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Abstract: Evapotranspiration (ET) is not only an important part of the coupled Eco-Hydrological processes, but also primary way

of eco-agricultural consumption. A better description of the temporal-spatial pattern of a watershed greatly will enhance people’s un-

derstanding of hydrological processes and the water management approach. As quantitative measurement of surface heterogeneity,

remote sensing and surface observations are combined to develop operational methods and determine eco-hydrological variables.

ETWatch is such an operational platform which is designed for practical needs of watershed planning and agricultural water man-

agement using remote sensing techniques that can describe the spatial distribution and time process of surface net radiation, sensible

heat, and latent heat (ET). The reviewing of algorithms and approaches show that the parametric approach is the core component

to improve the accuracy of ET estimation at regional scale and apply remote sensed ET for practical goals. The other bottlenecks

include scaling, multi-source data integration and validation of modeling. Potential approaches used in ETWatch to the above issues

are summarized and commented.
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1 INTRODUCTION

Evapotranspiration (ET) is not only an important part of the
coupled Eco-Hydrological processes linked energy and material
balance of the watershed, but also a primary way of eco-agri-
cultural consumption. A better description of the temporal-spatial
pattern of a watershed greatly will enhance people’s understanding
of hydrological processes and the water management approach. As
heat exchange of land surface is influenced largely by environmental
factors, including terrain, geographical location, and characteristics
of the underlying surface, the surface evaporation of different
underlying surfaces varies greatly. In order to access actual ET,
scientists established several ground measurement and calculation
approaches, including micro-meteorological, the Bowen ratio, the
soil water depletion method, and the eddy covariance system. These
methods can only provide point values at local scale, while the ET
estimation often is required at watershed scale for the practical
goals in hydrological project designing, drought monitoring, and
water resources assessment (Liu, 1997).

Evapotranspiration is highly variable in time and space due
to the meteorological conditions, precipitation, soil hydrological
parameters, vegetation type and density (Turner, et al., 1995). Remote
sensing methods can provide variables as input for the surface
energy balance model, such as surface albedo, soil moisture, surface
temperature and roughness, and other important parameters. A
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number of remotely-sensed models are applied widely in different
areas (Allen, et al., 2005; Bastiaanssen, et al., 1998; Nishida, et
al., 2003; Su, 2002; Wu, et al., 2008). Remote sensing could provide
regional ET data to meet the needs of hydrology, ecology, agri-
culture, forestry, and related research (Kalma, ef al., 2008).

Due to the complex process of the evaporation process, much
uncertainty remains, including the accuracy of surface parameters
input, the applicability of the theoretical model, time-scaling, and
the advection impact (Gao & Long, 2008; Huang, ef al., 2004). The
quantitative retrieval of evapotranspiration using remote sensing
needs to make full use of surface dynamic monitoring ability of
multi-source remote sensing data, to develop transforming methods
between different spatial-temporal scales, and to keep a balance
between the parametric method and model validation. It must be re-
membered that a significant improvement in the algorithm may not
obtain a good result. The lack of adequate and effective precision
validation of data products greatly will limit the application in the
industry.

The reviewing of algorithms and approaches show that the
parametric approach is the core component to improve the accu-
racy of ET estimation at regional scale and apply remote sensed ET
for practical goals. The other bottlenecks include scaling, multi-
source data integration and validation of modeling. Potential
approaches used in ETWatch to the above issues are summarized
and commented.
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2 THE ETWATCH MODEL

Remote sensing is considered to be an efficient approach that can
obtain a wide range of surface energy and water dynamics. Since
1990s, the large number of papers are published on the use of remotely
sensed land surface data to estimate ET using different models (Kalma,
et al., 2008), which can be divided into two categories.

The first category is based on the single-layer model of
Penman-Monteith (P-M) (Cai, et al., 2007). The P-M model
provides a equation to reflect the instantaneous exchange of
the approximate analytical equation of energy with an ap-
proximation to aerodynamic temperature using air temperature
(Widmoser, 2009). Through simplifying the surface conductance
expressions, Mu developed a global scale ET algorithm based on
MODIS and a meteorological dataset ( Murray, et al., 2007, Cleugh, et
al., 2007). Canopy and aerodynamic resistance still require a great
many ground observations (Sun, et al., 2009), which are crucial
information and are difficult to obtain even unknown for large scale
applications (Raddatz, et al., 2009).

The second category is the “Residue Approach,” which takes
sensible heat flux (H) as the core inversion parameter from the
energy balance. Besides aerodynamic resistance and wind velocity,
the other types of input can be obtained by means of remote sens-
ing (Mallick, et al., 2007; Matsushima, 2007). In order to reduce
the model dependence on aerodynamic resistance, the atmospheric
surface layer similarity theory is applied to establish empirical
methods (Bastiaanssen, et al., 1998; Jia, et al., 2003; Su, 2002),
which can work well under the high vegetation coverage and even
underlying surface(Allen, et al., 2005, Kalma, et al., 2008). Shut-
tleworth and Wallace (1985) promoted a two-layer model for sparse
canopy coverage to consider evaporation and transpiration sepa-
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rately within the canopy of water vapor and energy exchange. Due to
the inconsistency that exists between radioactive temperature and air
temperature, the operational algorithm should be improved further.
ETWatch is an integrated innovation of “Residue Approach,” and
Penman-Monteith (P-M)(Fig. 1). Firstly, SEBAL and SEBS model
are combinations of the energy balance theory and the mass transfer
method and are used to compute the evaporation from cropped sur-
faces based on the standard climatological records of sunshine, tem-
perature, humidity, and wind speed by introducing resistance factors,
and the P-M model determines the spatio-temporal variability of the
regional evaporative condition. Secondly, we chose available surface
resistance (RS) as the temporal-scaling factor. While bulk surface
resistance is properly defined, the P-M equation is valid for both soil
and vegetation canopy (Wu, ef al., 2008a). Thirdly, a fusion algo-
rithm is applied to integrate ET maps at different resolutions. In that
case, ETWatch can provide a useful dataset for water resources as-
sessment and management of agricultural water (Wu, et al., 2008b).

3 PARAMETERIZATION IN ETWATCH

Parameterization of the heat and water exchange process is the
core issue of the ET model. Since all of the surface variables are
both highly spatial and temporally heterogeneous, the application
of an empirical formula established at the local scale is very
limited. To achieve quantitative description of a wide range of surface
variables requires validation and optimization in combination of
ground truth data. The parametric method varies due to different
scales. Therefore, a parameterization scheme could be more flexible,
and an atmospheric turbulence model could be more complex when
low-resolution remote sensing data is used. A simplified empirical
model calibrated by local data will perform well when high-resolution
remote sensing data is used.

Currently, net radiation is calculated from the land surface
energy balance, while the soil heat flux is retrieved from an empiri-
cal relationship with net radiation (Su, 2002) or a more comprehen-
sive parameterization using vegetation, soil texture, and water on
the heat flux (Murray, et al., 2007). Sensible heat flux is determined
only by surface temperature and air temperature at the reference
height, which should be revised through iterative calculation to
force its value to be fitted with the available energy.

Surface temperature has been accepted as a relatively mature
production that can be obtained by using remote sensing (Wan, et
al., 2004). In order to reduce the sensitivity of the surface
temperature product in the ET model, Anderson, ef al. used multi-
time observation of land temperatures from a geostationary satellite
to develop a two-layer model (Anderson, et al., 1997; Anderson, et
al., 2007), and adopted the DisALEXI algorithm to disaggregate 5 km to
10 km pixels into a micro-meteorological scale (100 m to 1 km).
An improved split-window method is used (Mao, et al., 2005; Wan
& Dozier, 1996) for retrieving surface temperature and then calibrat-
ing it by ground measurement. A sine transform was applied to
adjust temperatures of the boundary layer from 12:00 am to 1:30
am (which was the satellite overpass time) to reduce the difference
between the measurement time of the satellite and a meteorological
balloon (Xiong, et al., 2010).

Estimation of the daily net radiation flux greatly influenced the
daily ET value. Daily solar radiation is often calculated by using
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meteorological observations, which is usually not very representative
of the heterogeneous underlying. Generally, weather stations are
located in flat, small-obstacle areas, while terrain factors have sig-
nificant impact on radiation especially in middle and high latitudes,
which should be parameterized in the model (Tian, ef al., 2007).
We fit the monthly shortwave radiation equations, establishing a
lookup spatial map by longitude and latitude based on seven radia-
tion stations located in the Hai Basin.

Surface fluxes are functions of surface aerodynamic roughness,
which is difficult to retrieve directly by using remote sensing.
Aerodynamic parameters are quite sensitive to regional plant veg-
etation density, height, canopy density, and wind speed variations
(Zhu, et al., 2004). For different types of land surfaces, due to
the variable geometric characteristics, the error can reach several
orders of magnitude (Zhang, 2002). The simplified relation-
ship between roughness and vegetation height, and empirical
value based on a land-use map is limited (Allen, et al., 2007).
Using radar data has potential because SAR backscattering coef-
ficient maps are determined largely by the rough surface conditions
(Prigent, ef al., 2005). In ETWatch, three factors were taken into
account to obtain the regional roughness length for momentum
transfer zOm, including vegetation, topography, and non-vegetation
obstacles, to express the region’s comprehensive and effective
roughness (Wu, et al., 2008; Xiong, et al., 2010).

4 TEMPORAL-SCALING IN ETWATCH

Due to cloud cover, the ET data contain large spatial and
temporal gaps. For example, MODIS provided on average 22%
daily clear-sky coverage over Hai Basin from 2002 to 2008. To
facilitate investigations of monthly or seasonal surface water
consumption, techniques for filling gaps have been investigated.
Previously, gap-filling approaches assumed a degree of “self-
preservation” in the evaporative fraction (EF) from a clear day
to consequent days (Brutsaert, ef al., 1996; Porté-Agel, et al.,
2000). Allen, et al. (2007) found that the fraction of equilibrium ET
(proportional to potential ET) is more conservative over a period
of several days than are other reference flux indices, such as the
evaporative fraction or the Bowen ratio, while adjusting for soil
moisture depletion. In the previous studies, a smoothing algorithm
usually was used on temporal-scaling in longer periods (Xi, et al.,
2008) on the assumption that changes in daily weather conditions
and surface conditions could be ignored.

Anderson, et al. (2007) promoted a concept model using soil
water content to calculate the daily change of surface ET. Jang, et
al. (2010) assimilated energy fluxes of clear days into a meso-scale
climate model to compute ET on cloudy days using a four-
dimensional assimilation technique. The temporal-scaling module
in ETWatch is the integration of the above methods. In order to
digest daily meteorological data, the P-M model was found to be
adequate to estimate the magnitude and seasonal variation of
evaporation in both temperate and tropical ecosystems.

The gap-filling of ET on cloudy days was accomplished by a com-
bination of flux outputs and the P-M equation (Liu, ef al., 2011). The
minimum surface resistance was updated via an inversion of fluxes re-
sult from clear days. On cloudy days, the P-M equation was reapplied
directly to predict the ET value as in the prognostic approach (Fig. 2).

The gap-filling result showed good correlation (R* = 0.7) compared
to a ground lysimeter at the Yuchange Site, which is better than the EF-
const method (Xiong, et al., 2008).

The most difficult part in temporal-scaling is the ET estimation
during cloudy and rainy weather according to microwave surface
temperature and moisture (Zhang, 2009).
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Fig. 2 Comparison of the daily ET measurement (lysimeter) and
the gap-filling estimation at the Yucheng site, April, 2003

5 INTEGRATION OF MULTI-SOURCE DATA
FROM REMOTE SENSING

It is in urgent need for high-resolution maps of ET to monitor
water consumption at field scale. Landsat satellites can provide
detailed information about vegetation and temperature without crop
growth curves, and MODIS/AVHRR can provide sufficient temporal
resolution, but the spatial resolution cannot achieve the accuracy
requirements. Hafeez, et al. (2002) compared fluxes estimation
using LandSat TM / ETM +, TERRA / MODIS, TERRA / ASTER
DATA, and the results showed that MODIS retrieval accuracy
is relatively high, with an average error of about 20%. The use
of a single sensor such as ETM+ is feasible, but having only one
thermal infrared band limits its precision (Ma, ef al., 2004). There-
fore, scientists also develop approaches to integrate multi-source
data to estimate ET, such as joint ET inversion using MODIS and
CERBS-02 data in Baiyangdian (Xin, ez al., 2005) and applying the
combination of TM and MODIS data into a hydrological model in
a tropical rain forest (Wu , ef al., 2006). We extended the STARFM
model (Meng, et al., 2010) to thermal infrared band in ETWatch,
realizing the data-fusion of moderate-resolution ET maps and
high-resolution ET maps. The parameterization, temporal-scaling,
and data-fusion form an applicable framework of operational ET
monitoring approach.

6 VALIDATION OF THE REMOTELY-SENSED
ET PRODUCT

Available ground flux measurement is increasing every year,
but the lack of flux precision standards hinders effective valida-
tion to remotely-sensed products. Farahani, ez al. (2007) pointed
out that the error between the Bowen ratio and an eddy correla-
tion instrument is often up to 20%. For well-maintained and
calibrated sites, this error can be reduced to 10% (Glenn, et al.,
2007), but it also increases rapidly when the underlying hetero-
geneity is increased.

Li, et al. (2004) performed a comprehensive evaluation of
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energy balance closure at the China FLUX Network, finding that
sensible heat and latent heat turbulent fluxes tend to be underesti-
mated, and the available energy may be overvalued. The disclosure of
energy balance measure in AmeriFlux sites is summarized in Wilson’s
(2002) paper. Therefore,the evaluation based on a water-balance equa-
tion at the sub-basin scale is optional (Wu, ez al., 2009).

In recent years, the large aperture scintillometer (LAS) has been
used to measure average sensible heat flux from 200 m to 10 km, and
the measurement can be comparable to the pixel-scale fluxes obtained
using remote sensing, but the influence of source area and the mixing
height needs further study based on a ground experiment (Marx, ef al.,
2008). For a heterogeneous, fragmented land surface, how to calculate
fluxes at the pixel scale matched with remote sensing images is an un-
resolved important question that remains. A footprint model was used
to relate source area distribution with surface roughness, wind velocity,
and atmospheric stability, providing a theoretical framework to study
the representative assessment of flux data. However, the existing
footprint models are established on the assumption of near-neutral
atmospheric conditions, which is hard to meet under a stratification
stability condition (Gockede, et al., 2005).

It is still in dispute that under complex underlying and stable-
stratification conditions, the surface flux estimation needs to consider
canopy heat storage, flux divergence and advection influence. (Baldoc-
chi, 2003; Massman & Lee, 2002). Kalma, et al. (2008) summarized
a total of 30 cases of flux validation in recent years (mainly based on
eddy covariance systems, the Bowen ratio, and flux towers networks).
The results showed that the precision of ET results is influenced by
many factors, including uncertainty in ground-based observations,
temporal-scaling algorithm, footprint, high-frequency averaging, and
noise removal, and effective methods still have not been developed
to calculate some key parameters in the model, such as resistances
or roughness length. For example, Wang, et al.(2009) promoted a
post-process procedure for soil heat flux in the Arou site, including soil
heat storage and high-frequency loss correction, and then calibrated it
with LAS observation. The results showed that the energy closure of
the energy balance is up to 90%.

ETWatch has been verified in the Hai Basin by using a va-
riety of methods, including field measurement from lysimeter,
eddy covariance system, LAS instrument, and the water balance

result of the sub-watershed at different scale (Wu, et al., 2011).
Validation using data from eddy-covariance and LAS shows that
the estimation can be well correlated with ground observation
(R> 0.9; Fig. 3).
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Fig. 3 Comparison between ground observations and ETWatch
estimation, Miyun site, 2007
(a) Monthly ET from EC measurement, Miyun,2007;(b) Monthly ET from
LAS measurement, Miyun,2007

7 CALIBRATION OF THE REMOTE-SENSED ET
MODEL

How to calibrate a model with limited ground data is another
difficult problem. Although researchers carried out a series of
observations in the Qinghai-Tibet Plateau, extremely dry areas,

dry desert regions, semi-arid grasslands, transitional zone, and
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Loess Plateau region (Wu J, et al., 2005; Wang, et al., 2007), little
of observation data is used to optimize current parameterization
schemes in a satellite retrieval algorithm. Li, ef al. (2008) promoted
a framework to develop scaling methods, taking aviation remote
sensing for the bridge and improving satellite retrieval algorithms
and indirect estimation methods of various components in the
water cycle. We divided the calibration into variable retrieval and
flux calculation, temporal-scaling part to calibrate them separately
(Fig. 4). Validation results based on ground observations show
that calibration is essential for the application of remotely-sensed
products (Xiong , ef al., 2011). The daily outputs from a calibrated
model can achieve a 0.7 correlated coefficient in a year and the
average percentage error can be reduced to 10% over a longer term

(month, quarter, or year).

& CONCLUSION

Watershed evaporation estimation is a newer one with time
topic in the quantitative remote sensing field. It is towards opera-
tional and application-oriented direction based on proceeding of
land procedure models, climate models, and data assimilation in the
coming future. The remotely-sensed approach will bring new da-
tasets for the research in ecological processes and water resources
management, to call for new methods in the end. In this paper, we
reviewed issues among remotely-sensed approaches for watershed
ET estimation and introduced relevant components of ETWatch.
We will focus on the following improvements:

Estimates of surface evaporation involving parameterization of
non-uniform underlying, scaling, and truth validation at the pixel
scale are typical issues in quantitative remote sensing. Fur-
ther understanding of the process of heat transfer and its spatial-
temporal scaling requires: effective roughness model; generalizing
the application condition of the theory of atmospheric turbulence,
modeling the relationship between land surface heterogeneity and
height of boundary layer.

Since the influence of terrain and non-uniform vegetation
cover to thermal infrared bands is full of uncertainties, local incidence
angle significantly affects the surface brightness temperature,
and topography causes significant changes in the multiple
scattering of surface thermal radiation properties. Therefore, a
parameterization scheme for complex topography should be fur-
ther developed.

Microwave soil moisture is a primary information source which
is not fully integrated with atmosphere-land exchange model to
develop new temporal-scaling methods to scale the Instantaneous
flux to daily scale or even longer period.

Scaling problems is still the main obstacle in the application
and evaluation of ET products. It is required to combine differ-
ent spatial and temporal scaling methods to develop an effective
verification platform in combination with the ground-flux network
and the hydrological modeling approach. Further study should be
carried out on the comparison between simulation result from a
distributed hydrological model and remote sensing estimation on
the certain watershed, to give out a convinced verification of appli-
cation-level data products.
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