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A novel spectrum filter for fully constrained mixture analysis
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Abstract: The presentation of mixtures not only influences the performance of image classification and target recognition, but
also is an obstacle to quantitative analysis of remote sensing images. Therefore, a novel spectrum filter based fully constrained
mixture analysis algorithm is proposed in this paper to tackle this problem. The spectrum filter, which could wipe off the back-
ground spectrum in a mixed pixel, is firstly proposed to obtain the sum-to-one constrained fractional abundance of mixtures in
remote sensing images. Since the precise endmember set of a mixture can be obtained by continually modifying the endmember
space when minus abundance exists, the spectrum filter based iterative algorithm is present to realize fully constrained mixture
analysis. Experimental analysis based on synthetic multispectral data set demonstrates that the proposed algorithm obviously
outperforms the popular Fully Constrained Least Square unmixing (FCLS) algorithm and the Orthogonal Subspace Projection
(OSP) algorithm. In addition, the proposed algorithm also achieves very promising performance on real hyperspectral images.
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1 INTRODUCTION

Multispectral/hyperspectral remote sensing, which can gen-
erate images with abundant spectral information, has been
widely utilized in many applications such as mineral detection
(Banerji et al., 1998), archaeology research (Ware et al., 2000),
land cover mapping (Tatem et al., 2003), vegetation investiga-
tion (Lee et al., 2004), and etc. (Yang et al., 2003). Generally,
spectral sensors are deployed on either aircrafts or satellites and
images are acquired in low spatial resolution. As a result, pixels
in a remote sensing image usually contain more than one sur-
face component, which are often known as “mixed pixels” or
“mixtures”. Therefore, the traditional classification algorithms,
which assign each pixel in an image to only one category of
ground object, can not provide accurate interpretation for the
remote sensing images. Such a problem can be solved by pre-
cisely obtaining the exact distributions of ground objects, which
is known as “Mixed Pixel Unmixing” or “Mixture Analysis”
(Han et al., 2004). The accurate decomposition of mixtures is
of crucial importance for the quantitative analysis of remote
sensing images, and also plays an extremely important role in
sub-pixel based target diction and classification application.

The model for mixtures has been summarized into the fol-
lowing five categories (Ichoku et al., 1996): the Linear Mixture
Model (LMM), the Probabilistic Model, the Geometric Model,
the Stochastic Geometric Model, and the Fuzzy Model, in

Received: 2008-12-25; Accepted: 2009-01-05

which the LMM has been widely utilized in real applications
due to its effectiveness and simplicity. Many LMM based un-
mixing algorithms have been proposed for target detection,
object identification, classification, quantification, and etc. Zhu
(1995) solved the LMM by least square methods for mixture
classification. Harsanyi & Chang (1994) and Chang et al.
(1997, 2005) utilized orthogonal subspace projection (OSP)
based mixture analysis methods for hyperspectral classification,
dimensionality reduction and feature extraction. Chang et al.
(1998) applied the oblique subspace projection to mixed pixel
classification. However, these algorithms may generate minus
abundance for ground objects, which is physically meaningless
to reflect the ground truth. Therefore, it is impossible to apply
them to the quantitative analysis of remote sensing images.
Although the Fully Constrained Least Square (FCLS) algorithm
utilizes iterative method to eliminate the minus abundance for
ground objects (Heinz er al., 1999, 2001), the accuracy of the
unmixing results need to be further improved. In this paper, a
spectrum filter, which could wipe off the background spectrum
in mixtures to obtain the sum-to-one constrained abundance, is
proposed. By utilizing the proposed spectrum filter process
mixtures iteratively, the physically meaningless minus abun-
dance can be eliminated. Thus, the fully constrained mixture
analysis achieves. Finally, the performance of the proposed
algorithm is demonstrated on both synthetic and real remote
sensing data sets.
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2 LINEAR MITURE MODEL

Due to the spatial resolution limitation, mixed pixels, which
contain energy reflected from more than one type of ground
object, are inevitably presented in remote sensing images. In
the LMM, as shown in Fig.1, the photons reflected from differ-
ent ground objects contained in one pixel are assumed not to
interfere with each other. As a result, the reflected spectrum is a
weighted linear sum of the spectrum reflected from inhomoge-
neous materials. Generally, the spectrums of typical constituent
ground objects in a mixed pixel are known as “endmember”
and their corresponding proportions are known as “abundance”.
Therefore, the mixed pixel of a mixture equals to the linear
combination of endmember contained in it and their corre-
sponding abundance.

NN
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Fig. 1 Sketch map of the satellite remote sensing

Let ¢ =(rl,r2,---,r,,)T be a mixed pixel vector, where b is

the number of bands. Let M =(m,,m,,--,m,) be the end-

. . . T .
member matrix, in which mj=(mlj,mzj,--',m,,j) (j=12,

-+, p) is a bx1 column vector representing the j-th endmember

spectrum and p is the number of the spectrums of interest. Let
a:(a[,az,---,ap)T be the corresponding abundance vector,

where g; is the abundance of the j-th spectrum in the mixed
pixel. Based on the linear mixing theory aforementioned, the
spectrum of a mixed pixel can be represented by a linear re-
gression model as follows,

r=Ma+n=imjaj+n, (N
j=l

where n is a bx1 column vector representing Gaussian noise. Its

average is zero and variance is ¢I, in which I is a unit matrix.
In order to make the LMM more precise and scientific to
describe mixed pixels, the Sum-to-one constraint and the Non-
negative constraint must be imposed on the LMM, which can

be expressed as follows,

p
da=1 )

j=

4,20 j=12:p 3)

The Sum-to-one constraint is imposed since all the constituent
proportions form one pixel; while the Nonnegative constraint is
imposed because the negative abundance is physically mean-
ingless to reflect the ground truth.

3 FULLY CONSTRAINED MIXTURE ANALYSIS
BY SPECTRUM FILTER

3.1 The construction of spectrum filter

Generally, the spectrum of a pixel can be considered to be
composed by the following three part (Tung et al., 2001),

r=S+B+n, 4

in which § represents the signal spectrum, B represents the
background spectrum, and n represents noise. According to the
LMM defined by Eq. (1), we have,

S +B=Ma. (5)
Therefore, both the signal spectrum and the background
spectrum are results of endmember spectrum. In order to obtain
the abundance of a typical ground object, the space generated
by endmembr can be devided into the signal spectrum subspace
and the background spectrum subspace, in which the signal
spectrum subspace is generated by the spectrum of interest and
the background spectrum subspace is generated by the other
p—1 spectrums contained in the endmember set. Let m, (bxl
dimensional column vector) be the signal endmember spectrum
vector whose corresponding abundance is represented by a,
and let M, (bx(p—1) dimensional matrix) represents the
background endmember spectrum matrix and their
corresponding abundance is denoted by a;,. Consequently, the
signal spectrum and the background spectrum are generated by
their corresopnding endmember spectrum as follows,

S=mu,, (6)
B=M,,a,,. (7)

Therefore, the LMM defined by Eq. (1) can be rewriten as
follows,

r=myo,+Mya, +n. (8)

In order to obtain the abundcance of signal spectrum, a

spectrum filter k (1xb dimensional column vector) is proposed

to directly eliminate the background spectrum from the pixel
vector, which satisfies,
km,=y yeR
{kMs =0 ’ ’ ©
b~ Yp-1
in which 0, represents the p—1 dimensional zero vector. If the
spectrum filter is applied to the LMM defined Eq. (8), we have,

kr =km o, +kM,a;, + kn=yo, + kn. 10
Therefore, the abundance of signal spectrum is,
kr k
@ =—-= (11)
Y 7

If the Gaussion noise contained in the pixel is ignored, which
can be achieved by denoising the images previously, the abun-



70 Journal of Remote Sensing £ & #2010, 14(1)

dance of signal spectrum is,

a,=—. (12)
/4

3.2 The solving of spectrum filter

The sum-to-one constraint can be embedded into the LMM
to form a sum-to-one constrained LMM expressed as follows:

h my o My n
A : o :
= x| i |+ , (13)
rb mb, mbp o np
5 ) P P7 1o

in which & is the trade-off between the LMM and the
sum-to-one constraint. If the spectrum filer is constructed on
the basis of the sum-to-one constrained LMM defined by Eq.
(13), the unmixing results obtained by the proposed spectrum
filer will satisfy the sum-to-one constraint.

In terms of the abundance sum-to-one constraint, the spec-
trum filter, signal spectrum, and background spectrum can be
revised as follows,

K=(k 1), (14)

, (mg) ., [Ms
m;"(a ]’Mb-[é"l’r_l]’ (15)

where 1, is a p—1 dimensional column vector contains all
ones. If these revisional items are adopted to replace the corre-
sponding items in Eq. (9), the unmixing results obtained by the
spectrum filter will satisfy the sum-to-one constraint,
k'm; =y

nyt . 16

{k M b = 0 p—l ( )

Consequently, in terms of the abundance sum-to-one constraint,
the spectrum satisfies (substitute Eq. (14) and Eq. (15) into Eq.

(16)),

km,=y-6
=7 . 17
ka=—6'lp—l
Let y= &, we have,
kmg =0. (18)

Since the endmember spectrum is consist of signal endmember
spectrum and background endmember spectrum, which
means M = (m; M} ), Eq. (17) can be rewritten as follows,
kM =60, (19)
where,
0=(0,-1,-,-1). (20)
If p=b, which means the number of bands is not larger

than the number of ground objects, Eq. (19) is a determined or
over-determined equation. Therefore, the spectrum filter k has
least square solution,
k=5-oMTMMT)". @n
If p<b, which means the number of bands is larger than the
number of ground objects, equation (19) is a under-determined
equation. Therefore, the spectrum filter k has lots of solution.

Consequently, the abundance of signal spectrum obtained by
utilizing the spectrum filter defined by equation (21) is,

o = gkr= kr (22)

Since the sum-to-one constraint has been considered in solving
the spectrum filter, the unmixing results will satisfy the
sum-to-one constraint. In addition, according to Eq. (22), the
parameter & has been eliminated in the unmixing results.

3.3 The fully constrained mixture analysis by
spectrum filter

When using the proposed spectrum filer to perform mixture
analysis, only the sum-to-one constraint of LMM has been
considered. However, the abundace of all typical ground
objects can not be ensure to be nonnegative, which means some
physically meaningless minus abundance may be generated for
some ground objects. Such problem may be caused by adopting
some typical ground objects which are actually not contained in
this mixture as endmember. Therefore, it is of crucial
importance to determine the proper endmember set for a
specific mixture analysis.

According to Fully Constrained Least Square (FCLS) algo-
rithm (Heinz et al., 2001), the iterative methods can be adopted
to eliminate minus abundance in the unmixing procedure.
Therefore, in this paper, the iterative analysis by the proposed
spectrum filter is adopted to realize fully constrained mixture
analysis. When using the proposed spectrum to perform
mixture analysis, all the typical ground objects in an image can
be selected as an initial endmember set for all the mixtures in
the image. In the unmixing procedure for a specific mixture, the
unincluded ground objects can be identified according the
unmixing results by the spectrum filter. Hence, a new endmeber
set can be constructed for mixture anaiysis by deleting these
unincluded ground objects from the initial endmember set.
Consequently, the spectrum filter based unmixing procedure
can be perform iteratively according to new endmember set
until all of the abundance are nonnegative. In the real
applications, the initial endmember set is continually modified
by wiping off the spectrum corresponding to the largest minus
abundance in the unmixing results. A maximum of p-1 itera-
tions are acquired for a specific mixture analysis. Therefore, the
spectrum filter based fully constrained mixture analysis algo-
rithm is as follows:

Step 1: Select each spectrum of the typical ground object in
the endmember set as signal spectrum to calculate its corre-
sponding abundance according to Eq. (22).

Step 2: If the abundance of all the ground objects are non-
negative, which means@; =0(j=12,--,p), the proper un-

mixing results achieved. Otherwise, turn to Step 3.

Step 3 : Find the minus abundance with maxmum absolute
value and let it be 0. And then wipp off its corresponding
spectrum from endmember space to form a new endmeber set
for mixture analysis. Turn to Step 1 to contruct new spectrum
filters to perform the mixture analysis again.
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4 EXPERIMENTS

In this section, the performance of the proposed spectrum
filer based fully constrained mixture analysis is demonstrated.

4.1 Experiments on synthetic multispectral data

In this section, the spectrum of typical ground objects
obtained by Landsat-7 satellite is selected as endmember
spectrum. The synthetic mixtures are generated according to
LMM to compare the proposed Fully Constrained Spectrum
Filer (FCSF) based mixture analysis algorithm against the
popular Fully Constrained Least Square (FCLS) algorithm
(Daniel et al., 2001) and the Orthogonal Subspace Projection
(OSP) algorithm (Chang et al., 2005). The spectrums of four
ground objects including building, swamp, water, and road, are
adopted as endmember spectrum (as shown in Fig. 2). The first
mixture is simulated with 100% building and 0% other ground
objects. And then in the following mixtures, the building is
decreased by 1% each pixel until the 100™ mixture containing
only 1% building. Correspondingly, the other components of
swamp, water, and road totally increase by the increment of 1%,
where the increment ratio among them is 5:3:2, which means
the swamp increases from 0 to 50% by the increment of 0.5%,
the water increases from 0 to 30% by the increment of 0.3%,
and the swamp increases from O to 20% by the increment of
0.2%. Totally 100 mixtures are simulated. In addition, White
Gaussian noise is added to these mixtures to make the
simulation more authentic to simulate the real situation.
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Fig. 2 Spectrum of four typical ground objects obtained by
Landsat-7 Satellite

Table 1 Decomposition results of the three algorithms

(SNR=10dB)
RMSE CcC Time consumption /s
FCSF 0.0299 0.9842 0.030
FCLS 0.0432 0.9718 0.023
osp 0.0310 0.9831 0.019

Table 1 tabulates the mixture analysis results of the proposed
FCSF, FCLS and OSP algorithms when the Signal-to-Noise
Ratio (SNR) level in the synthetic data is 10 dB. The Root
Mean Square Error (RMSE) and Correlation Coefficient (CC)
are adopted to quantitatively evaluate these algorithms. The
computation times by implanting these algorithms on Matlab
platform are also listed in Table 1. Deduced from Table I, the
proposed FCSF based mixture analysis algorithm, which
achieves the least RMSE and the biggest CC with the real
fractional abundance, outperforms the other two algorithms in
spite of a little more time consumption. The OSP algorithm
spends least computation time of these three algorithms.
However, it often generates minus fractions for ground objects,
which is physically meaningless to reflect the ground truth.
Although it can be utilized to improve the performance of
image classification and target recognition, it is impossible to
apply it to the quantitative analysis of remote sensing images as
the unmixing results often do not reflect the ground truth. The
proposed FCSF algorithm confines the fractional abundance to
[0, 1], and the sum of them is restricted to one to meet the
LMM. Although the FCLS algorithm can also confine the
abundance fractions to [0, 1], its unmixing results are inferior to
that of the prposed FCSF algorithm at the same SNR level.
Therefore, the proposed FCSF algorithm is of great potential in
the quantitative analysis of remote sensing images. Fig. 3
shows the RMSE of these three algorithms at different SNR
levels. It is observed that the proposed FCSF algorithm is more
robust and consistent to noise than the other two algorithms. In
addtion, the unmixing results of the proposed FCSF algorithm
are much better than that of the other two algorithms especially
when the SNR is low.

SNR/dB

Fig.3 RMSE of three algorithms at different noise levels

4.2 Experiments with real hyperspectral image

A real hyperspectral scenario of the Jasper Ridge area
located in California of USA, collected on Jul 18%, 2000, is
utilized to demonstrate the performance of the proposed FCSF
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based mixture analysis algorithm. Totally 60 spectral bands
covering the spectrum ranging from 441.0nm to 1320.8nm are
selected. Fig. 4 shows a Pseudo color image of this area where
band 10 is displayed as red, band 20 as green, and band 30 as
blue. In this experiment, the spectrum of water, vegetation, road,
and two Kinds of soils are selected as endmember spectrum for
mixture analysis. The decomposition results of the proposed
FCSF algorithm, denoted by abundance gray image, are shown
in Fig. 5. In these images, pure black denotes that the
percentage of the ground objects in the mixture is 0, while pure
white denotes 1. Observed from these fractional mapps, two
kinds of soil, which are covered by vegetations (as shown in
Fig. 5(a)), mainly present in this area (as shown in Fig. 5(d),
(e)). A lake exists on the top of this area (as shown in Fig. 5(b))
and a road runs through from righttop to rightdown in this area.
Consequently, the proposed FCSF algorithm is of great
potential in the intepretation of remote sensing images.

Fig. 5 Fractional images of Jasper Ridge area
(a) Vegetation; (b) Water; (c) Road; (d) Soil 1; (e) Soil 2

5 CONCLUSION

A spectrum filter, which can directly obtain the abundance
of ground objects by wiping off the background spectrum from
mixture spectrum, is constructed in this paper. In addition, the
fully constrained mixture analysis algorithm based on the pro-

posed spectrum filter is also presented. Experimental results
demonstrate that the proposed mixture analysis algorithm can
generate accurate fractional abundance maps for remote sensing
images, indicating that the proposed FCSF mixture analysis
algorithm can be utilized not only to perform the quantitative
analysis of remote sensing images, but also to improve the per-
formance of image classification and target recognition.



MEI Shao-hui et al.: A novel spectrum filter for fully constrained mixture analysis 73

REFERENCES

Banerji A and Goutsias ] A. 1998. Morphological approach to auto-
matic mine detection problems. IEEE Transactions on Aerospace
and Electronic Systems, 34: 1085—1096

Chang C 1, Zhao X L, Althouse M L G and Pan J J. 1998. Least squares
subspace projection approach to mixed pixel classification for hy-
perspectral images. IEEE Transactions on Geoscience and Remote
sensing, 36(3): 898—912

Chang C I. 2005. Orthogonal subspace projection (OSP) revisited: a
comprehensive study and analysis. /EEE Transactions on Geo-
science and Remote sensing, 43(3): 502—518

Han J H, Huang D S, Sun Z L and Cheung Y M. 2004. A novel mixed
pixels unmixing method for multispectral images. IEEE Interna-
tional Joint Conference on Neural Networks, 4. 2541—2545

Harsanyi J C and Chang C L. 1994. Hyperspectral image classification
and dimensionality reduction: An orthogonal subspace projection.
IEEE Transactions on Geoscience and Remote sensing, 32. 7719—
785

Heinz D C and Chang C I. 2001. Fully constrained least squares linear
spectral mixture analysis method for material quantification in
hyperspectral imagery. IEEE Transactions on Geoscience and
Remote sensing, 39(3): 529—545

Heinz D C, Chang C I and Althouse M L G 1999. Fully constraid
least-squares based linear unmixing. IEEE Geoscience and Re-
mote Sensing Symposium, 2. 1401—1403

Ichoku C and Karnieli A. 1996. A review of mixture modeling tech-

niques for sub-pixel land cover estimation. Remote Sensing Re-
views, 13: 161—186

Lee J T, Shuai Y M and Zhu Q J. 2004. Using images combined with
DEM in classifying forest vegetations. [EEE Geoscience and Re-
mote Sensing Symposium, 4: 2362—2364

Tatem A J, Lewis H G, Atkinson P M and Nixon M S. 2003. Increasing
the spatial resolution of agricultural land cover maps using a Hop-
field neural network. International Journal of Geographical In-
formation Science, 17(7): 647—672

Tu T M, Chen C H and Chang C I. 1997. A least squares orthogonal
subspace projection approach to desired signature extraction and
detection. IEEE Transactions on Geoscience and Remote sensing,
35(1): 127—139

Tung C T, Tseng D C and Tsai Y L. 2001. Mixed-pixel classification for
hyperspectral images based on multichannel singular spectrum
analysis. IEEE Geoscience and Remote Sensing Symposium, §:
2370—2372

Ware G A, Chabries D M, Christiansen R W, Brady J E and Martin CE.
2000. Multispectral analysis of ancient maya pigments: implica-
tions for the naj tunich corpus. IEEE Geoscience and Remote
Sensing Symposium, 6: 2489—2491

Yang HZ, Han J F, Gong D P and Li Z X. 2003. The development and
application of Hyperspectral Remote-Sensing Technology. Hy-
drographic Surveying and Charting, 23(6): 55—58 '

Zhu S L. 1995. The classification of remotely-sensed images with mix-
els. Journal of the PLA Institute of Surveying and Mapping, 12(4):
276—278



74 Journal of Remote Sensing & & F4 2010, 14(1)

ETRiGREFRNESRITSH

WD, O —

AL T K% BFER¥E RASFERRSAEEALRE, KA AX 710129

B OE: B

P LT OB AR AT R R & R SR M BT M . BRI RS T el S ROE

B ERHEE R MR RER S, BRESBTHHERTRR S, EERRESHIENFE . XAZHEE
BERLERHH, BELMRASGITHHRTHESE, KRBT EERE, FIET RN ERTEERSE
ik, TMBESRITHEHRIME. EHEBBGAERIER, 52ARK/D_REFCLS)FIEL L (OSP)5#
HARLG, HOTH BRI R, BEAMRERSLRERNMXRARE, WHTRREN, AAREHS
AR, Eﬁ’*ﬁﬁﬁﬁﬁﬁﬁﬁi?% NS BUGH T RE R AL RO RGP TREBITHTH

&R,

XA LIRS, LSARSR, BEGITON, ShB/RLEER

PESFES: TPIS1.1 HERIRE: A

068—079

MWK WK, F%—. 2010, ETFRMMBBIRARTAHH. BBER, 14(1): 068—079
Mei S H, He M Y. 2010. A novel spectmm filter for fully constrained mixture analysis. Journal of Remote Sensing. 14(1):

1 51 &

ZIEAEEREBFERLEEE, TEZNA
FHEGRE MK (Lee %, 2004), 5 R B (Tatem %,
2003). E LA (Ware %, 2000), AESRURE
2 BHRIR R (Banerji %, 1998)% A& £ 408 (Yang %,
2003), HEELEEREEIENERER A
R ARTRE, BT E/EERERN T E S
PR R (F a0 NASA £ Landsat T2 ER /Y
%3 6] 4 ¥ % 7 900m?, NOAA-7 T & B B4 % ] 43 3¢
R 1.2km?), AR LA RAMRITE F XN T HE
SRS, XERNRTEEBERINBEEB/RIT.
EXHERT, FHEAOE-MRTRE D —K
Y1 1 43 25 T B 8L 7R HE o B b B R RHE AT R
(Han %, 2004), XA [a) AT LUE o RABBTH &L
YR SRR AR T FERER, BEBRT
MR IBERABBRE R ERLNAN IR
B EE, 7R IEERMTERITHEMHEY BiFR
SIS APEEEREENER,

W B M: 2008-12-25; #iT B ¥: 2009-01-05

Ichoku Z(1996) R THMBAEBIAE R 5 #
R KRR BBRER, SRR B
SR AR R, HPREER U HSEW
fis, WESYHBSHIG ZNA, ZHET
KUEHNBESBRTAB TR ZHATEANHE
R a6k B SR 5% Bk S, 6
i KRR EA995) A/ — Rk #HITIR G RIT
3 Harsanyi, Tu #1 Chang %(1994, 1997, 2005)1 F
ERXTERBEHITEHAERGSE. BELKE
fE$RHL; Chang % (1998){EFH LR N AR A R TH
fBrh, HTHY AL, BXEE AT R
wYSENEAY, HARERPFERAYEE
YHREEE EERERNERSTFERATR
KB BRE . Heinz 2(1999, 2001)38 ! #) 2 295K &
INZ IR REH:(FCLS), RSN T ERRT R
IN_RoBPEERRBEMRE, BRABHEER
HRE., AUEREHEICHER, WE-FMaTL
BRIEABRITHPERLERS LG EER. A
HR B BHATREBITMT, TUERRRESH

EEMA: HFHRPEES RS 60572097, 60736007), NPU BRI 5 iT21.
B—ERMM: WOEA8— ), B, HESHEBLEEREENTE, 2m7ﬁllﬂﬁﬁa§%§$§ﬁiﬁ HAGRRBRKEBRAKE
i, TEAFEBREELIHAR . E-mail: meishaohui @gmail.com,



BOES: ETHIBRESNRESHRITSNT 75

SHIEE, FERIERSETTHA MY HEEM
1o desbh, FIFTZIE B AR# AT AR, W1 LARER
BMRABRTHINERITTGERER, BARTAR
Y+ A B 2 T E MRS E AR R
FEHRE GO ERBIE T RERK AR,

2 SMRESHEA

BEERTRSBETHREGREEANA 1, B
FROUPEAETESHEY BRNER, REMAE
MYOEEMEERNSR. AHRSEEBRRBKRIT
A9 R AR T L BY BT A S W R E i
MEHEE, —BELT, BERERPAFBYN
FRAESE PR Tt i, X LR ITOL IR & BT
FET S B L BIRR R R . IREBITH LN N T

sy R EERRA RN,
L
42 \\ Hi3
4

M1 #ZREAFRSEITASTER

iLr=.n, ) HE/ELERRIHES
RTEER, M=(m,my, - m,) oY %4
BEHTERE, P, mj=m;,m;.m)",
(J=12,, p) BAE j s FIELigEmE, o N
HBEHE, p Y ERATEAMRTHEE,; iC
0 =(0,a,@,)" K px1 EFAR, HF o FR
BEBIT r 95 j OLIEMER MIBLKRES
JRE, RERIT r Wi R AT LUE I R (DATRE
M B AR RISk SRR

r=Ma+n=imjaj+n n
j=1

Hh, n REHTEBRAE, HYERO, HFENIL T
RN,
M XY A R —MES BT, FTUH

FEEMA L
p
da;=1 (2)
j=1
HAE, FEFELHAT 0, B
@; =0 j=12-,p 3)

3 ETRERESPREGEILEY
W

3.1 SeilIRI RIS

%75 r BAFIE X AT LB ER LT IILE 890
(Tung %, 2001):
r=S+B+n 4)
H, SERREBHE, BREATRMIE, n FREHE,
2B (DR MEER S ER A 4,
S+B=Ma (5)
EE S iEME RSy Am T g ER. ITHE
BULE — R R IE s 09 BE, ¥ thsm oo bk sk B
FEIMBRESHEFERMTRAEFEE, H
5 5ok 2 6] B X R b M RO AR IE ik R, &
RNEFE R BRI IS PR AR p-1 Faigty
FIFFIE ISR, 10 m(bx1 45 B)N{E ST
e B, XA EE N o My(bx(p-1)HEER) RN
H R TCIEERE, XA EE MmN a(p-1)4%
7 &), WAES KL R 57 LIRR R

S=ma, (6)

B=M,q, (M
FRADFRAHEHERSEUTLUIRER:

r=moa,+M,0, +n (8)

ATREGESHENFEE a,, &XHE—4T
DLESEMBITH IR E FOLIR O BB AT k(1x b
BiTRRE), SHWE:

km,=y yeR
{kM,, =0,
HF 0, 0 p-1 B &, MA@)FRHRERT
BRI RIS IR B 28 & AT WAL FE AT 48
kr =km o +kM o, +kn=yo, +kn (10)
Wi, FEmTrEE:

@ =—-— (1

TSR 72 B R S0 VR S ) (F PR AR g AT A R TR
W), FE A EFERLIRRRN:
kr

o, (12)
Y

9)



76 Journal of Remote Sensing & & F4R 2010, 14(1)

3.2 FRiBBIEB/AIKE

ZERFIFEMN | AR, X)FAIRHLIER
ARBTLIRE W

h My My a n
: . : ! :
=| ' X+ ' (13)
n My o My, n,
o
) S - & P70

Hep, SHEEMN | ARMABE, FHZBENK
PR HATIR B ROTS T, AT RMRIE % i o o6 i 60
£EMAH L,
AT HESr, SHEEER . E5ENYE
RS TBIE:
K=(k 1) (14)

cfpjulty) o
fle S ey

B 1,, 028 1 8 p-1 FHIEE, FRXEEE
TR Q) AR R, 7T LAZE R E SOE IS A )
BHRIERI B FEEFH 1
k'm. =y
{k'M; =0,
ZIRTEEMN | ARG, HiEWREESNWH 2K
KAHFASYRAR16)HFTILHE):

(16)

{kms =y-4 an
kM, =61,
2y=0 N

km, =0 (18)
¥ Hid

0=(0,-1,,-1) (19)
% [P TT L ¥ 5 S o oe i A E Bom Tt i 4
B, BIM=(m_ M,), BiARANAILURE K:
kM = 50 (20)
Yp=bit, RGP RYEINBMEXRTHET
WM AN, RQoyhiTESHEFB, HiBEEK
#k HAB/N KM
k=5-0M"(MM™)"! 1)
%Y p<b B, BPERP AT E DT REH
B, RKEOIKEF B, KiERERESLE RFLHK
ANE, REBIEH{E—EET,
FRESHENFH:
/4
%=5h=h (22)

RFERABATEERR 1 ARNEERGE
RURMEIIE S, FTLIRBRNERRENN 1 &
AR, b, NRQ)TTLVE S, ERZOLIEEES

HATIR SR ITHEE, WHER THRUESER ML M,
33 REBTHNEARSH

i Y6 2 TR A R u R, UNE
RTEEMN | AR, TEEIEFTERFERTH
EEMIERYE, BEMEHATEESTE—BEEY
HEXWANERE, XAEEHTFZRTPIHFAR
A5 AT R BT R RSO RIS A A P R e i
YIRS i ALY, BRI, EHITIRA R T e,
A ARITEE R E Fizg oo LR E Bt
HE, T, BREEEIERNXBRERDUZA
TCHIMERR KSR T LIS RCE .

FR4E Heinz 2£(1999, 2001) A 42 1 #9 £ 245K &/
“HRAHSEOER, RAEKSBOTE, TU
FKBUR &R oTH VI A GGIE R E, RIEFRRM
MEERIERNE. TR, EFEAACR N EE
R HATREGBITHER, o LUK AR R
Tk, WNHEERPREZBTAEE 5w ITEE,
¥ H M ST i 2 (m) P IR, Xt o oT ok i A Al AT
B1E, SRS R B T 8T 89 3 JT 7t 1% 25 18] B 6 1 0 i
BT R, EBIRBHPTAE YRS 0 EAE
Fi ik, BABRER, NARERPH AN ER
KEFERME, SHNb0, FHHH xR AR THEIEM
24 i AG 358 JC 6T A B R B, TR IR T LI RE
Be, HEFRLRBESEHATLH EEX—
28, HAERWI AR EEESER L.
ZEEBRSTELNR p-1 #, BAFEHRITEER
HEEREGER . SR, FIFAARSUR S # L
ERH#TREBRIT2YR BN LERNT:

(1) 43 545 356 70 Y633 2 1] o ) 4% 440 30 ) B A
EYEEE R1E S e, AR AU B A IS IS B 2%
BETERA GO R A EEEGE Q)

Q) MEFEMP R FEMEHIER, B
a;Z0(j=12,p), WHHERKIMER, &
Rk /W, HEL]RE);

Q) RBgEMEBRANAERE, dhada, £
a=0, FHHEIARTHIERE m NERM G
TEERE M PR, =ARRSITLIEERE M,
RIGEBE R, BFHHTREEITIT,

4 ZHWERSA

41 HWHKRTXR

%R F i Landsat-7 T2 ZRERAY 4 Rt A 5
A AR Mmoo b, BIBEMHREABRARUL K
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HARIT, FARHESAT L IEN S EFECSH 52
LY /N~ Fe 448 (FCLS)(Heinz %, 2001)F1E3T#
B 4Mf (OSP)(Chang %, 2005)5E EatEaE, Hh,
i d kA, BRY . WA 4 Faigi
PIRIFRIE e R, ARSI E 2. #4786
BT ER, BRYRERFLL 0.01 fEd 1 AR
£ 0.01, XtREAYIRH . KR ABKEL 5:3:2 A9 HLBIIY
m, FARIEFRAEMEEMR 1|, NRHAFEREU
0.005 B3 & 1 0331 F) 0.495; KK ERELL 0.003
R R H 03I 0.297;, AREMERLL 0.002 K1
B 0833 0.198;, S35 HE 100 MEIT M5, LA
—EEREHEESHMAGY RS, FEHE
AR A BRITAF & Lhr1E .
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K1 =HOBEEHEELLBIFH X 10dB)
EF R

BFRIRE HHERERS
FCSF 0.0299 0.9842 0.030
FCLS 0.0432 0.9718 0.023
osp 0.0310 0.9831 0.019

1 B H T 4RI 2 245k I 5 2% (FCSF)
¥, 2ARBR/NREFCLSMESRE HRSE:
OSPHITRABRTANTHEREAELERNY K
BiRE X RABUREEH B 7m0 &,
ME | B, 2ARLEEESESALERNY
FRRER/D, HRXREEK, R TFHRHMBILFHE
%, HEstRIEE T ERD THABEE, EX8E
NREESROEESERABY, mEREYHE
BEXRREE, AREAEHBABEBNAR, 55
FRESRAE —EZR, BARW R TEREBRE TR
TARMENELE, BEBREGEEMNTE
BEERAKKBRYE . 430REHHLAFOLREEE S

BRI & Y R FEEHAT 0 M1 ZE, 3
Hr A digsh W R EEMN 1, FFERERBRIT
MR BRI AR R, SLARB/P_ROMH
B, EMRIRGERIET, AR HHSHHOE
ERESERBRNERSELERIMRALH,
BARIREND, RALBRROTEREE, 78Ry
BRERMTHERARANNAE L. B3 HHT
3 BB TRIZRZMEERLEHAMEE, N
B 3 Fii, 2AROLBBERENRERE —EK
MEER, ERGERILERTHEERHEMNT K
[ R3S
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0.10

0 5 10 15 20 25 30 35 40 45 S0
f\iMR H./dB

B3 3FEREITRIRERRG CELE
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5 Jasper Ridge 3 X #b.4 & & K &
(a) HIBL; (b) /KB ()2H; (d) L1 (e) £H2

3 7 ) 4 4 S A0 4 A DR 4R Ao on ki, BEAAC
BB LA LIRS ERHITREHITON,
MRERME 5, HPaHERRESRITHHML
MIERN 100%, GROARAHERN 0, MEFEH
haf B, ZRBAEBARIRE A EEEEX
(A 5(), MEHE 2 HAFEFRLA LHE 54).
(), HEFE—RERMBIAE 50b), HLBA L
i T 8 /N Sy — 2% B (B S(c) P IR X 3). B
AT, AXRHOETRIEBERNRSHRTE
YR AN o R v R R R AR R TR R
B HE.

5 & i

AXHHE T —FORIRB AR, FIRRIR B E
ATEREBRPEARTHEARI M. THEIR
itH, ZEENARERAAREBOKE, S5Zk
SROMERERE, YHRRE/ND, TEERNHEF
RGP NHREBITOT . MR R#ET
BABITHR, NURT LR S0 MRt AR

A%, BRI SAHEKEE, TEERRERSD
WA EAERKMNHES.

REFERENCES

Banerji A and Goutsias J A: 1998. Morphological approach to
automatic mine detection problems. IEEE Transactions on
Aerospace and Electronic Systems, 34: 1085—1096

Chang C I, Zhao X L, Althouse M L G and Pan J J. 1998. Least
squares subspace projection approach to mixed pixel classifi-
cation for hyperspectral images. IEEE Transactions on Geo-
science and Remote sensing, 36(3): 898—912

Chang C I. 2005. Orthogonal subspace projection (OSP) revisited: a
comprehensive study and analysis. [EEE Transactions on Geo-
science and Remote sensing, 43(3): 502—518

Han J H, Huang D S, Sun Z L and Cheung Y M. 2004. A novel
mixed pixels unmixing method for multispectral images. IEEE
International Joint Conference on Neural Networks, 4: 2541—
2545

Harsanyi J C and Chang C 1. 1994. Hyperspectral image classifica-
tion and dimensionality reduction: An orthogonal subspace

projection. IEEE Transactions on Geoscience and Remote



BOES: ETRIERESNRSBITLT 79

sensing, 32: 779—785

Heinz D C and Chang C 1. 2001. Fully constrained least squares
linear spectral mixture analysis method for material quantifi-
cation in hyperspectral imagery. IEEE Transactions on Geo-
science and Remote sensing, 39(3): 529—545

Heinz D C, Chang C I and Althouse M L G. 1999. Fully constraid
least-squares based linear unmixing. /EEE Geoscience and
Remote Sensing Symposium, 2: 1401—1403

Ichoku C and Karnieli A. 1996 _.A review of mixture modeling
techniques for sub-pixel land cover estimation. Remote
Sensing Reviews, 13: 161—186

Lee J T, Shuai Y M and Zhu Q J. 2004. Using images combined
with DEM in classifying forest vegetations. IEEE Geoscience
and Remote Sensing Symposium, 4: 2362—2364

Tatem A J, Lewis H G, Atkinson P M and Nixon M S. 2003. In-
creasing the spatial resolution of agricultural land cover maps
using a Hopfield neural network. International Journal of
Geographical Information Science, 17(7): 647—672

Tu T M, Chen C H and Chang C 1. 1997. A least squares orthogonal
subspace projection approach to desired signature extraction

and detection. /IEEE Transactions on Geoscience and Remote

sensing, 35(1): 127—139

Tung C T, Tseng D C and Tsai Y L. 2001. Mixed-pixel classification
for hyperspectral images based on multichannel singular spec-
trum analysis. IEEE Geoscience and Remote Sensing Sympo-
sium, §: 2370—2372

Ware G A, Chabries D M, Christiansen R W, Brady ] E and Martin
C E. 2000. Multispectral analysis of ancient maya pigments:
implications for the naj tunich corpus. IEEE Geoscience and
Remote Sensing Symposium, 6: 2489—2491

Yang H Z, Han J F, Gong D P and Li Z X. 2003. The development
and application of Hyperspectral Remote-Sensing Technology.
Hydrographic Surveying and Charting, 23(6): 55—58

Zhu S L. 1995. The classification of remotely-sensed images with
mixels. Journal of the PLA Institute of Surveying and Mapping,
12(4): 276—278

Mt o 3L 5 & 30k

BT, R, TAM, FZHK 2003 AXEERERGR
RERNA. BN, 23(6): 55—58

KA. 1995. BT RABENBBEBARLEA. MBEWL
#1R, 12(4): 276—278



