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Abstract: Leaf Area Index (LALI) is one of the most important parameters in describing the dynamics of vegetation on land
surfaces. LAI products have been produced from data of many remote sensing satellite sensors, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS). In this paper, we used the Dynamic Harmonic Regression (DHR) model to analyze the
LAI time series products. The model can decompose the trend, seasonal and residuals components from the original time series,
and predict the short-time LAI values. We use the DHR model to extract the time change information from the MODIS LAI time
series products. The results show this method to be very effective in predicting the short-term LAI on the pixel basis.
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INTRODUCTION
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Because of cloud, aerosol contaminations and other factors, the

Leaf Area Index (LAI) is defined as the total weight of plant
leaves per unit area on land surface and is a useful index for the
studies of plant photosynthesis and energy exchange. LAI is
asscioated with terrestrial ecology, leaf biochemistry,
evapotranspiration, the interception of light on the leaf canopy,
and the net primary productivity. It is, one of the most impor-
tant parameters in the study of ecosystem of the land surface
(Zhao, 2003). There have been several LAI products that de-
rived from satellite sensors nowadays, such as MODIS, SPOT,
MERIS. Because of the revisiting characteristic of the satellite,
a large amount of LAI time series data has been accumulated.
By analyzing these time series remote sensing products, such as
LAI, we can extract dynamic information about the landscape,
especially the reasonable and interannual trends of vegetation
canopies, which are significant in studies of both the dynamics
of land surface and climate change. Consequently, the time
series analysis of remote sensing products is extremely impor-
tant.

MODIS (Moderate Resolution Imaging Spectral Radiometer)
has 36 bands ranging from the visible to the thermal infrared
spectrum and observes the Earth every eight days. The MODIS
LAI product (MODI15A2) has a spatial resolution of lkm.
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MODIS LAI product has missing values. Accordingly, a
method that can extract the useful information from the LAI
time series, eliminate the noises, model the temporal variations
and predict the future values is necessary.

In the past, a number of analyses of the time series remote
sensing products have been conducted for various applications.
For example, the identification of crops and their growth sea-
sons (Gillian et al., 2007; Jakubauskas ef al., 2002; Zhang et
al., 2008), image processing (Lhermitte et al., 2008), predicting
the outputs and biomass of crops (Dash et al., 2007, Weis-
steiner & Kuhbauch, 2005) and trend analysis (Hiittich et al.,
2007; Roder et al., 2008a, 2008b). These studies used different
methods which can be grouped into two classes: time domain
analysis and frequency domain analysis. The main methods in
time domain analysis are linear regression and statistical mod-
eling. Linear regression is the most frequent method used to
analyze the linear relationship of the variables with the corre-
sponding times. From these results we can derive the linear
trend of the variables and achieve predictions (Hiittich et al.,
2007; Roder et al., 2008; Wardlow et al., 2007; Weissteiner &
Kuhbauch, 2005); Statistical model which is built by the
mathematic theories is the alternative method to analyze the
long time series in the time domain, and this method mainly
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depends on the characteristics of the original time series. We
can also build models for prediction. However, this method has
not been used very often in remote sensing, except the AutoRe-
gression Integrated Moving Average (ARIMA) model
(Alhamad er al., 2007). The main methods that used in the fre-
quency domain analysis of the time series are as follows. (1)
Analysis with the harmonics of the time series, such as the Fou-
rier analysis and the expanding method HANTs (harmonic
analysis of time series). The principle of the Fourier analysis is
to fit the spectrum of the original time series with a series of
sine or cosine waves, whose magnitudes, phases and periods
can be related to the phonology information (Canisius ef al.,
2007; Jakubauskas et al., 2001; Westra, 2007); (2) Wavelet
analysis, whose principle is to use a base wavelet as a “win-
dow” to filter the original time series so that we can extract the
different information corresponding to the different time fre-
quencies. This method is often used for curve smoothing and
removing the noises in a time series (Gillian et al., 2007,
Sakamoto er al., 2006; Sakamoto et al., 2005). Although these
methods have been used in a variety of applications and
resulted in some significant results, few have been used to pre-
dict the parameters in remote sensing. In this paper, we explore
a method called Dynamic Harmonics Regression (DHR) to
model and predict the LAI products. The details of the method
in comparison with other methods have been explored in other
study by the author (paper in writing), and it has been proved
that DHR is a better method in predicting LAL

The DHR method belongs to which analyzes the time series
frequency domain analysis, and it is according to the character-
istics of the spectrum of the original time series. This method
has been used frequently in other fields, such as economics and
engineering and other disciplines (Ng & Young, 1990; Pedregal
& Trapero, 2007; Pedregal & Young, 2006; Taylor et al., 2007).
Since it has not been applied in remote sensing, we discuss the

DHR method in analyzing the MODIS LAI time series products.

In this study, we extract the trend and the seasonal components
of the original LAI time series, model the dynamics of the LAI
time series, and predict short-time LAI on the pixel basis.

2 METHOD

2.1 Dynamic Harmonics Regression (DHR)

2.1.1 Expression of each component in a time series

We usually apply an Unobserved Component (UC) model to
express a time series, as follows (Young et al., 1999):
e, ~ N(0,6%) (1)
where y, is the original value in time f; T, is the trend compo-
nent of the original time series; C, and S, are the period compo-
nents, and S, is the seasonal component, while C, always has a

longer cycle than S, the difference between which two is the
time length; e, is the residuals, which is always regarded as

=T, +C, +S, +e¢

Gaussian white noise for convenience. UC model is used to
model some components that can not be observed directly in a

time series, such as the 7,, C, and S, in Eq. (1). There are a vari-
ety of types of UC models, and the DHR model can be regarded
as a special one (Young et al., 1999).

The DHR model is always used to fit three main compo-
nents in a time series: which are T, S, and ¢, (C, can be
expressed as the same as S,). The main feature of the DHR
model is the expressions of seasonal or periodic components, so
it is suitable for analyzing the time series with the remarkable
seasonal variations. In the DHR model, the analysis of seasonal
or periodic component is similar to the Fourier analysis, as
expressed below:

3
2
S, +e = Y {aj cos(@;r)+bysin(@;n)] +e
j=0 ‘

2nj , s
where W; =—— =1,2,--,| =
AT [2]

where s is the length of a cycle. According to the theories of

@

Fourier analysis, the number of harmonics of a time series is at
most half of the seasonal cycle length. However, the difference
between DHR and the general Fourier analysis is the expres-
sions of the coefficients a;, and b; in Eq. (2). In DHR, these
coefficients are modeled with a dynamic model which makes
the whole model “dynamic.” Meanwhile, when modeling the
trend component T, in DHR, the dynamic model is also used
and the trend is also “dynamic”. These variables, which are
dynamics with the time are all called Time Variable Parameters
(TVP), and more details of the dynamic mode] used in DHR are
described in the next section.
2.1.2 SS and GRW model

Many models have the dynamic function in mathematics,
and the frequently used model is the State-Space (SS) model.
The SS model is generally composed with 2 equations: the state
equation and the observations equation. The model expresses
the relation between the state values and the observations at
every time (Young et al., 2007), as follows:

state —equation : x, = Fx,_ +G1};_4 3)
observation —equation : y, = H,x, +¢,

where x; is the state vector in time ¢, 5 expresses the system
disturbing; y, is the observations in time ¢; and ¢, is the measur-
ing errors which are regarded as the Gaussian distribution for
convenience. The coefficients F, G and H are the non-random
known system matrices.

There are variable forms of the SS model, and the General
Random Walk (GRW) models are used very often. The general
expression of GRW models is:

)6 ) ()
= of )
2t

where each variable in Eq. (4) expresses the vector of state
value at time ¢ (such as x;,) and its errors (such as x,,); Y, is the

@

observations at time ¢ and we can regard it as each component
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o
in a time series as in Eq. (1); the matrix [0 f) correspond

to F in Eq. (3), and the matrices [Z" J and (1 0) correspond
2t

to G, H in Eq. (3), respectively. Here H is defined, so if we
define a- 8- y with the different values in Eq. (4), we can get the
different F and G, which can be used to express the different
change situations. The typical cases include the Random Walk
(RW: a=1, =0, n,~=0); the Integrated Random Walk (IRW:
O<a<l, f=y=0, n,=0); the Local Linear Trend (LLT: #,, =0);
and the Damped Trend (a=f=y=1, O<y<l). According to the
experiences of Young (1989), the IRW model is suitable to
express the situation which changes slowly, while the RW
model is often applied to a quickly changing situation.

From the description in Section 2.1.1, we know that the
DHR model uses the dynamic models (GRW models) to model
each component in a time series. The choice of GRW models is
a subjective process in practice, and in this paper we choose the
IRW model to model the trend component, and the RW model
to model the seasonal component according to the experience
of Young as described above.

2.1.3 Estimating each component in a time series

The GRW models have been chosen to model the T, and S,
components in a time series, and the estimations of these mod-
els are done with Kalman Filter (KF)/Fixed Interval Smoothing
(FIS). Each step of estimating is composed of prediction and
modification, so the DHR model can process the time series
with missing data and outliers.

In order to compute conveniently, there are some parameters
in the DHR model that have to be redefined, such as the Noise
Variance Ration (NVR) Q, and p,, where Q, stands for the

normalized matrix of variance and covariance of the system
disturbing, and p, is the covariance matrix of the estimations

in the DHR models when filtering. In these parameters, the
NVR can be regarded as the filter window, because the different
NVR values determine the cut-off frequencies in the lower filter.
Moreover, there are still some unknown parameters in the GRW
models that are used to model each component, such as a. f. y
and », which are all called the hyper-parameters. The NVR and
these hyper-parameters determine the results of the filter to-
gether, and we need to ascertain them before estimating each
component in a time series. There have been some methods for
estimating the NVR and these hyper-parameters (Young et al.,
2007), and we choose the frequency domain estimation method
in this paper. This method is generally concerned with ap-
proximating the theoretical pseudo-spectrum of the model (a
function of the hyper-parameters in question) to the empirical
pseudo-spectrum obtained directly from the time series, and we
often implement the estimation and yield the optimal least
squares fit to the empirically estimated spectrum. In addition,
the empirical pseudo-spectrum is always the AutoRegression

(AR) or periodic spectrum.

2.2 Implementation of the DHR model

The DHR model is implemented in the Captain Toolbox,
which is developed on the MATLAB software platform by
Young from Lancaster University (http://www.es.lancs.ac.uk/
cres/captain). So in this paper, we do all the analysis based on
the Captain Toolbox.

Although the DHR model has been used frequently in other
applications, there are still some remarkable differences when
applied to the MODIS LAI product. The main difference is that
we use DHR model to model LAI products based on each pixel
in the study regions, so we can not choose the parameters that
the model needs subjectively. We therefore made some modifi-
cations when applying the DHR model to LAI products, and the
ultimate goal is that it can process the LAI time series of each
pixel automatically. The steps of applying the DHR model in
this paper are as follows:

(1) Estimating the empirically spectrums of the original
MODIS LAI time series. The LAI time series of different pixels
around the globe may have the different lengths of period. Ac-
cording to the characteristics of the LAI time series, we choose
la as the main period for all the LAl time series for conven-
ience, so if 46 (samples/a) is the number of observations in a
period, then there are at most 23 harmonics in a LAI time series
defined in the Fourier analysis. In this paper, we use the AR
spectrum as the empirical spectrum of each LAI original time
series, and the order of it is defined as 46, indicating that la is
the longest correlating time in a MODIS LAI time series.

(2) Based on the characteristics of the empirical spectrum
or other a priori knowledge of the LAI original time series,
we choose the main harmonics of the empirical spectrum to
express the whole LAI time series.

(3) Estimation of the NVR and hyper-parameters with fre-
quency domain method as described in Section 2.1.3.

(4) Using the estimated NVR and hyper-parameters in step
(3) to estimate each component in the time series by KF/FIS,
and predict the LAl values with the fitting model.

Step (2) described above is very subjective, since there is no
rules to determine which harmonics are the most important. In
other applications, the selection of harmonics is always based
on the known noise power (Pedregal & Trapero, 2007), but that
method can not be used in this study. As we all known, the
products in remote sensing are easily affected by the environ-
ment, algorithms, clouds and many other factors, and these
sources of noises are hard to ascertain, and the powers of these
noises are difficult to get. So We loop steps (2), (3) and (4) in
practice, and put the harmonics which are ordered by their
powers into the model building one after another, and the esti-
mated NVR and hyper-parameters each time are used to build
the different DHR models and predict the LAI values with this
model for the next year. When the correlations between the
predicted LAI values and the mean LAI values in the previous
year do not increase significantly any more, the harmonics are
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ascertained and used to build the final DHR models. From a
large number of experiments, we found that when the changes
between the continuous correlations are smaller than 0.005 for
at least two times, the harmonics can be ascertained. Further-
more, because the DHR model is built on the mathematical
theories, the values predicted by the model may be negatives
some times which are not valid for LAI. We need to replace
them with the means of LAI in the previous years.

3 RESULTS

3.1 Decompose LAI time series

Each time series can be defined as the addition of the dif-
ferent components by the principle of DHR model (Eq. (1)),
such as the trend, season component and so on. If we define the
different parameters in the model we will get the different
component, which is one of the main functions of the DHR
model - time series decomposition. The interannual trend of
LAI is very important. There are some methods, such as the
linear regression, often used to fit the interannual and linear
trend of a time series but they are not always very effective.
However, the trend that is decomposed with the DHR model
may be not always linear with the time because of the dynamic
model (GRW),

Fig. 1 presents the LAI time series of an evergreen forest
pixel. It has a remarkable increasing trend. Fig. 2 has three plots
for the trend (a), the seasonal (b) and the residuals (¢) compo-
nent of the LAI time series. The trend in Fig. 2(a) is an obvious
increasing curve, and it changes with the time; Fig. 2(b) shows
the seasonal component which not only has the similar shape in
each period but also changes with the time; and the residuals of
Fig. 2(c) look very similar to the distribution of white noises,
which proves that the primary information of the LAI time
series have been gained adequately with the DHR model.

Fig. 2 proves that the DHR model is very effective for de-
composing the time series, and the extracting trend is quite
reasonable. That is because the DHR model uses the GRW
dynamic models to model each component so that the fitting
components are dynamic and characterize the whole original
time series thoroughly.

4
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Fig. 1 LAI time series from 1999 to 2004
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Fig.2 Each component of the LAI time series that is decomposed
with DHR model
(a) Trend component; (b) Seasonal component; (c) Residuals

3.2 Modeling results with DHR

The data we used in this study are MODIS LAI products of
version 5 from the FLUXNET websites. The data includes 896
observation sites around the northern hemisphere. Because the
original MODIS LAI products always have missing values, we
used a method to fill in the missing data firstly (Fang et al.,
2008), so that the data we analyzed finally is continuous with
no-gaps. The spatial resolution of the LAI product is 1km,
temporal resolution is 8d (46 samples/a), and ranging from year
2001 to 2007. In order to explore the predicting ability of the
DHR model for the LAI time series, we classified these sites
into 9 land cover types: cropland and vegetation mosaic, crop-
lands, deciduous forest, evergreen forest, mixed forest, grass-
lands, savannas, shrublands, and urban and built-up. We used
the LAI data from year 2001 to 2006 to build the DHR model,
and predicted the LAI values in 2007, and then compared the
predictions with the original 2007 LAI values. The perform-
ances for each land covers are characterized by two statistical
indices: root mean square error (RMSE) and correlation coeffi-
cient (R?). Fig. 3 shows the results of the prediction R” of some
cover types, and Table 1 shows the RMSE results of the predic-
tion with the minimum, 25% quartile, medium, 75% quartile
and maximum for each land cover types.

In order to analyze adequately, we also made a statistic of
the prediction R? of each land cover type, and computed the
correlations between the original LAI in 2001—2006 and the
original LAI in 2007, and then got the correlations (CR) be-
tween them, which can be used to explain the relationship be-
tween the qualities of original data and the prediction preci-
sions,

The results in Table 1 show that there are different predic-
tion results when using DHR for different land cover types,
such as croplands, deciduous forest, grasslands and shrublands.
If the prediction errors are small it means the predictions are
similar to the original values. When we check the prediction R
(not all are listed in this paper) of all land cover types, we can
conclude that 5 land cover types - croplands and vege-
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Table1 Prediction RMSE of DHR model

Class name Minimum 25% quartile Median 75% quartile Maximum
Croplands and vegetation mosaic 0.095 0.2405 0.343 0.544 1.188
Croplands 0.094 0.224 0.311 0.428 1.23
Deciduous forest 0.07 0.542 0.645 0.819 1.162
Evergreen forest 0.14 0.419 0.663 1.298 2.702
Grasslands 0.043 0.098 0.142 0.237 0.864
Mixed forest 0.185 0.552 0.679 0.826 1.374
Savannas 0.118 0.259 0.382 0.522 1.348
Shrublands 0.049 0.088 0.146 0.219 0.703
Urban and built-up 0.066 0.2 0.302 0.405 0.623
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Fig.3 Histograms of prediction R, and the R* of correlations of LAI in 2007 with the mean LAI in 2001—2006 and the prediction

R of some land cover types
(a) Croplands; (b) Mixed forest; (c) Evergreen forest; (d) Savannas

tation mosaic, croplands, deciduous forest, mixed forest and vannas, the DHR model did not predict well. The prediction R
urban and built-up have the better LAI predictions, and the of them are mostly below 0.5, and the CRs are not high either.
prediction R? of them are mostly larger than 0.6. The CRs are Fig. 3 shows 4 land cover types to consolidate the conclusion.
mostly high, indicating that the qualities of the original LAI We can see clearly from the figure that croplands and mixed
time series in these types have the positive and nearly linear forest are of the good prediction results with the linear CRs
correlations with the predictions. While for other land cover larger than 0.7, but the predictions of grasslands and shrublands,
types, such as evergreen forest, grasslands, shrublands and sa- are not good with low CRs.
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In short, the prediction results are variable with different
land cover types when using DHR models, and the qualities of
the original data will affect the prédictions. The details of the
effectiveness of different factors to the DHR models prediction
are described as follows.

3.2.1 Seasonality

From the conclusions above, we know that the more re-
markable seasonal variation a land cover type has, the better
prediction results when using the DHR model. These cover
types include croplands and vegetation mosaics, croplands,
deciduous forest and mixed forest. The evergreen forest type
has the worse prediction results because it does not have the
remarkable seasonal change. Fig. 4 and Fig. 5 show two exam-
ples.

Fig. 4 shows a pixel with good predictions, whose original
LAI time series (2001—2007) is showed in Fig. 4(a) and the
predictions in 2007 is showed in Fig. 4(b). The pixel corre-
sponds to cropland and vegetation mosaic land cover. The
original LAI curve is smooth, and has the remarkable seasonal
change every year. The correlation between the original LAI in
2007 and the means in the previous years is as high as 0.975;
the predicted values in 2007 (Fig. 4(b)) are lower in the grow-
ing period when compared to the original LAI in 2007, but still
very close to the means of the previous years (2001-2007).
From Fig. 4(a), we found that the original LAI values in 2007
are higher than the previous years, so the predictions are still
reasonable, and the prediction R* is 0.955. The prediction curve
in Fig. 4(b) is very smooth, and the shape is very reasonable,
because the DHR model has removed most of the noises and
disturbing effects.

Fig. 5 shows an evergreen forest pixel, Fig. 5(a) is the origi-
nal LAI curve (2001—2007) and Fig. 5(b) compares the pre-
diction curve in 2007 and the original values. From Fig. 5(a),

we can see that the original LAI curve does not have the re-
markable seasonal changes, and is affected much by the noises.
It has some outliers, and the CR is just 0.856. The prediction
curve has large difference with the original LAI, and there are 3
growing peaks in the prediction curve which may be affected
by the indistinctive seasonal changes and the noises, as a result
the prediction R is just 0.249.

From the cases in Fig. 4 and Fig. 5, we demonstrate that the
prediction results are variable according to the seasonal signifi-
cances in a time series, and the DHR model is more appropriate
to model the time series with the remarkable seasonal variation.
When the requirement is met, the shape of the prediction curve
will be very similar to the original time series. But if the time
series does not meet the conditions, the prediction curve some-
times can be wrong.

3.2.2  Noises

Because of different disturbing factors, such as clouds, the
satellite data are always affected much by the noises, and so are
the MODIS LAI products. Because DHR model uses the
KF/FIS to estimate each component in a time series, it can get
rid of the noises when building and predicting a time series.
Therefore, the DHR model is applicable for the time series
which contains noises. And from the examples described above,
we can see that the DHR model indeed predicts the smoother
curve than the original one. Fig. 6 shows two examples to ex-
plain this point. Fig. 6(a) shows an original LAI time series
curve from 2001 to 2007 of a deciduous forest pixel, and Fig.
6(b) compares the prediction curve in 2007 with the original
curve and the mean values in the previous years of this pixel.
From Fig. 6(a), we know that the pixel has a remarkable sea-
sonality, but because of data acquisition and some other reasons,
the original LAI time series is affected much during the growth
period. The CR of this pixel is 0.888. Fig. 6(b) shows a very
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Fig. 4 Prediction results of two pixels of two classes
(a) Cropland and vegetation mosaic LAI original time series 2001-2007; (b) Prediction values of this pixel in 2007 comparing to the original LAl in 2007
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Fig.5 Evergreen forest pixel prediction results
(a) LAl original time series of this pixel from 2001 to 2007; (b) Prediction values in 2007 comparing to the original LAI data
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Fig. 6 Prediction results of two pixels belong to two classes
(a) LAI original time series from 2001 to 2007 of a deciduous forest pixel; (b) LAI prediction values of this pixel in 2007 comparing to its original data; (c) LAl original
time series 2001—2007 of a mixed forest pixel; (d) LAI prediction values of this pixel in 2007 comparing to its original data

smooth prediction curve of the pixel which filters almost all the
noises and disturbance, and the DHR predicts an exact shape of
the LAI curve to the original one. However, the original LAI
values in 2007 are affected much by noises, the prediction R? is
just 0.676. Fig. 6(c) and Fig. 6(d) show another pixel. Fig. 6(c)
is the original LAI curve from 2001 to 2007 of a pixel of mixed
forest, and the time series has two remarkable seasons. But the
pixel is also affected very much during the growth period, so
the original LAI curve is not very smooth, and the CR is 0.919.
Fig. 6(d) shows the prediction curve of this pixel in 2007 and
the comparisons with the original curve and the mean values.
The prediction curve has two significant seasonal growth peri-
ods which match the original ones (Fig. 6(c)), and it smoothes
the curve. The prediction values are close to the means of the
previous years, but the prediction R? is not high (0.772) because
of the disturbance in the second growth period.

From the two examples in Fig. 6, we conclude that if a time
series is not smooth because of the noises, disturbance or out-
liers but has a significant seasonality, the DHR model can pre-
dict very smooth curve reasonably. Although the prediction
shape has some differences to the original curve, the prediction
curve is more natural and reasonable. We can say that the pre-
diction sometimes has better results than the original time se-
ries.

3.2.3 Filling data

Because the MODIS LAI products always have missing data,
we filled the missing data using a published method (Fang et al.,
2008). But sometimes the filling data are mostly constant be-
cause the products have too many missing data, so the original
LAI curve is not sound. When we use the DHR model to proc-
ess these time series, the prediction results are always poor. For
these 9 land cover types that we analyzed, shrublands, grass-
lands and savannas have many pixels with constant filling data,
and the LAI ranges of them are usually not large, so the predic-
tions are not very good. Fig. 7 shows two examples, and Fig.

7(a) and Fig. 7(b) show the results of a grasslands pixel, and
Fig. 7(c) and Fig. 7(d) are the results of a savannas pixel. The
original LAI values of these two pixels are all nearly below 1.0,
and there are many lines and many constant filling data. The
CRs of the two pixels are 0.931 and 0.947 respectively, which
means that the growth situations of the two pixels are similar to
the previous years. Fig. 7(b) and Fig. 7(d) are the prediction
curves of the two pixels, which are smooth and more reason-
able than the original curves. But the prediction values are
lower than the original LAI data that may be affected by noises,
so the prediction R? are just 0.861 and 0.824 respectively. This
example also explains that the prediction R? are easily affected
by the differences of the curve shapes.

Fig. 7 shows that if a time series has too many filling data,
but a remarkable seasonal pattern, the DHR model can also get
a more smooth and reasonable prediction curve than the origi-
nal one. The DHR model has the ability to improve the MODIS
LAI products.

3.3 Fitting the missing data with DHR model

The DHR model uses the KF/FIS to estimate each compo-
nent and fit the missing data in the time series directly as long
as the missing data are not too many. In order to explore this
function of DHR, we choose two pixels as examples.

Fig. 8 shows two pixels, one is deciduous forest and the
other is cropland. Fig. 8(a) shows the time series of the decidu-
ous forest pixel, and we dropped 20 LAl data’artificially to
make a missing data series; Fig. 8(b) shows the fitting data of
the pixel and the fitting residuals. In this plot, the red dash
stands for the missing data, and green curve expresses the
original LAI, and the yellow curve expresses the residuals be-
tween the fitting data and the original data. From Fig. 8(b) we
can see clearly that the fitting data by using the DHR model is
very close to the original data, and the fitting R’ is 0.8344, the
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Fig. 7 Prediction results of the LAI time series with the filling data of two pixels
(a) LAI original time series from 2001 to 2007 of a grasslands pixel; (b) Prediction LAI values in 2007 comparing to the original data of this pixel; (c) LAI original
time series from 2001 to 2007 of a shrublands pixel; (d) Prediction LAI values in 2007 comparing to the original data of this pixel
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Fig.8 Fitting the LAI time series with missing data using the DHR model
(a) LAI time series from 2001 to 2007 with a section of missing data of a pixel of deciduous forest; (b) Fitting the LAI time series 2001—2007 of this pixel; (c) LAI time
series 2001—2007 with 2 section of missing data of a croplands pixel; (d) Fitting the LAI time series 2001—2007 of this pixel

RMSE is 0.9306, and the other data in the time series which
does not have the missing data are also fitted very well, and the
R* as high as 0.9376, RMSE is 0.9305. Fig. 8(c) shows the
croplands pixel LAI curve with missing two parts of 20 data.
The fitting results are showed in Fig. 8(d). The missing parts
have been fitted very well, and the fitting R? is 0.9565, the
RMSE is 0.5338. In addition, the whole fitting data in the 6

years are smoother than the original data, the residuals of fitting
are very small, and the whole data fitting R is 0.9401, the
RMSE is 0.129. It has been proved that the DHR model has a
good fitting function when the original data has good qualities
and some missing data. And what’s more, the fitting ability has
no relation with the locations of missing data, which also
proves that the DHR model has a good applicability.
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4 CONCLUSION

The DHR model is based on the UC model and each com-
ponent of the time series in DHR is expressed with the SS
(State-Space) models. The season component is similar to the
Fourier analysis, but each coefficient is expressed with the dy-
namic GRW model, which is one type of the SS models, We
estimate the hyper-parameters and the filtering window NVR
which are needed in the DHR model according to the charac-
teristics of the spectrum of the original time series, and estimate
each component and predict by using KF/FIS. In this paper, we
analyzed the MODIS LAI time series products with the DHR

model, and explore the applicability of DHR from three aspects:

decomposition, prediction and fitting missing data.

Firstly, we explore the ability of main information extraction
from a general time series with DHR, and the results have
showned that the trend and the seasonal component are dy-
namic, and the residual component is similar to the distribution
of the white noise. It proves that the DHR model can decom-
pose the LAI time series effectively, and each extracted com-
ponent is very reasonable, especially the trend component.

Secondly, we analyze the LAI time series with DHR, the
data are from 896 sites all over the northern hemisphere with 9
land-cover types. The results show that although the prediction
results are variable according to the land cover types or some
special conditions, the DHR model is well suitable for remote
sensing LAI product as a whole. When using DHR to predict,
we need not know much information about the original time
series at first, such as the length of period, the number of
growth periods and so on, while we can build the model based
on the characteristics of the spectrum of the original LAI time
series. Some land cover types, such as croplands, deciduous
forest, mixed forest and so on, which have the remarkable sea-
sonal changes, can be predicted very well with DHR, and the
prediction curves are usually more smooth and reasonable than
the original ones.

Thirdly, we explore the fitting function of DHR for a time
series with a few missing data. The examples in Section 3.3
proved that the fitting is very well when DHR is used in the
time series of good qualities, and we need not know the number
of missing data and the locations of them before fitting, DHR
model is built just based on the spectrum of the original time
series, and each component is estimated by KF/FIS. Both ex-
amples in Fig. 8 have good fitting R? larger than 0.8, and both
of the whole time series have good fitting R* which are larger
than 0.9. All of these examples demonstrate that DHR model is
a valuable method in analyzing the time series which have a
few missing data. The data in remote sensing always have
missing data and outliers because of noises and other factors, so
the DHR model is very suitable in analyzing remote sensing
data,

However, there still remain some problems in this study. For
example, we define the cycle period of all the pixels as la,
which means the order of AR is 46 for all the pixels, but some

land cover types do not have la as their significant growth pe-
riod, so the parameters we defined here may not be completely
reasonable. Further more, the method we use to ascertain the
number of main harmonics to estimate the hyper-parameters
and N'VR needs to be explored further.

In short, this paper has demonstrated the useful applicability
of the DHR model when used for the MODIS LAI time series
producgs. We will continue our study to improve the DHR
method for remote sensing data, and explore its applicability for
other high-level remote sensing products.
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