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Extraction of impervious surface in Hai Basin using remote sensing
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Abstract: Impervious surface coverage in a region is not only an indicator of the degree of urbanization but also a major indicator
of environmental quality. Most of the existing methods of extracting impervious surface based on remote sensing concentrate on an
urban scale, but the rapid and accurate methods of extracting impervious surfaces in a basin scale are nearly nonexistent in China
and abroad. In this study, we used Landsat images acquired in same season covering the entire Hai Basin as data source, and gener-
ated a mask for removing the non-impervious surfaces using a land-use data set of roads, and urban, rural, and industrial land. Then,
by selecting bright and dark vegetation endmember, high albedo and low albedo impervious surface endmember, and dry and wet
soil endmember, we applied a Multiple Endmember Spectral Mixture Analysis (MESMA) model to extract impervious surfaces in
the basin scale. The accuracy assessment results showed high accuracy, in that the mean relative error (MRE) and correlation coef-
ficient (R) of all samples were 12.1% and 0.83, respectively, which indicated that the method of extracting impervious surfaces in a

basin scale was feasible.
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1 INTRODUCTION

Impervious surfaces are anthropogenic features through which
water cannot infiltrate into the soil, such as rooftops, roads, driveways,
sidewalks, and parking lots, among others (Arnold & Gibbons,
1996). Impervious surface coverage is the percentage of impervious
surface in an area as large as a drainage basin or as small as an area
which a pixel stands for. With the rapid development of the social
economy, the degree of urbanization has become higher and higher,
which leads to an increase in impervious surfaces.

In an urban scale, impervious surface coverage is an indicator
of the degree of urbanization, as well as a term that is widely used
in urban related studies (Wu & Murray, 2005; Lu, et al., 2000),
such as residential population estimation, land-use and land-cover
mapping (Madhavan, et al., 2001; Phinn, et al., 2002; Lu & Weng,
2006; Pu, et al., 2008), and urban land-use planning (Brabec, et al.,
2002). In addition, impervious surfaces absorb a large amount of
short-wave solar radiation, which then heats the urban canopy layer
and boundary layer in the form of long-wave radiation and alters
the sensible and latent heat flux (Oke, 1987; Yuan & Bauer, 2006).
This has an overall effect on the climate of city and urban agglomeration.

In a basin scale, rainfall in impervious surface areas infiltrates
into the soil with difficulty, so soil water and ground water are
found in insufficient supplies; correspondingly, more water from
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rainfall generates surface runoff and is accumulated in rivers,
which increases the storm flow and flooding frequency (Brun &
Band, 2000; Weng, 2001). The increase in impervious surfaces and
runoff directly impacts the transport of non-point source pollutants,
including pathogens, nutrients, toxic contaminants, and sediment
(Hurd & Civco, 2004), which has a profound negative impact on
water quality of lakes, streams, and other aquatic environments
(Zug, et al., 1999; Brabec, et al., 2002; Gillies, et al., 2003). Generally,
most stream health indicators decline when impervious surface
coverage of a basin exceeds 10%. In summary, the impervious surface
is an important land surface characteristic of the hydrological cycle
and water resource assessment in a basin.

The methods of extracting impervious surfaces based on remote
sensing mainly include pixel-based classification (Hodgson, et
al., 2003; Dougherty, et al., 2004; Jennings, et al., 2004) and sub-pixel
extraction (Civco & Hurd, 1997; Gillies et al., 2003; Bauer, et al.,
2004; Yang X, 2006; Murray, 2003; Yang, et al., 2003a, b; Wu,
2004; Jantz, et al., 2005; Lu & Weng, 2006; Xian, 2007). In tra-
ditional impervious surface extraction, pixel-based classification
long has been the dominant method. The impervious surface is
considered to be a land type and can be captured through a variety
of supervised and unsupervised classifications. Due to the limits of
image resolution, impervious surface and other land types often are
mixed in a pixel. In order to solve the mixed pixel problem, scientists
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have developed a sub-pixel level of impervious surface extraction,
and the extracting methods include use of a multiple regression
model (Gillies, et al., 2003; Bauer, et al., 2004; Yang X, 2006),
spectral mixture analysis (Wu & Murray, 2003; Wu, 2004; Lu &
Weng, 2006), an artificial neural network (Civco & Hurd, 1997),
and a classification and regression tree (Yang X, et al., 2003a, b;
Jantz, et al., 2005; Xian, 2007), among others. Due to the develop-
ment of sub-pixel extraction, one single landtype was replaced by a
continuous impervious surface coverage to represent the composi-
tion of a pixel, and as a result, the extraction of impervious surfaces
reaches a quantitative level.

Although many methods of extracting impervious surfaces have
emerged in China and abroad, almost all of the studies are limited
to the urban scale, and methods for a fast and accurate extraction
of impervious surfaces in a basin scale have not been established.
However, many water resource exploitation and utilization, river
management and planning, and water cycle process research are
conducted in a basin scale. The basin is the basic unit of hydrological
cycle study because it is closed. Therefore, extraction of impervious
surface distribution in a whole basin using remote sensing has sig-
nificant meaning for hydrological cycle and water resource assessment.

This paper aims to explore an impervious surface extraction
method in a basin scale and to map the impervious surface distribu-
tion of the entire Hai Basin, so it can serve for water cycle research
in a basin scale. In this study, we chose the Hai Basin as our study
area and chose Landsat ETM+ satellite images and ancillary land
use as our data source. By selecting bright and dark vegetation end-
member, high albedo and low albedo impervious surface endmem-
ber, and dry and wet soil endmember, we applied the MESMA model
to extract impervious surface coverage. Finally, through NDVI thresh-
old selection and origin impervious surface coverage normalization,
we obtained the exact impervious surface distribution of the entire
Hai Basin.

2 DATA AND METHODOLOGY
2.1 Data and preprocessing

(1) Landsat ETM+

Twenty scene Landsat images cover the entire Hai Basin, and
the time of acquisition was from July 1, 1997 to May 22, 2002.
Each scene was taken in late spring to early fall, which was during
the vegetation growing season.

The Landsat data were downloaded from the U.S. Geological
Survey (USGS) Web site, and they were geometrically corrected so
no re-registrations were needed. Because no clouds or few clouds
were found in each scene, no atmospheric correction was performed.

(2) Land use

The land use data for this study were from the Chinese Academy of
Science Bureau of Resources and Environmental, and the original
images used for mapping the land use data are the same as those re-
ferred to in the last paragraph. Because impervious surface extrac-
tion focuses on the impervious surface in urban areas, agricultural
areas and forest-grass areas, where impervious surfaces are few,
were removed.

The urban residential land (code 71), rural residential land (code
72), industrial area (code 61), road (code 101), and rail (code 102)
land types in the land use data sets were combined to generate a

mask, and the mask was used to remove the other land types to
increase the precision and accuracy of impervious surface coverage
extraction.

(3) High-resolution image

The high-resolution image was an aerial orthophotograph taken
in August, 2000 with its spatial resolution set to 1 m. We used this
orthophotograph to evaluate the accuracy of extracted impervious
surfaces.

Due to the high resolution of the images, the impervious surfaces
determined through classification were deemed to be actual impervious
surfaces. Therefore, we were able to use the classification results to
evaluate the accuracy of the remote sensing extraction results.

2.2 Determination of model

The linear spectral mixture model depicts the reflectance of a
band in each pixel as a linear summation of the reflectance of each
endmember multiplied its weight (Zhao, 2003). The endmember is
pure land cover type, and the weight is determined by surface fraction
of each endmember. The model is based on the following three
hypotheses: (1) reflectance or Digital Number (DN) in a pixel is a
linear summation of the reflectance of each endmember multiplied
by the surface fraction it covers; (2) each photon interacts with a
single land cover type within the instantaneous field of view, and
no scattered photons interact with multiple land cover; (3) adjacent
pixels do not affect the spectra of the target pixel.

The mechanism can be described by the following equation:

»
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where D, is the digital number for each band j in the ETM+ im-
age, L is the number of bands, p is the number of endmembers, m;
is the digital number of endmember j in band j, ¢; is the fraction of
endmember j, and ¢, is the unmodeled residual of band j. By select-
ing appropriate endmembers, the fraction of each endmember is
obtained by applying a least squares technique in order to minimize
the unmodeled residual error e, Whether the selected endmembers
are rational or not is important to the unmixed result.

Ridd (1995) proposed the vegetation, impervious surface, and
soil (V-I-S) concept model to characterize the biophysical composition
of urban areas. In the model, he considered that urban landscape
can be constituted of vegetation, impervious surfaces, and soil. Together
with the SMA model, which has a physical meaning and can be un-
derstood by non-scientific people, the V-I-S model was used widely
in impervious surface extraction; and vegetation, impervious surface,
and soil spectra became the most popular endmember spectra
that enable decomposition of pixels into fractional components or
endmembers. Afterward, a variety of different endmember com-
binations were developed for the SMA model (Phinn, et al., 2002;
Rashed, et al., 2001, 2003; Wu & Murray, 2003; Wu, 2004; Lu &
Weng, 2004; Lu & Weng, 2006a, b). In order to reduce the spectral
variability of the same endmember due to their different brightness,
some researchers developed the Normalized Spectral Mixture Analysis
(NSMA) model (Wu, 2004) and the MESMA model (Roberts, et
al., 1998b; Dennison & Roberts, 2003; Rashed, et al., 2003; Powell,
et al., 2007).

Considering the strong spectral variability of impervious surfac-
es and other land covers in the Hai Basin, the MESMA model was



390 Journal of Remote Sensing

#ERE|R 2011, 15(2)

used to estimate the impervious surface coverage. In a traditional
MESMA model, the number and type of endmembers vary on a
per-pixel basis, and the spectra of each endmember can contain several
or dozens of spectra that constitute the spectral library of endmembers.
When the MESMA model was applied, the endmember spectra
was selected from the spectra library, and many decomposition
fractions were obtained. Among all these results, the optimal spectra
combination of endmembers was the spectra combination that made
the unmodeled residual error minimal. This method for endmember
selection can help reduce the unmodeled residual error, but the
impervious surface fraction lacks continuity, and the polygons are
broken; in addition, the model efficiency is low because the re-
searcher must deal with dozens of satellite images.

In this study, when applying the MESMA model, we selected
only two to three spectra for each endmember to represent the spectral
variability and to build the spectral library of endmembers. In this
way, not only was the unmodeled residual error controlled, but also
the decomposition results were continuous and readable.

The specific technical flow of extracting the impervious surface

is shown in Fig 1.
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Fig. 1 Flow chart of extracting the impervious surface

2.3 Endmember selection

Endmember selection is the key to success in an SMA model,
and we needed to determine the type and spectral number of the
endmember. In this study, we selected vegetation, impervious surface,
and soil as endmembers for the input of the SMA model, and the
model were applied for all images in the study area to extract im-
pervious surface coverage by selecting the appropriate endmember;

thus we were able to determine a reliable result in each scene.

Many methods can be used for endmember selection (Lu &
Weng, 2004), and we used visual interpretation methods to select
image endmembers manually by combining the original Landsat
images and SPOTS5 high-resolution images of the study area. In this
way, a high accuracy result can be obtained (Fan, 2008).

The vegetation endmember, which was bright vegetation and
dark vegetation, was selected from farmland and dense forest areas on
the mountains; the impervious surface endmember, which included
both high albedo and low albedo impervious surfaces, was selected
from the center of roads, roofs, and airports; the soil endmember,
which was dry and wet soil, was selected from uncultivated farm-
land and the reservoir bank (Fig. 2).
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Fig. 2 Different spectral curve of endmembers

Not all types and spectra of endmembers must be selected in
each image, and the necessary specific types and spectra depend on
the spectral variation of landtypes in each scene. This endmember
selection method improves the speed of both endmember selection
and model calculation.

2.4 Extraction of impervious surface coverage and
post-processing

Based on the different spectral combinations of vegetation,
impervious surface, and soil from the endmembers spectral library,
we can determine many decomposition results by applying the
MESMA model. From these results, we chose the optimal vegetation
fraction, impervious surface fraction, and soil fraction when the
unmodeled residual error was minimal.

The original impervious fraction—that is, impervious surface
coverage—required a series of image processing to remove the ir-
rationality to reach more reality and accuracy. The specific process
was as follows:

(1) Removal of confusing vegetation

Impervious surfaces easily can be confused with some vegeta-
tion, and this confusion can be removed using NDVI

ISC=0 when NDVI>NDVI’ #))
where ISC is impervious surface coverage. NDVI® is a threshold
that separates impervious surfaces from vegetation, and it can be
obtained by using an interactive view between impervious surface
coverage and original ETM+ images.

(2) Normalization

Influenced by the differences in image acquisition time, atmospheric
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conditions, and other factors, the impervious surface coverage from
different images, which were determined by applying the MESMA
model, cannot be compared with each other, but we can normalize the
original imperious surface coverage to make it range from zero to one.

1sct = SC218C sce {asc,;,18C,,.)
ISCmax - ISCsoll
ISC™ = (reevvvvrereeeesmmmenneees 1SC < ISCsoil
ISC* o R P P P ISC > Iscmax (3)

where ISC” is the impervious surface coverage after normalization,
ISC is the original impervious surface coverage, ISC,; is impervious
surface coverage of soil, and ISC,,,,, is the impervious surface coverage
when a pixel is coverage by pure impervious surface.

3 RESULTS AND ACCURACY ASSESSMENT

After a series of image processing, we obtained the impervious
surface coverage of the Hai Basin (Fig. 3). Next, we will introduce
the method and result of accuracy assessment of impervious surface

coverage.

Fig. 3

We selected a mean relative error (MRE) and the correlation coef-
ficient (R) between actual impervious surface coverage and estimated
impervious surface coverage as the accuracy assessment indices,

D (ISC et~ ISC s/ ISC )

MRE == @)
n

where MRE is mean relative error, ISC, ., is the actual impervious
surface coverage in sample i, ISC;

i assessment

is the estimated impervi-
ous surface coverage in sample 7, and # is the number of samples.
Because the quantity of aerial photographs is limited, we made
an accuracy assessment only in some places around the Huairou
and Miyun areas. The MRE and R of all samples was 12.1% and
0.83, respectively, which indicated good accuracy. Based on visual
comparisons between the estimated impervious surface coverage
and the Landsat ETM+ images, the estimated results in other regions
were reliable, and the overall accuracy was good. From Fig. 4, we
clearly can see that the impervious surface coverage in parks and
croplands is lower, impervious surface coverage in buildings is

Classifying the aerial orthophotograph using an unsupervised
method, we obtained the impervious surface distribution with a
resolution of 1 meter, and the land type in a pixel could be considered
pure. We later manually modified the misclassified land types in
the ARCMAP using visual interpretation. Then we calculated the
proportion of impervious surface type per assessment unit, and the
proportion could be deemed as the actual impervious surface coverage
due to the lack of ground verification data. Therefore, we could use
this data to evaluate the accuracy of the estimated impervious sur-
face coverage.

Most important, in order to evaluate the accuracy of estimated
impervious surface coverage, we used the following strategies and
principles: (1) we can use an equalized random sampling method in
the study area; (2) when we calculate the actual coverage from the
orthophotograph, we can choose a 3x3 Landsat pixels window as
the assessment unit, which contains 8100 orthophotograph pixels.
Therefore, the impervious surface coverage represents an average
impervious surface percent in the 8100-square-kilometer units,
which can reduce the registration error between the aerial ortho-

photograph and the Landsat image.

Zoom map around
Beijing and Tianjin

ISC/%
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ISC of Hai Basin

higher, and the distribution of estimated impervious surface coverage
corresponds to the actual distribution.

4 CONCLUSION AND DISCUSSION

In this study, by selecting bright and dark vegetation endmem-
ber, high albedo and low albedo impervious surface endmember,
and dry and wet soil endmember, we applied the MESMA model
together with land use data to extract impervious surfaces. With
this method, we obtained impervious surface coverage in the Hai
Basin in 2000. In the process of extracting impervious surfaces,
we took full advantage of the non-impervious information of urban
residential land, rural residential land, industrial areas, roads, and
rail land use and generated the mask of non-impervious surfaces,
which rapidly confine the extent of the impervious surface region.
The final impervious surface result contained not only the spatial
distribution information but also the coverage information of im-

pervious surfaces.
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Fig. 4 Part of the Huairou County aerial photograph and the ETM + estimated impervious surface coverage result
(a) A corner of the Huairou County aerial orthophotograph; (b) Estimated impervious surface coverage

The results of the accuracy assessment showed the validity of
the method, which was considered a rapid and exact remote sensing
method of extracting impervious surfaces. Because high-resolution
data were scarce, we evaluated the estimated impervious surface
coverage only in some local areas but not in the entire study area,
and to some extent, this does not make the accuracy of impervious
surface extraction convincing. Considering that we used the same
method and the same image processing techniques to extract im-
pervious surfaces everywhere in the Hai Basin, we believe that the
areas where we did not assess accuracy has similar accuracy.

On the one hand, the land use data can avoid confusion between
impervious surface and other land types in non-impervious surface
areas. For example, soil in uncultivated land may be difficult to
distinguish from sand in a dry riverbed, and shadows caused by tall
buildings and large tree crowns in urban areas also may be difficult
to separate from impervious surfaces, which may lead to underestimation
of impervious surface areas. On the other hand, in the process of
extracting impervious surfaces, the impervious surface coverage in non-
impervious surface areas was deemed as zero, which may ignore
the existing impervious surfaces in these areas. Non-impervious
area is a relative concept, and the spatial resolution of land use data
restricts the discovery of impervious surfaces. For example, farmers
use many impervious surfaces for storing water, but we cannot
interpreter them from Landsat images. As the image spatial resolution
increases, imperious surfaces may be found in former non-impervious
surfaces.

To some extent, the MESMA method can solve the problems
that different spectra exist in a land type, and a pixel may include
many different land types. However, the fact that similar spectra
may exist in different land types may lead to a lower accuracy in
some areas. For example, the low albedo impervious surface may
have similar spectra as water and shadows caused by large tree
crowns and tall buildings; the high albedo impervious surface also
may share similar spectra as urban bare soil. All of these inevitably
may result in the MESMA model residual error.

The spectral similarity of different land types affects the accu-
racy of estimated impervious surface when applying both the SMA
method and other remote sensing-based methods; therefore, we
must take appropriate measures to eliminate this effect so as to improve

the accuracy of impervious surface extraction. Two possible methods
may overcome this problem, as follows.

(1) Combine multispectral images with other auxiliary thematic
data

More auxiliary thematic data can provide more useful information
and will make distinguishing the confusing land types easier. For
example, NDVI data can reduce the confusion between vegetation
and impervious surfaces.

In addition, we can use the temperature data generated by infra-
red band to separate low albedo impervious surfaces from shadows
and water (Lu & Weng, 2006). The texture of buildings and surface
roughness extracted by radar data also is useful to separate impervious
from other land types.

(2) Apply hyperspectral images

That similar spectra exist in different land types is a relative
concept. As the bands of a hyperspectral sensor increase, the confused
land types in multispectral images would be distinguished easily,
which may lead to different spectra in different land types (Weng,
et al.,2008).

By applying the impervious surface extraction method of remote
sensing in a basin scale as proposed in this paper, we have obtained
impervious surface coverage distributions in the Hai Basin for the
following four periods: 1980, 1990, 2000, and 2007. Next, together
with other land surface parameters, such as land use, soil types, and
vegetation coverage, we will analyze the spatial and temporal pattern
of the land surfaces. Then, combining this data with rainfall, eva-
potranspiration from hydrometeorological sites, field infiltration,
and evapotranspiration data, and other relevant data, we will ex-
plore the reasons why the water resource in the Hai Basin changes.
Finally, we will assess the water resource over 30 years by using
statistical analysis and the distributed hydrological model.
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