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Super-resolution mapping of coastline with remotely

sensed data and geostatistics
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Abstract: The soft classification results of coarse-resolution data and the coarse & fine resolution variograms were derived,
using the Landsat satellite data of the modern Yellow River Delta coast. Treating the fine-resolution indicator vriogram as the
prior model of spatial structure of the study area, the super-resolution images of land & ocean class were generated using data
exploratory analysis, indicator cokriging (ICK), and sequential indicator co-simulation (SIcS) techniques. Then the spatial dis-
tribution features of the coastline were extracted by the contouring method. Taken human interpretation output as the benchmark,
the coastline mapping results derived from geostatistics showed better quality than that derived from traditional
hard-classification methods. Super-resolution mapping techniques based on geostatistics can properly illustrate spatial distribu-
tion of coastline at fine scale; meanwhile maintain the class fraction values and the spatial structures of the original
coarse-resolution data. By the form of super-resolution mapping of coastline, the potential of the geostatistical techniques in in-
tegrating multi-source and multi-scale spatial information has been demonstrated.
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1 INTRODUCTION

Coastline is the boundary between land and ocean. Largely
due to the dynamic nature of water levels at the coastal bound-
ary, coastline position changes continuously through time
(Boak & Turner, 2005). Detecting coastline position and its
variability is the elementary content of coastal monitoring and
management. Because of the particularity of coastal environ-
ment and its dynamic nature, traditional field surveying ap-
proach is labor intensive, time consuming, and sometimes is
restricted by the difficulty of access. Therefore, remote sensing
technology, which is considered as a rapid and cost-effective
data collection method, has been widely applied to coastal
information extraction and monitoring work (Zhang et al.,
2009). According to the specifications of Chinese Nautical
Charts (GB12319-1998) and Chinese Topographic Maps
(GB/T5791-93), the standard definition of coastline is the mean
high water boundary for dividing land and ocean. However, this
kind of boundary does not exist in reality; so waterline is used
to indicate the boundary between land and ocean instead. Wa-
terline is more recognizable and with the highest continuity on
remote sensing images. In general, near-infrared (NIR, e.g.
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Landsat TM 4) and short wavelength-infrared (SWIR, e.g.
Landsat TM 5) bands are effective in detecting sandy coast or
clear water boundary (Manavalan et al., 1993; Frazier & Page,
2000). In tidal flat zone, thermal-infrared (TIR) band is the
most sensitive band to the location of waterline (Ryu ez al.,
2002; Shen et al., 2008), but the spatial resolution of TIR bands
are often not high enough (e.g. 120m/60m in Landsat
TM/ETM+ and 90m in EOS-Terra ASTER). Moreover, the
earth surface observed through the instaneous field of view
(IFOV) of these sensors at such moderate resolution may be
very heterogeneous, leading to spectral confusion. Therefore,
the accuracy of coastline mapping is heavily limited (Malthus
& Mumby, 2003).

The main solution to spectral confusion issue is spectral
unmixing, which estimates the proportions of each class frac-
tion in the mixed pixel using a variety of fuzzy or soft classifi-
cation methods (Foody, 1996). This approach can provide
higher and more suitable class fraction information than
pixel-based hard classification, but it cannot locate these con-
stituent classes (Atkinson, 1997). Aimed at this issue, many
methods were developed in recent years for locating spatial
distribution of each class fraction at a subpixel scale, and have
been successfully applied to land use\land cover mapping (Ta-
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tem et al., 2003; Boucher & Kyriakidis, 2006). The main pur-
pose of these methods is to map the theme of interest at a scale
that is finer than the data set from which it was derived. They
are commonly referred to as super-resolution mapping methods.
The potential of super-resolution technology in coastline map-
ping has been demonstrated from simulated scene experiments
(Foody et al., 2005; Muslim et al., 2007). In general,
super-resolution mapping can be formulated within an inverse
problem theory perspective, which reconstructs a fine-spatial
resolution map of class labels from a set of coarse-spatial reso-
lution class fractions (Boucher et al., 2008). Because this in-
verse: problem is under-determined, prior information (e.g. a
prior model of spatial structure at fine scale) is needed to limit
the under-determination and constrain the spatial patterns of
class labels to be generated at fine resolution. The prior models
can be based on maximum spatial continuity assumption (At-
kinson et al., 1997; Verhoeye & De Wulf, 2002), or variogram
models in geostatistical analysis (Atkinson, 2004; Boucher &
Kyriakidis, 2006). In this paper, a preliminary experiment of
super-resolution mapping of coastline with remotely sensed
data and geostatistics was presented. The pixel values of real-
scene remotely sensed data were considered as regionalized
variables, and original data and prior model of spatial structure
at fine scale were integrated into land-sea spectral classification
of target imagery.

2 MATERIAL AND METHODS

2.1 Study area and data description

The modern Yellow River Delta, located in Shandong prov-
ince of China, is one of regions where spatial-temporal changes
between land and ocean are most vibrant. It was developed
since the Yellow River breached at Tongwaxiang, Henan Prov-
ince, and entered the Bohai Sea in 1855. Due to the strong ef-
fects of river and ocean dynamics, the modern Yellow River
Delta coast has been eroded and accreted alternately. According
to the coastal erosion/accretion pattern in recent years, the
coastal characteristics of this area can be divided into weak
erosion, strong erosion and strong accretion (Chen et al., 2004).
The study area in this paper are the artificial coast located at the
Yellow River Harbor (A in Fig. 1), and the silty coast located at
the Yellow River Estuary (B in Fig. 1). There was little changes
happened on the coast at the harbor due to protection of the
defense bank; meanwhile the coast at the estuary changed rap-
idly due to river and ocean dynamics effects.

According to Garrigues et al. (2006), the remotely sensed
data used in geostatistical analysis requires several assumptions,
including (1) co-registration errors between the spectral bands
are small enough to assume that spatial supports of remotely
sensed data are identical; (2) the image extent is large with
respect to the spatial features of interest; (3) the radiometrics
measurement errors are assumed to be small relative to the
surface variations; and (4) the effects of spatial variations at
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Fig. 1 Location of the study area with RGB composite map from
Landsat-7 ETM+, 2000

scale smaller than the sampling step of the sensor can be ne-
glected. The Landsat-7 ETM+ thermal-infrared band 6 data
acquired on May 2nd, 2000 (spatial resolution is 60m, and pixel
size is 57m) was used as coarse-resolution data source for
coastline mapping. Thermal-infrared bands can be linked di-
rectly to surface cover, and their measure system is different
from that of reflective bands. Thermal-bands may be used in
association with other TM bands for monitoring or recording
information of the same pixels. When actual field verification is
not feasible, this combination is timely and cost-effective
(Southworth, 2004). The panchromatic band 8 data (spatial
resolution is 15m, and pixel size is 14.25m) were used as data
source for prior information at fine scale, in order to ensure a
unified data
co-registration errors and time errors between mapping data and
reference data. Therefore, assumption (1) was satisfied. Table |
is the Landsat data description used in the study.

imaging environment, and diminish the

2.2 Methodology

The methodology used in this study is based on the technical
framework of indicator geostatistics proposed by Boucher and
Kyriakidis (2006), and incorporated with spectral characteris-
tics of land and ocean on remote sensing images. It is summa-
rized as follows:

2.2.1 Class indicator and fraction

Let c(v) denote the unknown class (seawater or land) at a fine
resolution pixel v=v(u), where u is the coordinate vector of its
centroid and the pixel area is denoted as Ivl. The set of all un-
known class labels constitutes a (Mx1) vector e=[c(v,,),
m=1,...,M]", where M denotes the number of fine resolution
pixels. The presence or absence of the seawater class label at
pixel v is coded by a binary class indicator i(v), defined as
i(v)=1. If c(v) is seawater, zero if not. The set of all indicators
for seawater class can be arranged in a (Mx1) vector i=[i(v,,),
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Table 1 Descriptive statistics of the pixel values of the Landsat images used in the study

Data Pixel Minimum Maximum Average Median Variance Kurtosis Skewness
Bandé6 (A) 16x16 125 173 146.70 143 354.58 1.15 0.09
Band8 (A) 64x64 21 103 59.78 53 256.32 1.46 0.19
Bandé6 (B) 16x16 121 165 142.65 143 301.37 115 0.03
Band8 (B) 64x64 36 83 56.92 57 82.61 2.02 0.17

m=1,....M]". Let a(V) denote the fraction of seawater class at a
coarse resolution pixel V=V(s), where s is the coordinate vector
of it centroid and the pixel area is denoted as IV1. The set of all
fraction values for seawater class constitutes a (Nx1) vector
a=[a(V,), n=1,...,N]T, where N denotes the number of coarse
resolution pixels. F=IVI/lvi=M/N>>1 denotes the resolution ratio
between coarse and fine resolution images. Because both im-
ages are co-registered, there are F fine resolution pixels {v,y,
m=l,..., F} in any coarse resolution pixel V. The objective of
super resolution mapping can be formulated as the task of find-
ing the unknown class label vector ¢ from the seawater class
fraction vector a (Boucher & Kyriakidis, 2006).
2.2.2  Indicator variogram

The spatial distribution of seawater class at fine resolution
can be characterized by its stationary proportion and its spatial
structure. Let § denote the stationary proportion of seawater
class. In the coarse resolution pixel V,, the seawater class frac-
tion value a(V,) is defined as the average of the seawater class

indicators at the F fine pixels within V,;
I «F
a(V,,):FZm:lz(vm),vme v, )

The mean a of the seawater class fraction values equals to

the corresponding proportion dof the seawater class indicators:
| <N lon ]

D M CATED JHES )
| <M .
Lot =8

N n=l'F
The indicator variogram 27 (h) denotes the joint probability

F

a= m=1

i(vy)]
@

of any two fine pixels separated by vector h, superscript v de-
notes that 27 (h) pertains to v fine resolution pixels (Carle &
Fogg, 1996). 2% (h,,.)=2y"(u,, —u,;) denotes the indicator
variogram between two unknown fine pixels v, and v,;, whose
respective centroids u,, and u, are separated by A, =t,—t, .
Let 29(h; 6) denote the fine resolution variogram of scawater
class, with 8 being a vector of model parameters. The
fine-to-coarse resolution variogram between the seawater class
indicator i(v,,) at the fine pixel v,, and the seawater class frac-

tion a(V,) at the coarse pixel V, is a function of the separation
vector h,,,, between the two pixel centroids u,, and 5, i.e. :

2Y(ViV) = 27000, iV (5,)) = 27" (0, —5,) = 27" (i),
with superscript vV indicating that 2}'V(hm,,) is a cross-

resolution variogram between v fine pixels and V coarse pixels.
The variogram between the seawater class fractions at two

coarse pixels V, and V. is a function of separation vector A,
between the two pixel centroids s, and s, i.e.:

20V, V) = 2V (5,):V (s, ) = 27" (5, = 8,2) = 27" (B,
with superscript V indicating that 2}'V (h,,,’) is a coarse reso-
lution variogram between V coarse pixels (Boucher & Kyri-
akidis, 2006). The variogram for fine resolution seawater class
indicators, the fine-to-coarse variograms between seawater
class indicators and corresponding coarse fractions, and the
variogram between coarse seawater class fractions are used to
estimate the probability of seawater class occurrence at any fine
resolution pixel (Journel & Huijbregts, 1978; Atkinson &
Curran, 1995).

2.2.3 Indicator coKriging (ICK)

Based on the coarse fraction data a(V), ICK can yield an ap-
proximation p(v) to the true probability p(v)=Prob{/(v)=1la} of
seawater class occurrence at any fine resolution pixel v (Journel,
1983; Goovaerts, 1997). Because the seawater class proportions
are assumed known, the simple ICK is adopted to estimate the
fine pixel v,

P =) @+ 8-, 1y ] 3)

where, f](v,,,):[ﬂ,,(v,,,),n=l,...,N]T denotes the (Nx1) vector
of the weights assigned to N seawater class fractions; Iy de-
notes (Vx1) vector of ones; The known seawater class propor-
tion & is considered as the weight of the complement to 7(v,,)
1y. The ICK weight m(v,) for seawater class is obtained by
solving the following equation:

e, =7" v,) @)

where, IV =(2)" (h,)n=1,...N.,n'=1,.,N] is a (NxN)
matrix of the fraction variogram values between all pairs of the
coarse pixels; yvv(vm)=[27"v (B )1 =1,..,N]T denotes a
(Nx1) vector of the variogram values between the uninformed
fine pixel v, and the N coarse pixels.

2.2.4 Sequential Indicator co-Simulation (SIcS})

SIcS algorithm generates synthetic maps of land and sea-
water classes, based on a sample set of known categories and a
set of indicator variogram models (Journel & Alabert, 1989;
Goovaerts, 1997). The multivariate probability distribution

function [(ila) of M indicator Random Variables (RV) {(va),

m=l1,...,M} is decomposited into a sequence of M univariate
conditional probabilities by SIcS method as follows:
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f1a)y=ProblI(w) =iw),.... vy

M
=i(vy)la) =[] Prob{I(v,)=11i""a}  (5)

m=1
where, Prob{l(v,)= lli'"'l,a} is the conditional cumulative

distribution function (CCDF) of the indicator RV I(v,,); the m~1
previously simulated indicator values of seawater class are

stored in a ((m—1)x1) vector i™ =[i(v)m =1,...m—1]T;

The original data vector a includes the N coarse resolution frac-
tions of seawater class. The simulated random path is built by a
sequence of the M fine resolution pixels, and thus determines
the order of the decomposition given in Eq. (5). At any fine
pixel v,, along that path, a simulated class label c(v,,) is gener-
ated from the corresponding ICK-derived conditional probabil-
ity at that pixel. The associated simulated indicators i(v,,) con-
strain all subsequent univariate conditional probabilities and all
subsequent simulated class labels generated from such prob-
abilities. A simulated realization of the class labels generated
from repeating the above steps'at all M fine resolution pixels is
denoted as ¢={c(v,,), m=1,....M]". The new simulated realiza-
tion of the class labels can be created from repeating various
random paths (Goovaerts, 1997).

3 STUDY RESULTS

3.1 Soft classification

For the coastline at the Yellow River Harbor (A in Fig. 1),
classification-based methodology with coarse resolution im-
agery was adopted, categorized as land and seawater class. The
coastline on the coarse resolution imagery was predicted by
traditional supervised classification, and regarded as the com-
parison data. Soft classification on the coarse imagery was
implemented with fuzzy set membership functions provided by
IDRISI software, whose result was the predicted values of sea-
water class fraction in each pixel (Fig. 2(a)). These fuzzy mem-
bership values denoted the proportion of the pixel area that was

(a)

Predicted values of seawater class

covered with seawater, while the reminder was ascribed to land.
Because the output on pure seawater pixels that did not contain
coastline information commonly had a high, but not full 1.0
membership to seawater, these memberships were rescaled to
1.0 to remove their potentially problematic influences. Corre-
spondingly, the output on pure land pixels that did not contain
coastline information was rescaled to 0. The rescaled output
was considered as the seawater class fraction data of the coarse
resolution imagery. The output accuracy was assessed through a
comparison of the predicted coverage of seawater class with
that derived from the reference data (Fig. 2(b)). The predicted
coverage and the reference data were highly correlated
(R*=0.9126), indicating that the soft classification result was an
appropriate base for super-resolution mapping.

3.2 Data exploratory analysis

The first important step in all geostatistical analysis is to es-
tablish correct variable data and make sure that their properties
are stationary over the domain of study (Gringarten & Deutsch,
2001). If variable data are skew-distributed or have outliers, the
experimental variogram will be influenced and thus show dis-
tribution peculiarities. The indicator geostatistics used in this
study can remove this data sensitivity to outliers, and present a
distribution-free characteristic (Carr et al., 1985). For each
pixel observation value Z(x;) i=1,2,':-,n, the corresponding

indicator function is defined as the following equation:

Lx<v,
I(x)=
0,x>v,

(6)

the threshold value V- was determined from the variation range
of pixel values of the fine resolution imagery. Fig.3 (a) was the
indicator-transformed experimental variogram based on the
original data.

It can be seen from Fig.1 that the spatial structure of land
and seawater on the image was beyond the image extent. In Fig,
3 (a), the indicator variogram curve kept increasing above the
maximum theoretical sill value 0.25, indicating an obvi-

Y=0.041+0.917X
R=0.9126

0.8F

0.6
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0.2

0 0.2 0.4 0.6 0.8 1.0

Observed values of seawater class

(b)

Fig.2 (a) Soft classification derived from fuzzy set of the study area coarse-resolution image. The grayscale indicates the degree of membership to
the water class that was considered as an estimate of the proportional coverage of water (white=complete land cover, black=complete water cover);
(b) Relationship between the proportional cover of the seawater predicted from the soft classification and that derived from the reference data
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Fig.3 (a) Experimental indicator variogram based on original data; (b) Detrended experimental indicator variogram

ously systematic trend, therefore the assumption (2) were not
satisfied. By decompositing the variable data into trend and
residual portion and fitting the trend portion using polynomials,
the variogram can be computed properly from the residual por-
tion (Gringarten & Deutsch, 2001). The experiment by Chapell
et al. (2001) had showed that better result of removing the trend
on the remote sensing image could be obtained using sec-
ond-order polynomials. Therefore, second-order polynomial
regression was used to fit the systematic trend existed in the
variable data, as the following eqation:

Z(x)=ST()p+ex) (7

where S(x) was a vector consisting of (1, x,, Xz, x,°, X2, xi1%2),
with x,, x, being the coordinates of the pixels. f was the vector
of coefficients, and e(x) was a zero-mean random variable rep-
resenting residuals after removing trend. The experimental
variogram was calculated based on &(x). Fig. 3(b) was the ex-
perimental variogram that had removed the trend, from which it
can be seen that the variogram curve reached the sill at 0.10.

3.3 Spatial structure models

The variogram for fine-resolution seawater class indicators,
the fine-to-coarse variograms between seawater class indicators
and corresponding coarse fractions, and the variogram between
coarse seawater class fractions were considered as the meas-
urement values of the spatial structure of seawater class. Be-
cause variogram values are not statistically reliable at large
distances, the maximum calculation distance usually is no
longer than half of image extent (Chiles & Delfiner, 1999).
Therefore, the maximum distance was set as 400m in this study.
A discontinuity of the variogram at the origin called nugget
effect can be related to either uncorrected noise (measurement
error) or to spatial structures at a length scale smaller than pixel
size. The experimental variogram illustrated by Fig. 3(b) was
linear at the origin, without any nugget effect; therefore the
assumption (3) and (4) were satisfied. The experimental
variograms and their variogram model fitting were accom-
plished in R environment using GSTAT software. The experi-

mental variograms were fitted using Spherical model, as the
following equation:

cy+c 2—}—(ﬁ)3 O<h<a
=1 22 2\a) [ (8)

o +C|,h ?a

where the model parameters were obtained from the experi-
mental variogram curves and these values were considered as
the initial estimates of these variogram models. They were
nugget coefficient ¢;=0.002, sill ¢;=0.097, and range a=368m.
The fit.Imc method (i.e. “linear model of co-regionalization”)
was used to adjust the partial sills (Psills) of each model, in
order to make sure the subsequent ICK system with positive
definite matrixes (as shown in Fig, 4).

3.4 Indicator coKriging

Based on 14.25mx14.25m fine resolution pixels as
fine-scale grids, the coarse fraction data and fine & coarse
resolution indicator variogram models, the probabilities for
seawater class occurrence at any fine resolution pixel v,, that
fallen within the coarse pixel V, were computed via ICK. The
data used for ICK at pixel v,, consisted of the 4x4 coarse tem-
plate centered at V, The resulting set of the seawater probabil-
ity map generated using Eq. (3) is shown in Fig. 5(a). The re-
sulting ICK-based probabilities can be corrected to ensure that
they lie in the {0, 1] interval; however, the magnitude of such
correction is very small (Goovaerts, 1997), theretore this cor-
rection was ignored in this study. The ICK-derived seawater
probabilities were averaged within each coarse pixel, and com-
pared to the corresponding coarse fractions. As shown in Fig.
5(b), the ICK predicted values of the seawater class fraction of
the mixed pixels containing coastline information and the ob-
served values of the seawater class fraction derived from the
reference data were highly correlated (R?=0.9339), indicating
that ICK-derived results can properly maintain the actual in-
formation of the seawater class fraction. Solving ICK equation
system also determined the CCDF required for the subsequent
conditional random simulation.
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Fig.4 (a) Fine-resolution indicator variogram; (b) Coarse-resolution fraction variogram; (c) Fine-to-coarse resolution
cross-variogram and the fitted linear model of coregionalisation for these variograms
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Fig.5 (a) Conditional probabilities of fine-resolution seawater occurrence computed via simple indicator coKriging (ICK);
(b) Relationship between coarse seawater fractions by the ICK-derived probabilities & observed coarse seawater fraction.

3.5 Sequential Indicator co-Simulation

Based on 14.25mx14.25m fine resolution pixels as fine scale
grids, the coarse fraction data and the CCDF derived from ICK,
multiple super-resolution realizations of the seawater class frac-
tion were yielded via SIcS. In order to accommodate the simu-
lated outputs with equal quality as many as possible, 1000 SIcS
realizations were generated in this study. The contour map was
produced based on the average of their simulated probabilities,
and the contour line whose average of its simulated probabili-
ties equal to 0.5 (represented the 50% membership to land and
50% membership to seawater) was considered as the coastline
mapping result. With measure methods provided by ESRI
ArcObjects, measurement points taken at 1m interval were cre-
ated from the coastline extracted by human interpretation, and
the shortest distances from the measurement points to the coast-
line derived from supervised classification and from conditional
simulation was calculated, to estimate the coastline mapping
accuracy. The calculation results showed that the average of the
shortest distances to the coastline derived from supervised clas-
sification was 213m, while that to the coastline derived from
conditional simulation was 3m. Taken human interpretation
result using fine resolution imagery as the benchmark in Fig.
6(a), the coastline analysis showed that compared to the coast-

line derived from supervised classification using original data,
the coastline derived from conditional simulation using SIcS
imagery can illustrate the spatial distribution feature of the
coastline at fine scale more accurately and actually. The com-
parison result between the variogram of the average of simu-
lated probabilities of SIcS imagery and the variogram model of
the coarse seawater class fraction of original data was shown in
Fig. 6(b), indicating super-resolution imagery can maintain the
spatial structure feature of original data rather well.

3.6 Silty coastline mapping results

For the coastline at the Yellow River Estuary (B in Fig. 1),
the super-resolution mapping results showed in Fig.7 were ob-
tained using the same methodology adopted in the study at the
Yellow River Harbor. The accuracy analysis of coastline map-
ping showed that the average of the shortest distances to the
coastline derived from supervised classification was 11.7m,
while that to the coastline derived from conditional simulation
was 9.58m. Taken human interpretation result using fine resolu-
tion imagery as the benchmark in Fig. 7(a), The coastline
analysis showed that compared to the coastline derived from
supervised classification using original data, the coastline de-
rived from conditional simulation using SIcS imagery can illus-
trate the spatial distribution feature of the coastline at fine scale
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Fig. 6 (a) Coastline predicted from the hard classification applied to the original image VS coastline predicted from the geostatistical
approach applied to the SIcS image of A in Fig. 1; (b) Indicator variogram reproduction for super-resolution realization generated conditional
to coarse-resolution spatial structure.
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Fig.7 (a) Coastline predicted from the hard classification applied to the original image VS coastline predicted from the geostatistical
approach applied to the SIcS image of B in Fig.1; (b) Indicator variogram reproduction for super-resolution realization generated conditional
to coarse-resolution spatial structure.

more actually. In Fig. 7(b), the Psill value of the variogram of
the average of simulated probabilities of SIcS imagery was
0.064, close to the Psill value (0.068) of the variogram of the
coarse seawater class fraction of original data. In general, the
super-resolution mapping accuracy of the silty coastline was
lower than that of the artificial coast.

4 CONCLUSION AND DISCUSSION

The total length of coastline in China is more than 32,000km,
extending northward to the Yalujiang estuary, southward to the
Beilun River estuary (Cui, 1998). Therefore, it is necessary for
coastal investigation and mapping at regional scale to use re-
motely sensed data with a variety of spatial resolution, even
though remotely sensed data with higher spatial accuracy are
increasingly rich. The remotely sensed data used for coastal

research mainly include synthetic aperture radar (SAR), near
infrared, shortwave infrared, and thermal infrared images.
Wherein, SAR sensor seems unlikely to be widely applied to
coastal research at present for few archived data. Among the
passive optical sensors, higher spatial resolution images (such
as IKONOS and Quickbird), and recently developed LIDAR
and InSAR techniques have enough abilities to get higher ac-
curacy in coastline detection, but obtaining such data means
higher costs. By contrast, the moderate spatial resolution im-
ages are cost-effective and informative, wherein the Landsat
platforms have been providing repetitive, synoptic, and global
coverage of multispectral moderate resolution images with
relatively high frequency for over 30 years, especially suitable
for coastal information extraction and analysis at regional scale.
In this paper, the philosophy of super-resolution mapping was
introduced into coastline extraction and mapping based on
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remotely sensed data with moderate spatial resolution. Geosta-
tistical techniques such as Kriging and conditional simulation
were used to integrate spectral and spatial information of re-
motely sensed data, and the spatial distribution of land & ocean
environment were mapped at fine scale. The experiment results
showed that the prior information contained within the fine
resolution variogram was integrated into the simulated images
of land & ocean classes generated from cokriging and condi-
tional co-simulation techniques. Super- resolution maps illus-
trated the spatial distribution of coastline at fine scale rather
well, meanwhile maintained the ocean & land class fractions
and their spatial structures contained within the original data.

In general, super-resolution mapping technique based on
prior model of spatial structure, explores probability distribu-
tion of unknown classes at target scale using multiple simulated
realizations derived from the data or information at original
scale. The significance of this technique is not for obtaining
more accurate super-resolution images of spatial distribution of
coastline or any other earth cover types, but for exploring pos-
sible realizations of unknown classes at target scale from
information with variety of scales or accuracies, and these
realizations are matched with available information at present.
Here, the concept of mapping accuracy can be understood as
simulated realizations actually maintain this available informa-
tion and their spatial structure as much as possible.
Super-resolution maps can be served as inputs to detailed spa-
tial analysis environment, coupled environmental models, or
decision support systems, and provide the uncertainty analysis
framework due to lacking proper resolution information used in
the above operations or models (Boucher & Kyriakidis, 2006).
By the form of super-resolution mapping of coastline, the
potential of geostatistical techniques in integrating multi-source
and multi-scale spatial information has been demonstrated. The
research objectives in this study are rather simple artificial and
silty coast. In terms of more complicated coastal environment
such as Yangzi River estuary or Hangzhou Bay, it is important
to build prior model of spatial structure with higher quality, and
ground investigation or expert knowledge can be integrated into
inferring process of prior model of spatial structure. In addition,
recent-developed multi-point geostatistics theory adopts train-
ing image instead of variogram, expected to overcome the
insufficiency of two-point geostatistics on characterizing com-
plex spatial patterns and reproducing crisp geometrics (Boucher
et al., 2008).
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