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Abstract: In this paper, a land surface temperature data assimilation scheme is developed based on Ensemble Kalman Filter
(EnKF) and Common Land Model version 1.0 (CLM), which is mainly used to improve the estimation of the sensible and latent
heat fluxes by assimilating MODIS land surface temperature (LST) products. Leaf area index (LAI) is also updated dynamically
by MODIS LAI products. In this study, the relationship between the MODIS LST and the CLM surface temperature is deter-
mined and taken as the observation operator of the assimilation scheme. Meanwhile, the MODIS LST is compared with the
ground-measured surface temperature, and the Root Mean Square Error (RMSE) is taken as the observation error. The scheme is
tested and validated based on measurements in three observation stations (Blackhill, Bondville and Brookings) of Ameriflux.
Results indicate that data assimilation method improves the estimation of surface temperature and sensible heat flux. The RMSE
of sensible heat flux reduced from 81.5W-mto 58.4W-m2at the Blackhill site, from 47.0W-m~2to 31.8W-m at the Bondville
site, from 46.5W-m2to 45.1W-mat the Brookings site. The RMSE of latent heat fluxes reduced from 88.6W-m2to 57.7W-m
at the Bondville site, from 53.4W-m~to 47.2W-m2at the Blackhill site. In addition, it is a practical way to improve the estima-
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tion of sensible and latent heat flux by assimilating MODIS LST into land surface model.

Key words:
heat flux

CLC number: TP701 Document code: A

1 INTRODUCTION

Estimating sensible and latent heat flux accurately is critical
to climate change research, water resources planning and man-
agement, as well as water-saving agriculture applications. There
are lots of methods to estimate sensible and latent heat flux.
Meteorology and climatology methods are relatively accurate to
in-situ estimation, but difficult to obtain regional scale fluxes.
Although hydrological method can calculate evapotranspiration
at regional scale, it only fits to a long time period (typically an
annual cycle). The remote sensing method can acquire land
surface information at a large scale in real-time, which has cre-
ated new opportunities to monitor land surface sensible and
latent heat flux (Bastiaanssen et al., 1998; Su, 2002; Liu et al.,
2007). But as the remote sensing data is instantaneous, remote
sensing method lacks the ability in describing surface energy
and water process, and estimating daily, monthly and annual
flux values. Over the past 20 years, with the developments of
land surface models, it is able to simulate a continuous regional
energy and water process of the soil - vegetation - atmosphere
(Dickinson et al., 1986; Sellers et al., 1996; Dai et al., 2001,
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2003), which has great significance to understand the regional
energy and water balance. But land surface models are gener-
ally complex, and always require a large number of regional
vegetation, soil and meteorological parameters, which are dif-
ficult to determine. The above limitations facilitate develop-
ment and application of land surface models.

The remote sensing method can acquire land surface infor-
mation accurately at regional scale in real-time, while the land
surface models can simulate a continuous regional energy and
water process. The data assimilation method can combine the
advantages of both these two techniques, which can produce
high resolution soil temperature and moisture accurately by
combining observations and land surface models. Recently,
land surface data assimilation methods have experienced a great
resurgence of interest (Li et al., 2004; Yan et al., 2006; Liang et
al., 2008). It has become a major tool to estimate soil tempera-
ture, soil moisture and surface fluxes. In the soil moisture data
assimilation area, researchers assimilated in-situ soil moisture
data (Zhang & Qiu, 2004; Huang & Li, 2006) and microwave
data (Galantowiez et al., 1999; Reichle et al., 2001, 2002;
Crosson, 2002; Crow & Wood, 2003; Yang et al., 2007; Huang
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et al., 2008a) into land surface model.

Surface temperature is a key variable used to estimate sensi-
ble and latent heat flux. Boni et al. (2001) assimilated land
surface temperature into a relatively simple model using the
variational method, and acquire surface energy balance com-
ponents and surface evapotranspiration. Schuurmans et al.
(2003) assimilated remote sensing retrieved latent heat flux.
Kumar and Kaleita (2003) found that there is a good correlation
between land surface temperature retrieved from AVHRR and
soil temperature measured at 5cm depth. He took the regression
error as the observation error, assimilated the AVHRR retrieved
land surface temperature into a land surface model with ex-
tended kalman filter method and estimated soil temperature
profiles. Caparrini et al. (2004) combined force-restore equa-
tions with variational method, and estimated sensible and latent
heat flux by assimilating remote sensing retrieved surface tem-
perature. Qin et al. (2005), Huang et al. (2008b) took the re-
gression equation of MODIS land surface temperature products
and in-situ observation surface temperature as the observation
operator, and took the RMSE (root mean square error) of the
regression equation as observation error. They combined CLM
model with ensemble kalman filter algorithm, and estimated
soil temperature profiles by assimilating MODIS temperature
products.

At the same time, the optimization algorithms suitable for
land surface data assimilation were developed rapidly. Kalman
filter method was first proposed by Kalman (1960). The stan-
dard kalman filter is an optimal data assimilation method for
linear dynamic systems. As most systems are nonlinear, ensem-
ble kalman filter was developed. Ensemble kalman filter was
proposed by Evensen (1994, 2003) according to epstein’s the-
ory of stochastic dynamic prediction. It calculates the state
prediction error covariance with the Monte-Carlo method. En-
semble kalman filter overcomes the shortcomings of standard
kalman filter which need linear model operator and observation
operator. In ensemble kalman filter, determination of model
error is essential to the prediction. Some researches made a
series of synthetic experiments to analyze the influences of
model error (type, size) based on the assimilation results
(Evensen, 2003; Crow, 2006). Reichle et al. (2002) conducted
assimilation research by using time-related model error. Cros-
son et al. (2002) carried out assimilation research by taking a
fixed value as model error. Qin et al. (2005) performed some
research with model error related to the size of state variables.

The main purpose of this paper is to develop a land data as-
similation algorithm which combines the CLM and the EnKF.
Decomposition of component temperature method is used to
establish observation operator. MODIS LST products will be
assimilated into the assimilation algorithm to improve the pre-
diction accuracy of sensible and latent heat flux. Meanwhile,
three observation stations in different land cover types (forest,
grassland, and cropland) of Ameriflux are selected to validate
the assimilation results.

2 DATAASSIMILATION ALGORITHM

Land surface models can not simulate surface temperature
and fluxes accurately. Date assimilation method is able to im-
prove estimations of surface temperature and fluxes by assimi-
lating remote sensing radiometric temperature, as surface tem-
perature is the input variables of land surface model. Fig. 1 is a
flow chart of the land data assimilation system, and specific
flow is as follows:

(1) Obtain meteorological data based on ground measure-
ments;

(2) Obtain surface parameter sets based on remote sensing
technology and ground measurements;

(3) Read forcing data and surface parameters into land sur-
face model, and generate current state variables;

(4) Assimilate current MODIS LST products, and optimize
state variables;

(5) Run land surface model continually to generate back-
ground of next step;

(6) Obtain optimal output through adjusting state variables
continually.

Input data

Forcing data
MODIS LAI
Surface parameter

Background
— (Soil moisture, temperature,
Land cover, etc. )

<

Land surface model
(Common Land Model)

L

Data assimilation algorithm
(Ensemble Kalman filter)

Model error
Observation error

Data Assimilation system

MODIS LST
(MODI1A1)
(MYDI1A1)
QC=0

Temperature Error Surface flux

>

Output

Fig. 1 The flowchart of data assimilation system

2.1 Land surface model

In this paper, CLM1.0 (Dai et al., 2001, 2003) is selected as
the experiment land surface model. CLM is constituted mainly
by physical, hydrological, biological process, which can simu-
late surface temperature, soil temperature, soil moisture, sensi-
ble heat flux, latent heat flux, and so on.

Surface temperature calculation is the core part of this as-
similation algorithm. Surface temperature can be obtained by
solving the soil-atmosphere energy balance equation iteratively.
In soil-atmosphere energy balance equation, solar radiation is
the major energy source of land surface and atmospheric tem-
peratures. For bare land, energy balance equation can be ex-
pressed as follows:
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=Sy +Hgy(Tg) + AEy(Ty) + Gy(Ty) =0 (1)
where, Sy is net radiation of soil; Hg, AE; and G are soil sensi-
ble heat flux, soil latent heat flux, and ground heat flux respec-
tively; Ty is ground temperature.

As land surface covered by vegetation, the energy balance
equation can be described as follows:

_SV+HV(TgvTv)+/1Ev(TgvTv):0 (2

=Sg + Hg(Tg, Ty) + AEy(Ty, Ty) + Gy (Tg, Ty) =0 3)

where, S, is net radiation of vegetation canopy; H, and 1E, are

canopy sensible heat flux, canopy latent heat flux respectively;

T, is canopy temperature. When snow exists, heat flux for snow
melting must be added to Eqg. (1) and Eq. (3).

As can be seen from above equations, net radiation, sensible
heat flux, latent heat flux, and ground heat flux are all influ-
enced by surface temperature. Surface fluxes can be improved
by improving CLM surface temperature. In order to assimilate
surface temperature, we must find a starting point. Relatively
speaking, the heat diffusion equation is more suitable for sur-
face temperature assimilation. Vertical soil column of CLM is
divided into 10 layers which are shown in Fig.2.

H, ~—"
‘ Z, ---- Layerone ----- T,
H,
Zy ===- Layertwo ----- «—T, H;: the ihterface depth between
H, the soil layer i and i+1:
=0, ==+, 10
Z; ---- Layeri ----- «— T, Z;: the depth of layer i at the
node depth:
H, =1, -, 10
. T,: ground temperature
M T;: the soil temperature of
. layer i at the node depth:
* =1, -, 10
Zyg---- Layerten ----- RE—
H"I

Fig. 2 Schematic diagram of soil layers in CLM

In CLM, dynamics of soil temperature are assumed to obey
the following heat diffusion equation:
T2 @
ot oz\ oz
where, c is volumetric soil heat capacity, T is soil temperature, t
is time, k is thermal conductivity of soil, and z is soil depth. The
depth of 10 soil layers is 0.00710, 0.02793, 0.06226, 0.11887,
0.21219, 0.36607, 0.61976, 1.03803, 1.72764, 2.86461m, re-
spectively. Temperature variation in soil layer can be described
as:

n+l n

chzjg:E(Fj” ~FLAFMFMY ()
At 2
where, ¢;is volumetric soil heat capacity of layer j, T; is mean
soil temperature of layer j, At is time step, Az; is soil thickness
of layer j, and F; is heat flux across the interface between layer j
and j+1.
In inner soil layers,

- i— i+
F, z[zh,,](zm_zj (6)
where, A[Z,, j] is thermal conductivity at the interface Z,, j, Zy j is
interface soil depth of soil layer j and j+1, Z;,, is soil depth of
layer j+1. Assuming that heat flux from node j to interface be-
tween j and j+1 equals the heat from interface to node j+1, the
following equation can be obtained:

Ty —Ti T

T
! I = AZp, )

_ _ T =Ty
17,-2;

! U]

where, 4 is thermal conductivity of layer j, and Ty, is soil tem-
perature of depth Z,;. Eq. (8) can be obtained by solving Eq.
(@):

AidialZ -2l
AilZi=Zn 1+ AjalZn - Z5]
Assuming that soil heat flux of soil bottom is zero, and soil
temperature of all layers can be obtained by solving above
equations.

Our data assimilation scheme only care for soil temperature
of CLM, so CLM can be considered as “black-box” system as
follows:

AZp ;) = (8)

X1 =M (X, 011, Bein) )
where, X1, X represent every soil layer temperature at the
time k+1 and k respectively; M(:) represents land surface model,
O¢+1 represents forcing data at time k+1, S¢.1 represents surface
parameters at time k+1.

From Eqg. (9), we know that surface temperature at the time
k+1 can be improved by adjusting surface temperature at the
time k, then sensible and latent heat flux at the time k+1 can
also be improved accordingly.

2.2 Ensemble Kalman filter

Ensemble Kalman filter was proposed by Evensen (1994,
2003). This algorithm can handle non-linear problems and is
easy to implement. It has been widely applied in the field of
data assimilation recently. Here a brief algorithm summary is
provided to understand the implementation of Ensemble Kal-
man filter.

2.2.1 Model initialization
Xy is defined as the initial value of model,

Xiéylo = Xg +Ui Ui ~ N(O, P) (10)

where, X7 is the analyzed state variable of the i member(i

represents the ensemble number) at the initial time, the super-
scripts ‘a’ refer to state variables of analysis, and u; is the back-
ground error vector, which conforms to Gaussian distribution
with zero mean and covariance matrix P.
2.2.2 Model state update

The model state update equation can be expressed as fol-
lows:

Xi,fk+l =M(XP b B) +W W ~N(0,Q)  (11)

where, Xifk ,1 represents the forecasted state variables of the
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i"" member (i represents the ensemble member) at the time k+1,
superscript ‘a’ and ‘f” means state variables of analysis and

forecasted, Xf‘k represents the analyzed state variables of i

member at the time k and w; is model error vector which con-
forms to Gaussian distribution with zero mean and covariance
matrix Q.
2.2.3 Observation operator

The observation operator can be expressed as follows

Yika =HX o) +v v ~NOR) (12)

where, Yjy. is simulated observation of i member at the time
k+1, H(-) represents the observation operator related model
state variables to observations, v; is observation error vector
which conforms to Gaussian distribution with zero mean and
covariance matrix R, R is observation error which can be ob-
tained by comparing MODIS LST products with ground meas-
urement.

When the data assimilation system confronted with observa-
tions, each number of state variables will be updated as follows:

f f
X1 = Xigor + KM —H XD +vi) - (13)
Kisa =R HT(HRS HT +R)? (14)

N
f_ 1 f gty f _gfaT
Pk+1_N—1§(Xi,k+1 Xk+l)(xi,k+1 X (15)

k+1

N
Rl =g g2 X X IR )T
(16)
HR! HT :ii[H(x "y —HX T )Ix

N-1i5 e et (17)

X )=HEX T
where, X{,; represents the analyzed state variable of i
member at the time k+1 (it refers to surface temperature in this
paper), Ky, is kalman gain matrix at the time k+1, Yk°+1 is
observation at the time k+1 (it refers to MODIS LST products

in this paper), Pkilis the forecasted background error covari-

ance matrix at the time k+1, X' is mean value of forecasted

k+1

state variable at the time k+1 (it refers to mean value of surface
temperature in this paper), []” represents transposed matrix,

H(X_fk 1) is state variable of i"" member at the time k+1 (it

refers to surface temperature in this paper), H(X kfl) is the

mean value of simulated state variable at the time k+1 (it refers
to mean value of surface temperature in this paper).

3 DATACOLLECTION AND DATA PROCESSING

Wang et al. (2008) validated the MODIS LST products at
some sites of Ameriflux. Three sites (Bondville, Brookings and
Blackhill) were selected to conduct the assimilation experi-
ments following Wang’s analysis (2008). Table 1 summarizes
the test sites which were covered with crop, grass and forest
respectively. Surface of the test sites is smoothness and even-
ness, in which Bondville site is validation site of MODIS data
products. MODIS satellite data products and ground-measured
meteorological data are available in the test sites.
Ground-measured meteorological and flux data are measured
every half an hour.

In this paper, the spatial resolution of MODIS LST products
is 1km. Meteorological and flux data are ground measurements.
The meteorological and flux data can represent the range of
several kilometers due to the smoothness and evenness of these
sites (Mathias, 2004).

3.1 MODIS data

In this paper, standard MODIS data products are selected
(Table 2). MODIS products are stored in format of HDF, sinu-
soidal projection. In addition, MODIS products also provide
satellite view time and quality control flag data. MODIS prod-
ucts can be obtained through the internet (https://
wist.echo.nasa.gov/api/).

In this paper, only high quality MODIS LST and LAI prod-
ucts (QC=0) were selected to conduct the experiments. The low
quality LAI data (QC >0) was filled with high quality data
(QC=0) in previous years. Table 3 shows the MODIS LAI data
at three test sites from January to December.

Table 1 Three observation sites from AmeriFlux

Site name Latitude/(°N) Longitude/(°W) Land cover Soil type LAl Canopy height/m Time Tower height/m
Bondville 40.01 88.29 Crop Silt Loam 0—5.0 0.9 2005—2006 10.0
Brookings 44.35 96.84 Grass Sandy Clay 0.2—3.0 0—0.4 2004—2005 4.0
Blackhill 44.15 103.64 Conifer Clay 2.0—5.0 13—15 2004—2005 24.0

Table 2 MODIS standard data products

MODIS standard products parameters

Spatial resolution/m temporal resolution/d

MYD11A1 Land surface temperature

MOD11A1 Land surface temperature

MOD15A2 Leaf area index

1000 1
1000 1
1000 8
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Table 3 MODIS standard LAI products
Site Year 1 2 3 4 5 6 7 8 9 10 11 12
Bondville 2006 0.4 0.3 0.3 0.5 0.5 2.3 4.9 2.4 0.9 0.5 0.2 0.3
Brookings 2005 0.1 0.2 0.1 0.9 1.4 16 16 2.3 15 0.9 0.4 0.1
Blackhill 2005 2.2 18 18 1.9 3.8 3.6 5.1 4.8 3.8 1.9 2.1 2.2

3.2 Meteorology data

Meteorological forcing data is available through the Internet
www.fluxnet.ornl.gov/fluxnet/index.cfm.  In  this  paper,
ground-measured meteorological data of three sites was se-
lected as CLM forcing data, including: air temperature, air hu-
midity, atmospheric pressure, wind speed, precipitation, in-
coming shortwave radiation, and incoming longwave radiation.
In addition, outgoing shortwave radiation, outgoing longwave
radiation, net radiation, soil heat flux, surface infrared tem-
perature, soil temperature (observation depth of 2, 4, 8, 16, 32,
64, 128cm ), and soil moisture (observation depth of 10, 20, 30,
40, 60, 100cm) were also used in the experiment.

3.3 Flux data

Flux data mainly includes sensible heat flux and latent heat
flux. A series of preliminary treatment were carried out to
Ameriflux eddy covariance (EC) data, which included: reject
the data when sensor is malfunction, coordinating rotation, and
WPL-correction, which guaranteed the quality of observational
data. In addition the processing steps above, the flux data were
screened rigorously, including: reject the data during periods
(when and before or after 1h) with precipitation, and reject the
data when friction velocity is lower than 0.1m/s.

Generally speaking, EC system has “energy imbalance”
phenomenon (Wilson et al., 2002), that is, energy closure is less
than 1.0. Table 4 shows the energy closure calculated at the
experiment sites in all-day and day. The day results were calcu-
lated with data from 8:00 to 17:00 in a day, and the all-day
results were calculated with the whole day data. We know that
energy closure is lower than 1.0 at Brookings, Bondville and
Blackhill sites.

Table 4 Energy closure at three observation sites

Bondville Brookings Blackhill
Site
All-day Day All-day Day All-day Day
Sample 9956 5638 8454 4828 11543 5269
0.76 0.76 0.91 0.85 0.91 0.86
4  RESULTS

4.1 Quantifying model error

Forecast error mainly depends on the size of model error and
observation error. However, model errors are often determined
arbitrarily with the assumption that their influence will diminish

quickly. But this assumption is mainly dependent on observa-
tions with high frequency and small errors; otherwise, forecast
error will be governed by model errors.

In this paper, model errors are specified as static value, and
not correlated with other state variables. With statistical method,
a look up table was made to specify the model error.

4.2 Observation operator and observation error

Gao (2003) compared surface temperature from CLM with
remote sensing radiometric temperature. Remote sensing ra-
diometric temperature is obtained through Plank’s law. For bare
soil land surface, surface temperature is ground temperature.
For dense-vegetated land surface, surface temperature is canopy
temperature. For sparse-vegetated land surface, surface tem-
perature is a hybrid temperature of canopy and ground tem-
perature. Considering the spatial resolution of remote sensing
pixels, remote sensing radiometric temperature is hybrid tem-
perature with different land covers. Surface temperature in
CLM can be expressed as:

T4 = fueg (l—v)4 +(1- fveg)(rg)4
where, T is CLM simulated surface temperature, T, is canopy
temperature, Ty is ground temperature, f. is fractional vegeta-
tion cover.

It is very important to establish observation operator suc-
cessfully for a data assimilation system. In this paper, observa-
tion operator needs to be established by relating MODIS LST
products to CLM state variables. Many researchers establish
observation operator through regressing remote sensing radio-
metric temperature with ground-measured surface temperature
(Kumar et al., 2003; Qin et al., 2005; Huang et al., 2008b),
which achieved good results in local area, but can not be ap-
plied at the regional scale. In this paper, component temperature
decomposition method was selected to establish the observation
operator (Anderson et al., 2005):

Taan(0) = f(0) TE+ (- f(O)TE (19)
where, Trap is surface radiometric temperature, T, is canopy
radiometric temperature, T is ground radiometric temperature, f
is fractional vegetation cover, 6 is view zenith angle of sensors.
The fractional vegetation cover can be expressed as follows
(Anderson et al., 2005):

f (6) =1—exp(-0.5F /cos(9)) (20)
where, F is leaf area index which can be obtained from MODIS
LAI products. Surface temperature is comprised by canopy and
ground temperature, so Eq. (19) can be rewritten as:

Tist(0) =[(f (O)ecTorea® + - T (0))zsTsrea™) 2cs]”* (21)
where, T\ st is surface temperature, Tcreq iS Canopy temperature,

(18)
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Tsrear 1S ground temperature, ¢ is site emissivity, the value re-
ferred to Wang (2008), and &, & is canopy and ground emissiv-
ity, the value is 0.985 and 0.96 respectively (Coll et al., 2005;
Jin et al., 2006).

In this paper, Eq. (21) was defined as observation operator
of the assimilation system. MODIS LST products were re-
gressed with ground-measured surface temperature, and the
RMSE was taken as observation error. This observation opera-
tor can be applied to both local and regional assimilation test.

In order to validate MODIS LST products, ground-measured
surface temperatures require a correction for emissivity effect
as they are brightness temperature in nature (Huang et al.,
2005). The emissivity is 0.987 at Brookings and Bondville,
0.993 at Blackhill (Wang & Liang, 2008). MODIS LST prod-
ucts were compared with ground-measured surface tempera-
tures (Fig. 3).

As can be seen from Fig. 3, the correlation coefficient (R?)
between MODIS LST and ground-measured surface tempera-

ture are 0.96, 0.944, 0.968 at daytime, while 0.955, 0.851, and
0.908 at night in Brookings, Bondville and Blackhill sites. In
addition, MODIS LST is lower than ground-measured surface
temperature, which is particularly evident when temperature is
higher than 290K at Brookings site. The accuracy of MODIS is
lower at daytime (RMSE=2.58) than at nighttime (RMSE=2.11)
in Brookings site. The accuracy of MODIS is higher at daytime
(RMSE=2.34 at Bondville, RMSE=1.86 at Blackhill) than at
nighttime (RMSE=3.01 at Bondville, RMSE=3.25 at Blackhill)
in Bondville and Blackhill.

However, the deviation between MODIS LST and

ground-measured surface temperature is caused not only accu-
racy of MODIS LST, but also difference of temporal scales
(MODIS surface temperature is a instantaneous value, and
ground-measured temperature is the mean value of 30 min) and
spatial scales (MODIS LST is mean temperature of 1kmx1km
area, and ground-measured temperature is about tens of square
meters).

(a) 11 (b) (© 11
320 + - -
“ .
E 300 F
g ;
= 280 + V= 0.992x ye 0.9991x y= 0.9989x
R'=0.866 R=0.944 R'=0.968
RMSE=4.07 RMSE=2.34 RMSE=1.86
260 1 ' L L L L 1 1 1 L
260 280 300 320 260 280 300 320 260 280 300 320
Ground temperature/K Ground temperature/K Ground temperature/K
310 ¢ r
@ © 111 ® 111
¥ 290
= Y
= - 4
@ : e
g ) e .
g 270 7 =0.9945x T p=09918x T = 09955x
) R=0.8603 R'=0.851 LM v R'=0.9083
RMSE=4.07 RMSE=3.01 o ST RMSE=3.25
250 A A J A A J a y A A J
250 270 290 310 250 270 290 310 250 270 290 310
Ground temperature/K Ground temperature/K Ground temperature/K

Fig. 3 Comparisons between the MODIS LST products and ground temperatures measured at Bondville, Brookings and Blackhill
(a) Brookings (daytime); (b) Bondville (daytime); (c) Blackhill (daytime); (d) Brookings (nighttime); (e) Bondville (nighttime); (f) Blackhill (nighttime)

4.3 Influence of LAI on surface temperature and flux

Surface solar radiation absorption and reflection are influ-
enced by leaf area index (LAI). In CLM, LAI is an important
surface parameter. It is determined by empirical equation to
describe vegetation seasonal variation, which cannot describe
the vegetation growing exactly. Some sensitivity tests of LAI
will be conducted in this section.

The sensitivity tests were conducted at Bondville site in
2006. The model output (surface temperature, sensible and
latent heat flux, when LAI = 2.0) were selected as the reference
value. The increment of 1.5 was defined for the variation of
LAI, and the influence of LAI variation to the model output
was discussed according to the following situation: (1) LAI=0.5;

(2) LAI=3.5; (3) LAI=5.0.
Table 5 summarizes the RMSE of surface temperature and
flux comparing to the reference value.

Table 5 Sensitivity analysis of LAI

State variables LAI=0.5 LAI=3.5 LAI=5.0
Surface tempera- RMSE 272 1.71 2.73
ture/K
e e S

5 . . .
(R,\,ISE _ %Z(P. —0)?: N is sample number, P; is the calculation value, O;
i=1

is reference value)



XU Tong-ren et al.: Estimation of sensible and latent heat flux by assimilating MODIS LST products

995

Table 6 indicates that the RMSE of state variables (surface
temperature, sensible and latent heat flux) when LAl = 0.5 is
larger than LAl = 3.5, indicating that CLM is more sensitive
when LAI is smaller. The RMSE of state variables (surface
temperature, sensible and latent heat flux) become larger while
LAI ranges from 3.5 to 5.0. As LAI increased, the increment of
RMSE becomes smaller.

LAI can influence the simulation of surface temperature,
sensible and latent heat flux in CLM. In order to describe the
vegetation variations accurately, LAl in CLM is updated dy-
namically by MODIS LAI products.

4.4  Assimilation of MODIS LST results

The assimilation results were shown in Table 6.

Table7 indicates that the estimation of sensible heat flux has
obvious improvement in different land cover types. The most
obvious improvement takes place at Blackhill site (forest land)
with RMSE decrease from 81.5W-m to 58.4W-m 2. RMSE at
Bondville (crop land) decrease from 47.0W-m2 to 31.8W.m2.
RMSE at Brookings (grass land) decrease from 46.5W.m™ to
45.1W-m~2. The estimation of latent heat flux at Bondville,
Blackhill has a slight improvement. RMSE at Bondville de-
creased from 88.6W-m2 to 57.7W-m™% RMSE at Blackhill
decreased from 53.4W-m2 to 47.2W-m 2,

Fig. 4—Fig. 6 shows the simulation and assimilation results

at Brookings, Bondville and Blackhill sites. Taking into account
that summer is a season with flourishing vegetation, and also
taking into account the continuity of flux observation data,
Julian day 181-210 is selected at Brookings in 2005, Julian day
154-184 is selected at Bondville in 2006, Julian day 228-258 is
selected at Blackhill in 2005 (many flux data is missed from
May to July). As can be seen from Fig.4—Fig.6, the assimila-

tion results are closer to the observation than simulation results.
It is very important to produce more accurate MODIS LST
products for data assimilation. Such as Julian day 164—168 at

Bondville site (Fig.5), the accuracy of MODIS LST products is
high, and the assimilation results are also closer to observation
than simulation. In Julian day 155, as MODIS temperature
(303.78K, 309K) is higher than ground-measured temperature
(300.68K, 306.4K), the assimilation results are no better than
simulation. Surface temperature simulation results are not good
under forest surface (Fig.6), while data assimilation method is
able to improve the estimation accuracy of sensible and latent
heat fluxes.

5 SUMMARY AND DISCUSSIONS

This paper summarizes a point-scale land data assimilation
scheme based on EnKF algorithm and CLM. MODIS LST
products were assimilated into the system. The estimation

Table 6 Summary of data assimilation results at Brookings, Bondville, and Blackhill sites

Brookings Bondville Blackhill
H LE H LE H LE
Samples 6517 8452 10348 9965 11813 11564
Simulation RMSE/(W-m?) 46.5 68.7 47.0 88.6 81.5 53.4
Assimilation RMSE/(W-m?) 451 73.3 318 57.7 58.4 47.2
320
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Fig. 4 Simulation and assimilation results of the surface temperature, sensible heat and latent heat fluxes at Brookings site

(a) Surface temperature; (b) Sensible heat flux; (c) Latent heat flux



996

Journal of Remote Sensing & 233k 2009, 13(6)

330 @

Temperature/K.
fad (¥ Lo
= — b
S o o

]
b=
=

N VW\ \al | ’U \f\i\.a\; i“\W’\\W’\ \;\

AR

(<)
450t ; .
L E z
E zsn—fk ‘SE 2 f: 1 ’ j lf
Y ) ‘“ W{ﬁj \ U
a s0gs U U %JjJ a.? L umh 4
~150 Simulation Assimilation - Observation X
154 156 158 160 162 164 166 168 170 172 174 176 179 181 183
Julian Day

Fig. 5 Simulation and assimilation results of the surface temperature, sensible heat and latent heat fluxes at Bondville site
(a) Surface temperature; (b) Sensible heat flux; (c) Latent heat flux

3507 (a)

3301,

::.';

3101 ";

270

Temperature/K

=

I

’W\NW fu’\}ww vf‘J\ i VM&

650} (b)

HAW-m™)

4501 ¢
N

25004

i
1
i

o i :

-|'r -«j

iﬁm L.;Ul H'E iu I

5

=

H_-a:-.-. Ve

f
.2 ';
-,

LR

Tl
a*h

E

1l qum HM mﬁxi

'—‘—-rv

-150

h
[=}
k=1

-2

LE/(W-m™)
Tad
(=1
(=]

=
=1

Simulation

r A q
4 i {

‘-f%-‘.
—— Assimilation Ochr\-'anon

238 240

LU M uw&wdﬁﬁ ’*

242 2
Julian Day

46 248 250 253 255 257

Fig. 6 Simulation and assimilation results of the surface temperature, sensible heat and latent fluxes at Blackhill site
(a) Surface temperature; (b) Sensible heat flux; (c) Latent heat flux

accuracy of surface temperature, sensible and latent heat flux
were improved. MODIS LAl products were also used to update
LAI in CLM, which also improved the model simulation re-
sults.

The estimation of sensible heat flux has obvious improve-
ment by using data assimilation method over different land
cover types. At Blackhill site (forest land), surface temperature
simulations has large deviation with ground-measured tem-
perature (about 10K during the daytime), while the RMSE be-

tween MODIS LST products and the ground-measured tem-
perature is only about 1.86K. So the assimilation results (tem-
perature and sensible heat flux estimates) have obviously im-
provement (RMSE decreased from 81.5W-m? to 58.4W-m
compared with the simulation results), and the estimation of
latent heat flux also has improvement (RMSE decreased from
53.4W-m~2 to 47.2W-m2 compared with the simulation results).
At Bondville station (crop land), RMSE of sensible heat flux
decreased from 47.0W-m~ to 31.8W-m~, and RMSE of latent
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heat flux decrease from 88.6W-m to 57.7W-m2 At Brookings
station (grass land), RMSE of sensible heat flux decreased from
46.5W-m2to 45.1W-m 2,

The results also indicate that the accuracy of MODIS LST
products is one of the key factors for data assimilation. The
accuracy of MODIS LST products is relatively high, and rigor-
ous quality control was implemented on the selection of
MODIS LST products (only use the data with QC=0). There-
fore, the estimation of surface temperature has greatly im-

provement compared with simulation in most assimilation cases.

However, there is still a big deviation between MODIS LST
products and ground-measured temperature at some time. The
deviation between MODIS LST and ground-measured tem-
perature is not only the accuracy of MODIS LST, but also the
difference of temporal scales (MODIS surface temperature is an
instantaneous value, and ground-measured temperature is mean
value of 30 min) and spatial scales (MODIS LST spatial scale is
1km x 1km, and ground-measured temperature spatial scale is
about tens of square meters). In addition, simulation of surface
temperature has systematic errors, which would make the as-
similation results worse than simulation. For example, Julian
day 155 (Fig.5) at Bondville site, MODIS LST is about 3K
higher than ground-measured temperature, and surface tem-
perature simulation also has phase deviations, which make the
assimilation result 10k higher than the observation during the
daytime. Therefore, it will be helpful for data assimilation to
develop more accurate MODIS LST products. In this paper, the
relationship equation between surface temperature simulation
and MODIS LST was defined as the observation operator, and
MODIS LAI products were also used in this observation op-
erator. The operator can be used in a regional data assimilation
system, but its applicability needs further validation.

The process described by CLM is relatively complex, and
requires lots of vegetation and soil parameters which are diffi-
cult to acquire. The forcing data also have errors. All the limita-
tions contaminated model outputs. In addition, there is a sys-
tematic error in model simulated surface-air temperature dif-
ferences, and surface temperature change fast in one day, which
make data assimilation particularly difficult. Therefore, better
assimilation strategy need to be proposed in next step.

There is an “energy imbalance” phenomenon in eddy co-
variance system which can measure sensible and latent heat
fluxes. Due to this phenomenon, about 10%—25% energy

(about 20—50W-m~2) disappear (Table 4). The validation re-

sults may be easier to understand after the observations are
corrected. In addition, the CLM simulated surface temperature
is mean value of a few kilometers, while the ground-measured
surface temperature only represent about a few square meters.
There are also some measurement errors of observation instru-
ment, which may influence the validation results.

In land data assimilation system, the magnitude of model
error and observation error determine the direction that the data
assimilation results go around. If model error is large, the as-
similation results may be closer to the observations, and vice

versa. However, model error and observation error are difficult
to determine, and they may change with the variation of time
and space. In this paper, with statistical methods, fixed values
were determined as the model and observation error which may
smooth the model and observation error and reduce the per-
formance of assimilation system. Therefore, assimilation results
may be improved with the development of new methods to
determine model and observation error.
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