBTDV at
10:40 am ranges from —4.42°C to +3.18°C, most of the values
lie between —1°C to +1°C. While The DBTDV at 14:30 am
varies from —3.18°C to +3.46°C, which implies FOV effect in
the morning is almost equivalent to that in the afternoon. S
denotes the sun position; P represents the plane perpendicular
to solar main plane. In Fig. 7(a) and Fig. 7(b), M, denotes the
region holding the maximum values, by contrast, M, and M;
represent the region provided with the minimum values. The
extreme values of DBTDV lies near plane P, which indicates
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Fig. 7 DBTDV-polarization figure (the observation distance is 300m)
(a) 10:40 am; (b) 14:30 pm
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FOV effect reaches the highest values near plane P when the
IRT zenith angle 9<60°.

Wide FOVs are necessary when the sensor is from
near-ground platforms, while it is extremely narrow corre-
sponding to a single pixel when the sensor is on satellite levels.
As been narrated before, this great discrepancies result in an
apparent “Step” feature of component fraction distribution in
[0°, 90°] and ¢  [180°, 270°]. By contrast

with Fig. 2, component fraction varies slowly in those two in-

Fig. 2 when ¢

tervals in Fig. 3. Consequently, this variance leads to a maxi-
mum FOV effect in the two intervals. The azimuth angle of the
sun lies in [90°, 180°] in the morning, the solar main plane
subjects to aggregate ¢ {[90°, 180°],[270°, 360°]}, so the
plane perpendicular to solar main plane belongs to the aggre-
gate ¢ {[0°, 90°],[180°, 270°]} (shown in Fig. 7(a)). It has an

analogous relationship in the afternoon. In a word, FOV effect
increases to the highest values near the plane P.

4.2 FOV effect in different distances

Combined with computational simulation results (computa-
tional simulation is the only way to obtain the field measure-
ment DBT on the satellite orbit due to some well-known rea-
sons), We made use of the Multi-angle thermal infrared radia-
tion near-ground observing system for estimating the variance
regime of DBTDV along with the observation distance. The
results are demonstrated in Fig. 8 (a) and Fig. 8 (b), where the
x-coordinate is the observation distance; DBTDV represents
y-coordinate. In the morning simulation, solid azimuths and
zeniths were selected in the areas M; (azimuth = 200°; zenith =
45°) and M, (azimuth = 120°; zenith = 10°) which had the ex-
treme values; similarly, solid azimuths and zeniths were se-
lected in the areas M; (azimuth = 150°; zenith = 40°) and M,
(azimuth = 240°; zenith = 10°) at 14:30 pm.

Generally speaking, Fig. 8 (a) and Fig. 8 (b) have implied
that FOV effect increases when the observation distance is
lower; by contrast, FOV effect decreases if the observation
distance is higher. FOV effect has a remarkable scale effect:
resulted from observation distance, it is lower than 0.2°C and
could be negligible when the observation distance is higher
than 800m; FOV effect (also means absolute DBTDV) has an
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inverse linear relationship with the observation distance when
the distance ranges from 200m to 800m; if the distance is below
200m, the regime is more complicated, including both increas-
ing abruptly (azimuth = 120°; zenith = 10° in Fig. 8(a) and
azimuth = 240°; zenith = 10° in Fig. 8(b)) and decreasing
slowly (azimuth = 200°; zenith = 45° in Fig. 8(a) and azimuth =
150°; zenith = 40° in Fig. 8 (b)) This is because the number of
ground object category in the scope of FOV reduces continu-
ously as the observation distance decreases to some extent;
moreover, even just only one category of target is left when the
observation distance is low enough, at this time, the DBT only
depends on a certain component temperature. Although FOV
effect is apparently high when the observation distance is lower
than 200m because of the random distribution of component
categories, the distribution regime is not as clearly as in the
other two situations.

4.3 Time-series FOV effect

Field experiments data obtained from at 10:40 am to 12:00
am in August 23, 2008, were selected to analyze the variance of
FOV effect in time series. The solar azimuth varied from 136°
to 171° in this time period. The azimuth is divided into eight
directions: east, west, south, north, northeast, southeast, south-
west and northwest. Field observation experiments consisting
of three turns according to different zeniths, eight directional
observations were essential in every turn. Each observation
lasted about 3 min; so it took 25 min approximately to carry out
each turn.

Fig. 9 shows variance of DBTDV along with different ob-
servation angles in time series, where the order of measurement
points denotes x-coordinate; DBTDV represents the y-coor-
dinate. Almost all of the scatter points distribute around 0°C,
DBTDV ranges from —3°C to 4°C and it has a similar variation
span in each turn. FOV effect in the third turn is lower than in
the first and the second turn, this may be derived from the
minimum differential temperatures among components in re-
spect that observation time was close to noon in the third turn.
As demonstrated from Fig. 7 to Fig. 9, the results indicate that
DBTDV of typical physical models ranges from —4°C to +4°C
in different observation spatial location and moments.
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Fig. 8 Change of DBTDV along with the observation distance
(a) DBTDV at 10:40 am; (b) DBTDV at 14:30 pm
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Fig. 9 Variance of DBTDV along with different observation angles in
time series (obtained from 10:40 am to 12:00 pm; the observation
distance is 300m)

5 CONCLUSION

The variations of the components fractions of typical urban
targets in the FOV of the sensor onboard satellite level and
near-ground platform corresponding with spatial locations were
analyzed. The relationships between the FOV and view zenith,
azimuth and distance between the sensor and target were inves-
tigated thoroughly. Results indicate that there was significant
FOV effect when measuring the DBT of urban targets with
near-ground platforms. FOV effect became most significant near
the plane perpendicular to the solar main plane and it reduced
rapidly when the distance increases. Furthermore, investigations
about DBT in field measurements have made clear that FOV
effect cannot be neglected for thermal anisotropy analysis.

The factors influencing FOV effect are so enormous that it is
almost affected by all categories of ground objects: tall trees, low
shrubs, grasslands, bare soil, roofs and walls with varieties of
materials in typical urban surfaces, simple physical model is not
appropriate anymore for representing all categories of land cover
and land use patterns. Besides, surface-atmosphere is a coupled
system, surface temperature distribution of each component is
influenced profoundly by energy exchange between surface and
atmosphere, and these bring out the complexity increasingly for
inducing the variation regime of FOV effects. The scale effect is
only examined qualitatively and primarily and there are still
many deficiencies in quantitatively analyzing it for the FOV ef-
fect. The follow-up field validations and computer theoretical
simulation studies are also being actively pursued.
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