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Band simulation based pan-sharpening algorithm by linear
regression for IKONOS imagery
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Abstract: In the general fusion framework of optical remote sensing image fusion, the extraction of spatial detail information
is one of the two key aspects for the fusion quality. This paper discusses the possibility of constructing the low resolution pan-
chromatic image based on band simulation using linear regression. Firstly, a linear regression equation between panchromatic
and multispectral images was modeled, followed by setting weight metric from the corresponding high frequency component of
the panchromatic image; then, low resolution panchromatic image was simulated by the regression parameters got in the first
step and the spatial detail was extracted; finally, the pan-sharpening procedure was implemented with the spatial detail on
IKONOS multispectral and panchromatic imagery. Compared with the method of achieving low resolution panchromatic image
based on spectral response function, the proposed method can perform as good as, and sometimes even better than that according
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to four experiments. Also, the proposal shows its superiority over fast intensity-hue-saturation method.
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1 INTRODUCTION

Limited by incoming radiation energy and data volume,
most sensors collect high resolution panchromatic (PAN) and
low resolution multispectral (MS) images together, instead of
high-resolution MS images directly (Zhang, 2004). It is clear
that the most effective solution of providing high resolution MS
is to develop effective image fusion techniques. Various image
fusion methods have been proposed, however, for image fusion
of very high resolution data (e.g. IKONOS and QuickBird), the
fusion quality is always determined by the extent of spectral
information preservation, which dwarfs quite a few traditional
methods (Tu et al., 2004).

The studies on general framework of image fusion revealed
that spatial detail and its injecting manner were the main rea-
sons for color distortion in image fusion. For the first one, the
spectral response function (SRF) method had been paid more
attention. Tu et al. (2004) added near-inferred band into the
procedure of constructing low resolution PAN (LRP) to in-
crease the correlation between PAN and LRP, and to reduce the
color distortion. Marfa (2006) adopted SRF in obtaining the
weight parameters while simulating LRP from MS. Dou et al.
(2007) constructed HRP and LRP considering SRF of IKONOS,
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then calculated the difference and regarded the delta image
between the difference image and its mathematical expectation
as spatial information.

However, it is hard to get weighting parameters for images
collected by sensors without SRF measured in the same situa-
tion. So a general method to achieve the weighting parameters
should be studied. Shettigara (1989) proposed the linear trans-
formation method, but he did not consider the effects of high
frequency pixels. In this paper, we mainly aimed at the prob-
ability of simulating LRP by linear regression in the fusion of
IKONOS MS+PAN imageries.

2 GENERAL FRAMEWORK OF IMAGE FUSION

The general framework of image fusion is described by Dou
(2006) in Eq. (1).

HRM =LRM +W§ (1)
where HRM is the fusion result; LRM is the resampled image
of MS having the same size with PAN, W is the injecting pa-
rameter (also called modulation coefficient), and & is spatial
detail of redundant information. Traditionally, § is calculated
as & = HRP-LRP (Wang, 2005), while HRP is high resolution
PAN, the original PAN quite often. In this éase, the quality of
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image fusion is determined by LRP and W.

3 DATASETS AND METHODS

The comparisons were carried out on the proposed method
and the SRF method, expressed at (Space Imaging, 2008). To
get the reference of quality assessment, Wald’s strategy was
adopted. Original PAN and MS images were spatially degraded
down to a lower resolution in order to compare the fused prod-
uct to the only genuine references, formed by MS original set.
The workflow could be described as Fig. 1, of which the num-
ber in brackets indicates the image size.

3.1 Experiment datasets

Two scenes of IKONOS were used in this paper, and totally
four MS+PAN datasets were experimented. Spatial resolution
of PAN and MS are | m and 4m respectively. The first scene
locates in Jixian, Tianjin, China, collected on March 21, 2001.
The image shows a natural area, including bare rocks on moun-
tains, low-density residential areas, terrace and alleys among
mountains, while the whole image size of PAN is 7288x6780
pixels. A subset of 6000x6000 pixels in PAN and the corre-
sponding region in MS were the first dataset (Fig. 2(a), Fig. 2
(b)). And, two small fragment of 400x400 pixels in PAN and

PAN (4m X 4n) MS (m/4xn/4)
Resample
Resample Resample
HRP (mxn) LRP (mxn) LRM (mxn)
i
. > HRM (mxn) Quality
Detail image assessment
Fig. 1 Workflow

(d) (®

Fig.2 Source MS and PAN images
(a) MS of dataset 1; (b) PAN of dataset 1; (¢) PAN of dataset 2; (d) PAN of dataset 3; (¢) MS of dataset 4; (f) PAN of dataset 4
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the corresponding region in MS were cropped to be the second
and the third datasets, aiming at testing the usage of the pro-
posed method on images coving various ground objects, of
whom the first one got few high frequency (PAN is as shown in
Fig. 2(c)) and the other one included much more high fre-
quency (PAN is as shown in Fig.2(d)). The second scene lies in
Beijing, China, collected on July 18, 2007. Ground objects are
mainly small lakes, grass and trees, roads and buildings in ur-
ban city. Also a subset of 1200x1200 pixels in PAN and the
corresponding region in MS were used as the fourth dataset

(Fig. 2(e), (D).
3.2 The new method

The purpose of this paper is to identify the probability of
constructing LRP by linear regression from LMS. Since there is
no recommended value of injecting parameter W, which is in-
depehdent of &and has non business with simulating LRP, we
set W to be {1,1,1,1}, the same as traditional inten-
sity-hue-saturation (IHS) fusion method.

The fusion model of simulating LRP by SRF method is lin-
ear regression equation without constant between LRP and
LRM.

4
LRP("J) = ZCkLRMk(i.j) (2)
k=1

where k is the band number of LMS, (i, j) is the i row and the
J™ volume pixel, ¢ is the weighting parameter, calculated by
SRF (Xavier et al., 2005).

As is known to us, SRF method only considers nominal
spectral responses in laboratory. However, atmospheric scatter-
ing in on-orbit working conditions, mixed pixels, spectral range
of sensors etc., can significantly affect the response of spectral
(Space Imaging, 2008). Therefore, it is more reasonable to cal-
culate weight parameter from the processed images. It is no-
ticeable that, detail information such as edges and noise could
not be captured by sensors with lower resolution, so high fre-
quency pixels does not satisfy the linear regression equation
(Eq. (2)), and should be regarded as outliers. According to the
theory, the implementation steps could be summarized as: (1)
Re-sample MS to the same size with PAN to be LRM and set
PAN to be LRP in Eq. (2). (2) Get HP image by high-pass fil-
tering on PAN and set weighting coefficient matrix P. (3) Build
linear regression equation and resolve the weight parameters
(Eq. (3)).

max(HP) - HP
max(HP) — min(HP)

4
LRP; ;) =kzlc;cLRMk(,-, P= 3)
Generally, Modular Transfer Function (MTF) can compen-
sate the differences on spatial information among images of
different levels from the same satellite and the same time. As
MTF is always unknown (Garzelli e? al., 2008), high-pass fil-
tering is an available options. Compared with the frequency
domain high-pass filter, the spatial domain high-pass filter has
the advantage of simpler calculation and faster processing
speed. For the spatial domain high-pass filter, two famous fil-

ters are gradient high-pass filter and Laplacian high-pass filter,
while the former can extract gray mutations in a given direction
and the latter can detect gray changes of all directions. To our
problem, the effects of all high frequency must be kicked out.
Therefore, Laplacian high-pass filter is a good choice for re-
ducing the effects of high frequency in simulating LRP. Fur-
thermore, the spatial resolution ratio between MS and Pan (r)
indicates the energy of a ground region entering into the sensor
in image formation, and it is reasonable to involve r into setting
the kernel size of high-pass filter. In the case, a recommended
scheme is to consider (2r+1)x(2r+1) pixels of a given
neighborhood, while 7 is r=4m/1m=4 and the kernel size is 9x9
for IKONOS image, and the high-pass filter used in our method
is Eq. (4):

-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -l -] -]
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-1 -1 -1 -1 80 -1 -1 -1 -1 4)

[ S R R R I R
Then, Eq. (3) can be transformed to Eq. (5) as follows,
LRP = C’XLRM, C’ = (LRM" x Px LRM)"'"LRMT x Px LRP
(5)
where C’ is regression coefficient, also called weighting pa-
rameter; P, a diagonal matrix which can kick out the outliers
caused by edge pixels and improve simulating precise, is
weight coefficient matrix of least square method, other pa-
rameters are the same with Eq. (2). In another fact, as remote
sensing imageries are huge generally, pixels of a given number
randomly selected.could be used as observation while solving
the regression problem.

3.3 Quality assessment

Q. (Alparone et al., 2004) can measure color distortion be-
tween the fusion result and the reference from three aspects,
which are brightness, contrast and correlative coefficient. The
formula is Eq. (6).

I
Oy =— Z Q4(Z1vzz lw),

ol o

4|O'z.zz HZIHEJ 6)
(05 +o2)(E[ + [zl

O4(z.29) =

where, z), z; are the quaternions formed by the gray values of
all bands in HRM and the reference individually. The higher Q,
is, the more similar the fusion result is with the reference, the
better the fusion performs, and vice versa. Although Q, depends
on the window size, it is easy to decide the performance order
of fusion methods at a fixed windows size (16x16 pixels is used
in this paper), and the conclusion is independent of windows
size (Alparone et al., 2004).
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4 EXPERIMENTS AND ANALYSIS

LRP simulated by SRF method and linear regression method
are both integrated into the fusion procedure and compared
with each other. In the linear regression method, 2000 pixels are
randomly selected to solving weighting parameters in the first
and fourth datasets considering its mass pixels. For the second
and third datasets, three ways are tested, e.g., all pixels, 1000
randomly selected pixels and 2000 randomly selected pixels.
Fig. 3 shows HRP and LRP of four datasets, while LRP_SRF is
LRP simulated by SRF method, and that LRP_LSAII,
LRP_LS1000 and LRP_LS2000 are LRP simulated by linear
regression with all pixels, 1000 randomly selected pixels and
2000 randomly selected pixels, respectively.

Comparing LRP with HRP in Fig. 3, for the first dataset,
resident and road seem to be brighter, while terrace, rock and
mountain follows, and shadows of mountain is the darkest. For

the second dataset, the order according to the brightness from
high to low is terrace, road, rock and shadow. For the third
dataset, the order according to the brightness is resident, terrace,
rock and shadow. For the fourth dataset, roads and building are
brighter; vegetable is a litter darker; and lake is the darkest. In a
whole, for all the four datasets, HRP and LRP have a higher
similarity, and it is hard to tell the difference between LRP
simulated by SRF method and linear regression method.

Fast intensity-hue-saturation (FastIHS) (Tu, 2004) sets the
average image of four bands to be LRP, while the injecting -
parameter W is the same with our method. The superiority
could be easily reported on the comparison. Fig. 4 lists the fu-
sion results of FastIHS and the proposed method on the first
and fourth datasets, while HRM_FIHS is that of FastlHS and
that HRM_SRF and HRM_LS2000 are results based on
LRP_SRF and LRP_LS2000. For the first dataset, all methods
get high resolution multispectral image having almost the same

(b1) (b2)

(b4) (b5)

Fig. 3 LRP simulation of four datasets
(al) HRP; (a2) LRP_SRF; (a3) LRP_LS2000; (b1) HRP; (b2) LRP_SRF; (b3) LRP_LSAII; (b4) LRP_LS1000; (b5) LRP_LS2000; (c1) HRP; (c2) LRP_SRF;
(c3) LRP_LSAII; (c4) LRP_LS1000; (c5) LRP_LS2000; (d1) HRP; (d2) LRP_SRF; (d3) LRP_LS2000
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Fig. 4 Fusion results based on LRP_LS2000 and LRP_SRF of two datasets

(al) HRM_FIHS; (a2) HRM _SRF; (a3) HRM_ LS2000; (b1) HRM_FIHS; (b2) HRM _SRF; (b3) HRM_ [.S2000

color with the original MS, so as to the tiny difference could not
be found at a rough glance. For the fourth dataset, all methods
get high resolution multispectral image, too. But, for the lake
highlighted by the red ellipse in the up-right, HRM_LS2000 is
much purpler and more similar to the reference, while the other
two is bluer. Furthermore, for the playground also highlighted
by the red ellipse in the mid, HRM_LS2000 performs better
either, appearing much more yellow than the others. All the

evidence indicates the superiority of HRM_LS2000 in retaining
spectral information. Since the injecting parameters of these
methods are the same, it can be safely to conclude that the qual-
ity improvement is due to the method of simulating LRP.

Both qualitative and quantitative assessments are performed.
Table 1 reports the weighting parameters, correlation coeffi-
cient between HRP and LRP of different methods on the four
datasets, and also the Q, quality indices. It can be observed that:

Table 1 Weight parameters, correlation coefficient between HRP and LRP as well as Q, of different methods

Dataset Simulating method Weighting parameters CC with HRP Qs
LRP_SRF 0.1965, 0.2350, 0.2367, 0.2454 0.8867 0.8294
1 LRP_LS2000 0.1042, 0.1484, 0.3408, 0.3408 0.8872 0.8303
FastIHS 0.2500, 0.2500, 0.2500, 0.2500 0.8866 0.8284
LRP_SRF 0.1965, 0.2350, 0.2367, 0.2454 0.8541 0.7921
R LRP_LSAll 0.0241, 0.2817, 0.3236, 0.2882 0.8543 0.7923
LRP_LS1000 0.0392, 0.2731, 0.2973, 0.3061 0.8543 0.7926
LRP_LS2000 0.0391, 0.2509, 0.3208, 0.3103 0.8543 0.7923
LRP_SRF 0.1965, 0.2350, 0.2367, 0.2454 0.6668 0.8371
LRP_LSAIl 0.2045, 0.2836, 0.2344, 0.1936 0.6674 0.8366
} LRP_LS1000 0.2909, 0.1200, 0.2906, 0.2290 0.6667 0.8349
LRP_LS2000 0.2173, 0.3272, 0.0953, 0.2684 0.6665 0.8360
LRP_SRF 0.1965, 0.2350, 0.2367, 0.2454 0.7407 0.7987
4 LRP_LS2000 0.0500, 0.3695, 0.0500, 0.5095 0.7507 0.8078
FastIHS 0.2500, 0.2500, 0.2500, 0.2500 0.7381 0.7976
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(1) From correlation coefficient between HRP and LRP, our
method could simulated LRP on all datasets efficiently, with
tiny differences to SRF method.

(2) From the Q, indices, fusion result based on LRP by lin-
ear regression performed comparable or better than SRF
method.

(3) The weighting parameters by LRP_SRF and LRP_LS are
not the same. The reason could be: if high correlation occurs
between neighborhood bands of multispectral images, the de-
sign matrix of normal equation has a certain degree of singular-
ity and the conditions of coefficient matrix are huge, so that the
weighting parameters is unstable while solving the least square
problem (Wang, 2004).

(4) The number of randomly selected pixels causes distinc-
tive performances, but not significantly.

5 CONCLUSIONS

Extracting spatial detail information is crucial for the fusion
of MS+PAN imageries. This paper identifies the probability of
constructing low resolution panchromatic imagery by linear
regression from low resolution multispectral image. Validating
experiments were carried out on four IKONOS multispectral
and panchromatic datasets, results show that the proposed
method can perform as good as, and sometimes even better than
that. Also, the proposal shows its superiority over fast inten-
sity-hue-saturation fusion method, too. It is noticeable that the
new method does not need any priori knowledge and leads to a
better practicable potential. Future work will be carried out on
optimizing linear regression model, reducing singularity in the
design matrix of normal equation, and other types of remote
sensing images.
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BHEFEAT, fER%% K E (modular transfer
function, MTF)f #b2 [8) I 5] B 4 S [R) 43 B 8 ) 18
BRER LR HZES], KT MTF fh& R ERE
(Garzelli %, 2008), tXf FIRFB M EHEEERS, 5
V61 358, 1 50 O U0 2 EL A TR R B | Ak P R AAR Ao
BET, BAERNEEEEE VTS E RS
PR ELE R ERS . R R BE—F K
BRAE, i &AW T A Jria MK AL,
AXTEPREHNRIAEBHREBNER, kAN
EREEBES, TUBRKBEENREREAGEER
Xt LRP #l & MM, i, ShiES5LaRGBMNS
B PR R T ERKEET i AMERIRA T - —
EXFHHEER, BESOEE O XD EN SR
ZHIESLOEBRNTRISHEZLL r W, &
AA, 2EERPRERTRENANER, MNE
BBLLZBRITH Lo 2re1)x(2r+ 1) i B3 X 385 4 Bl
FHRIT, BB RS E O K/NLR A 2r+1)

x(2r+1). XfF IKONOS B (r=4m/1m=4), BIFEH
BB AR E O K/NA 9x9, Br A Sk FRAY
S92 1) 328 7 3 O B 2 A R (D PR 6
(-1 -1 -1 -1 -1 -1 -
-1 -1 -l

1

1 -1

1 1 -1

1 1 1 -1

-1 -1 -1 80 -1 -1 4)
1 1 1 -1
1 1 1 -1
1 1 -1
1

1 [ I [l 1 1 [ ' ]
O g S ey
1
—

[ RS S TR (S R Qi
KO E REHEERAN:
LRP=C'XLRM (X P) (5)
C’=(LRM" x Px LRM)"'LRM” x PXLRP
A, CHEERE, P WBDRRBHONEE,
AR AR, FAE R A e R Y L & R oGs |
ARIMERZ, RREERUSGHEE, HitsHS
AQF—F ., L8 ABBRMBKE, TLK A%
HEH R, ER—F RN SR E DR,
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3.3 EEEH

Qu«(Alparone 5§, 2000)FEMEERE . STHE . X R
M3 NHERAMSE R 555 BRI
BE, ASCRE/ENMA R EIEN R, IR (6).

=%|' Z Q4(Z|,Z2 |W)

4|az,z2 AN
AR AR AR
A, 2. 235 IREEENSEERBEEBRKE
EARMMETH, Q, KA, RAMASRBRES LA
BEAL, MA TR, KzME, BR Q. M1
SRBHFORN w AKX, BRYRAR— K/
B CBY, (R Q% AR 77 i A0 B & R B A0 A 45

Q4(z,29) =

(6)

—%{(Alparone %, 2004), AP EH O K/NK 16
Bt

4 EBRS50

BN 4 HE S LBEIE XA SRF S
LRP, ARG HTLERIEA il LRP, BJFHH
2HTEHRAER. EREREMES FEP, BTF
B, 4 ARERARE, BTRBRKK, FriA
FEPLESE 2000 R EMBLRE, MFE 2. 3 4
AR AYYE, HRIRASE%T. L% 1000 4
A . BEHLIE 2000 4~ SRR S B 33508 4
HMATREWEMHRP 5 LRPHL A4RER, H
# HRP AR A% A 2B &%, LRP_SRF & F SRF

(b2)

(b3) (b4) (b5)

H3 44

AEBRBIEHLRPHIGSE R

(al) HRP; (a2) LRP_SRF; (a3) LRP_LS2000; (b1) HRP; (b2) LRP_SRF; (b3) LRP_LSAII; (b4) LRP_LS1000; (b5) LRP_LS2000;
(c1) HRP; (c2) LRP_SREF; (¢3) LRP_LSAII; (c4) LRP_LS1000; (cS) LRP_L.§2000;(d1) HRP; (d2) LRP_SRF; (d3) LRP_LS§2000
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%1 TRFZMBLRPHMMAY SHRPHHEX RS, URQARTHRERR

(b2)

B4 24TRESET LRP_LS2000 # LRP_SRF MRS E 18
(al) HRM_FIHS; (a2) HRM _SRF; (a3) HRM_ LS2000; (b1) HRM_FIHS; (b2) HRM _SRF; (b3) HRM_ LS2000

Dataset eI ) P& ¢ 5HRPHX RN Os
LRP_-SRF 0.1965, 0.2350, 0.2367, 0.2454 0.8867 0.8294
1 LRP_LS2000 0.1042, 0.1484, 0.3408, 0.3408 0.8872 0.8303
FastIHS 0.2500, 0.2500, 0.2500, 0.2500 0.8866 0.8284
LRP_SRF 0.1965, 0.2350, 0.2367, 0.2454 0.8541 0.7921
LRP_LSAIl 0.0241, 0.2817, 0.3236, 0.2882 0.8543 0.7923
2 LRP_LS1000 0.0392, 0.2731, 0.2973, 0.3061 0.8543 0.7926
LRP_LS§2000 0.0391, 0.2509, 0.3208, 0.3103 0.8543 0.7923
LRP_SRF 0.1965, 0.2350, 0.2367, 0.2454 0.6668 0.8371
LRP_LSAIl 0.2045, 0.2836, 0.2344, 0.1936 0.6674 0.8366
3 LRP_LS1000 0.2909, 0.1200, 0.2906, 0.2290 0.6667 0.8349
LRP_LS§2000 0.2173, 0.3272, 0.0953, 0.2684 0.6665 0.8360
LRP_SRF 0.1965, 0.2350, 0.2367, 0.2454 0.7407 0.7987
4 LRP_L$2000 0.0500, 0.3695, 0.0500, 0.5095 0.7507 0.8078
FastIHS 0.2500, 0.2500, 0.2500, 0.2500 0.7381 0.7976

HLRPHI A4 R B4, LRP_ LSAIl. LRP_LS1000.
LRP_LS20004 51| 4 2% FA % 08 R Br B 1500 . L%
F¥1000/ME G . BEFLIEE2000MR JTBEAT LR B 1T

HLRPEIS S RER

K4 HRP M4 5 LRP, X T4 1 AREHA
BE BROMEBRNEEEER, MEHOREHE
B, HREEAMLN, REESKMELKY
FHE; StTFE2HMEMARE, HXImE, BEM
HBEEERR, AARZ, AEERE; MFE34

SR ARE, HRREEHF, KKEERL.
H. &4, FE XT84 HMaRARE HXA
REERE R TREMERS, HERZ, RERMH.

2

G5 4 HREWABENIRER, ATUESH, U

AW LRP 5 HRP W BIRE R E AL, rTLUAKHETE
HEN B B LS H R RIBH LRP 5T SRF &
LRP -8 & R A,

FastIHS(Tu, 2004)/ & 77 85K 141 K B Y B 2
FHEIENLRP, ERIFAHHEATRSEAX FE
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MR, KT oAy i, REAEKHEN
B %, E4NFastHSR& A T8, 44/
A IR B B9 45 B (HRM_FIHS % 7 FastIHS (4 it &
%5 R, HRM_SRF. HRM_LS20004 | ¥R ¥ F
LRP_SRF, LRP_LS2000M B A 4R, X T4 1458
BRBEE, ERMATEBETEIRRNSHIEE
R, 5RBESRHIERBGML, BES AR M,
a1 B¢ B DL BEAR M EL 480, Xt TR 44 A& SE 10 IR,
FATERSESETRIBENSLEER, BL
X FRRA AR BIA, HRM_LS20004 % & 5
DEZ, SREZABRBBREME, i 2Em4E
PRI B KB AR RIS B, X T B§ R e X 8 8
314, HRM_LS200077 %387 /R TS BB
HEMs, BXmE, H2f i kERKs a6,
B, AXFEERSEARES T HAARBYE, H
FEBAFTERANEANTEASEE S5, U
XN ER FERMELRPR A BIEGSEEIEN.

EWEM LN EDFFEEERMAEREIT
PrIEPRR LA R BLIE R . R UNAHRLA W A SR
KA 5 849 1 LRPEG AL R 30 . LRP S5 HRPR
KEY, URQMA FEITFMIEIR.

(1) ALRPSHRPHMHX RS, AXHEEHR
MEHEIE HLRP, REFENERBER /D,

2) NEBFME, B TRERBERYE
HELRPHE R B A T, BEXBEZESET
SRFE B &Mt LRPH IR M A ¥,

(3) LRP_SRF5SLRP_LSHIM A A B KE R,
FRETFEHNERGREFEREKXWHEXE, FEI15
FTREFBHRHERE-EEENTRYE, BF
BABEEMRAEBMRA, FECRENERRRINN
AZEOAREE (Wang, 2004);

@) SN TR ERETE -/
e, EEMAK,

5 4 #

ZFRAHEENER TF2Aa5 2 IEREN
MEZEXEE, AR TETAKEARELS
RERANESRRRAAEMTTE, dd 4 4
IKONOS ¥iEH L, 4R XY BEFLMEEPE
BHlaHiE LRP MEBRMERE, BEABEEH
it % F SRF BB A WE LRP MEARBMA TR &
XHERTE SRF X EBRAMIR, RELRFHEN
WiEtk, EHESEMR. UEHNHRFEETESE
PERASERTER . HREFBRITES R

DEEZEBEBRNRBRENE.
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