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Abstract: According to the characteristics and merits of multi-resolution remotely sensed images and objectives of different change

detection applications, the idea using coarse to fine (CTF) hierarchical detection and decision level fusion are introduced into change de-

tection process. The technical flow of change detection based on CTF is designed and implemented with multi-temporal ALOS images

as the experimental data. The four band ALOS multi-spectral images are viewed as coarse resolution data, and the panchromatic image

and fusion image of multispectral and panchromatic data are viewed as fine data. After processing the fine and coarse datasets individu-

ally, results are integrated to form a new dataset which reflects the location and intensity of final changes based on specific fusion rules.

Land cover change detection of two study case areas over the urban area and mining area of Xuzhou City are conducted. Comparing the

proposed approach with other common methods, it is concluded that the proposed CTF decision level fusion change detection approach

outperforms other traditional algorithms, and it is effective to conduct change detection using multi-resolution remotely sensed images,

further providing the important target change areas of field work.
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1 INTRODUCTION

Change detection plays an important role in remote sensing ap-
plications because multi-temporal imagery can reflect the change
of the ground surface in a certain temporal interval. Typical appli-
cation areas including land use/cover change, vegetation change,
urban extension, disaster monitoring, efc. Change detection is
the process of identifying differences in the state of an object or
phenomenon by observing it at different time (Singh, 1989). For
decades, a lot change detection techniques have been proposed
utilizing the multi-temporal remotely sensed images. For binary
change detection, conventional algorithms can be divided into two
main categories: supervised and unsupervised algorithms. The
former is similar to supervised classification, in which a suitable
training set should be obtained to input into the detect module, for
example, post-classification comparison (PCC), artificial neural
network (ANN) and support vector machines (SVM) (Castellana,
et al., 2007, Nemmour & Chibani, 2006; Woodcock, et al., 2001).
The latter analy-ses and processes the original images directly to
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derive change information, for example, image differencing, im-
age ratioing, change vector analysis (CVA), principal component
analysis (PCA) and object-oriented approach (Bovolo & Bruzzone,
2007; Bruzzone & Prieto, 2000; Fung & LeDrew, 1987; Lambin &
Strahler, 1994; Riordan, 1981; Sohl, 1999; Walter, 2004). Despite
the methodological strengths of all these methods, there are still
several problems in change detection technique that need to be
considered. Firstly, all these methods have different applicability,
some for single-band image detection, and some for multi-band
image detection, indicating that there are no universally applicable
high-precision algorithms. Secondly, the information contained in
different resolution image data is different, especially for the multi-
resolution image data with the same satellite. Generally, more spec-
tral information is contained than that in multi-spectral image data,
and sufficient texture information in panchromatic image data have
great impacts on the results of change detection. Thirdly, change
detection applications with different objectives have different de-
mands for omission and commission detection ratios. How to focus

on the specific application, and select the most suitable approach
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in order to minimizing the omission or commission have not been
extensively investigated.

Aiming to address the aforementioned problems, the CTF multi-
resolution image processing, decision tree and decision level fu-
sion theories are introduced into multi-temporal, multi-resolution
remote sensing image change detection. According to the specific
application of reducing omission and restraining commission, two
novel change detection strategies based on decision level fusion are
designed, and then results are compared with traditional algorithms
in order to explore its feasibility and applicability. Unlike the defi-
nition of general coarse to fine theory, the proposed method in this
paper focuses on the change detection from datasets with different
resolution of multi-resolution remote sensing images. Combining
the detection results from different resolution datasets and dif-
ferent approaches, this novel approach can take full advantage of
their merits to avoid and reduce the uncertainty when using single
change detection algorithm or single data source.

2 CHANGE DETECTION FROM MULTI-RESOLUTION
IMAGES BASED ON COARSE TO FINE DECISION
LEVEL FUSION

The theory of CTF is mainly used in pattern recognition fileds, such

Coarse data set Change detection

Y

Fine data set Change detection

Y

as face recognition and detection, mobile vehicles track detection and
image shape detection (Atiquzzaman, 1999; Li, et al., 2006; Sahbi, et
al., 2002). In remote sensing image processing domain, the CTF idea
is also used in the processing of multi-scale images, especially for the
panchromatic and multi-spectral image data of the same satellite. The
proposed method makes full use of the characteristics and merits of
different resolution datasets and different change detection approaches
to detect the change location and define the change intensity by inte-
grating multiple results. Then, areas which have the largest change in-
tensity are further used as important target areas for field work. Mean-
while, two CTF fusion rules handling different practical applications
are designed and experimented to maximize the reduction of omission
rate and restrain of the commission rate, and finally to increase the
overall accuracy of change detection.

Fig. 1 shows the flowchart of the novel approach proposed in this
paper. According to the properties of ALOS data, two change detection
strategies based on CTF fusion are designed and experimented. De-
tailed steps are described as follows.

Strategy 1:

(1)The multispectral (Ms) ALOS image data with 10 m spatial
resolution is viewed as coarse data, and the panchromatic (Pan)
image with 2.5 m spatial resolution is used as fine data. Then the
change detection are conducted on the two datasets, respectively;

CTF Change
> Fusion »| Detection
Rules Results

Fig. 1 Flowchart of the CTF change detection based on decision level fusion

(2)Resampling the two datasets change maps into the same
resolution of 2.5 m;

(3)Combining the two change maps to form the final change
intensity map based on the CTF fusion rule, and redefines all pixels
into four groups: strong change (change occurs on both coarse and
fine dataset), obvious change (change occurs only on coarse data set),
subtle change (change only occurs on find data set) and unchanged.

Table 1 is a summary of change intensity redefinition, in which
value 1 corresponds to changed pixels in the dataset and value 0
means unchanged. Fig. 2 illustrates the decision tree established ac-
cording to the change intensity table, in which B1 and B2 represent
results of fine dataset and coarse dataset, respectively.

Table 1 Definition of pixel change intensity

Dataset Pixel value on change map
Fine dataset (Pan) 1 0 1 0
Coarse dataset (Ms) 1 1 0 0
. . Strong Obvious Subtle
Change intensity change change change Unchanged

Bl=1
V YES
B2-1 B2=1
NO YES NO YES
Unchanged OCEZLOgl;S csll:;ﬂgee E;r:;x ége

Fig. 2 Decision tree rule to define change intensity based on
coarse and fine dataset (CTF strategy 1)

Strategy 2:

(1)The multispectral (Ms) ALOS image data is viewed as coarse
data, the panchromatic (Pan) image and Fusion images of Ms and
Pan are viewed as fine data. Then change detection are conducted
on the three image data respectively;

(2)Resampling the three change maps from three datasets into

the same resolution.
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(3)Establishing the CTF fusion rule: strong change (change oc-
curs on all three datasets), obvious change (change occurs on any
two datasets), subtle change (change only occurs on one dataset)

and unchanged. Finally, the former two groups are considered as
change areas, and latter two are viewed as unchanged. Table 2 is
the definition of all pixels change intensity.

Table 2 Definition of pixel change intensity

Dataset Pixel value on change map
Coarse dataset (Ms) 1 1 1 0 1 0 0 0
Fine dataset (Pan) 1 1 0 1 0 1 0 0
Fine dataset (Fusion) 1 0 1 1 0 0 1 0

Change intensity Strong change

Obvious change

False alarms (Unchanged) Unchanged

The error matrix or confusion matrix is used to derive related

change detection accuracy indicators (Table 3).

Table 3 Error matrix of change detection

Detected data/ True changes True unchanges
L. Total
valiation data (c) (u)
Detected changes(C) Cc Cu e
Detected unchanges(U) Uc Uu TU
Total Tc Tu T

Some common accuracy assessment indicators are also included:
e Overall Accuracy:

_ Cc+Uu

04 x100% (1)

04 describes the percentage of correct changed and unchanged
detection pixels to the amount of testing samples.
e Kappa Coefficient:
Kappa:T(Ccn:Uu)f(TCxTc+TU><Tu) @
T>—(TCxTc+TU xTu)
Kappa Coefficient reveals the internal consistency of change

detection results. It can describe detection accuracy more appropri-
ately than overall accuracy.

e False detection ratio(Commission):
Cu
=— 3

e

It defines the percentage of false change caused by detection

Pr

errors by using the ratio of false detected changes to total detected
changes.
o Omission detection ratio:
Uc
Py=— (@)
Tc
It defines the percentage of omission change caused by detection
errors by using the ratio of undetected changes to total true changes.
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3 DATAAND STUDY AREA

Multi-temporal ALOS PRISM high spatial resolution data and
AVNIR-2 multispectral data captured on December 23, 2006 and
November 12, 2008 are used in this work for the change detection.
All data are Levell B2 products which are processed by primary
radiometric and geometric corrections already. Linear regression
model is used to atmospheric correction to the Levell B2 data
(Tang, et al., 2004). For geometric correction, the multispectral im-
ages and panchromatic image are registered by the image to image
mode using quadratic polynomial for coordinate transformation and
bilinear interpolation for re-sampling, and the pixel errors were to
0.3 pixels. In order to combine the merits of panchromatic and mul-
tispectral images, Principal Component Analysis (PCA) fusion is
used to generate the fused image dataset which contains both spa-
tial and spectral information (Chavez, ef al., 1991).fusion is used to
generate the fused image dataset which containing both spatial and
spectral information.

In this paper, two case study areas are selected. Case area A is
a square area around the Nanhu Campus of China University of
Mining and Technology (CUMT) in the urban area of Xuzhou city,
with size of 500x500 pixels in multi-spectral image correspond-
ing to 2000x2000 pixels in the panchromatic image. Land cover
changes in this study area during 2006 to 2008 are mainly com-
posed of built-up areas and vegetation changes. Case study area B
is Pangzhuang coal mining area located in the northwest of Xuzhou
city with a size of 375%375 pixels in multi-spectral image correspond-
ing to 1500x1500 pixels in the panchromatic image. Construction area,
vegetation change and the rebuilt of subsiding areas are the main land
cover changes in study area B during 2006 to 2008. Fig. 3 (a) shows
the location of the two case areas with (b)—(c) and (d)—(e) are
their false composite images of 2006 and 2008, respectively.

Fig. 3 Location of the case study areas and their false composite images
(a)Location of the two case areas; (b) Case area A 2006; (c) Case area A 2008; (d) Case area B 2006;
(e) Case area B 2008
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4 EXPERIMENTS AND ANALYSIS

4.1 Experiment on case study area A: urban area
around CUMT

After comparing the change detection algorithms for different
resolution data, unsupervised multi-band change detection method
Change Vector Analysis (CVA) is used for the four-band ALOS
multi-spectral image and fusion images and the supervised
single-band change detection method Support Vector Machine
(SVM) is applied in the ALOS panchromatic image. Then the
coarse dataset detection result (500x500 pixels) is resampled into
the same resolution with fine dataset result (2000%2000 pixels).

Change areas are overlapped on the panchromatic image of year
2006 (Fig. 4), in which (a)—(c) represent the CVA change
detection results of Ms data, SVM change map of Pan data and
CVA results of Fusion data, respectively. According to the CTF
decision fusion rules, final change intensity maps are generated by
redefining all the pixels, as shown in Fig. 5 (a) (b).

In order to evaluate the results of different approaches, a
group of change (3864 pixels) and unchanged (5892 pixels) test
samples are selected as ground data based on the field work and
image visual analysis. Then the confusion matrix (Table 4) is
constructed to calculate the different change detection accuracy

indexes.

(@

(®)

(©

Fig.4 Change maps of different datasets from different detection approaches
(a) CVA change map of MS data; (b) SVM change map of Pan data; (c) CVA change map of Fusion data

(@) (b)

Strong change | Obvious change |Subtle change/False alarms| Unchanged I

Fig. 5 Results of CTF detection based on decision level fusion
(a) Strategy 1 CTF fusion result; (b) Strategy 2 CTF fusion result

Table 4 Accuracy and errors of four change detection approaches

Method/Accuracy Overall Accuracy (OA)/% Kappa Omission/% Commission/%
Coarse dataset (Ms) CVA 81.00 0.6126 29.76 14.04
Fine dataset (Pan) SVM 82.04 0.6347 25.50 15.40
Fine dataset (Fusion) CVA 83.83 0.6721 23.03 13.55
CTF fusion strategy 1 86.54 0.7288 15.28 14.13
Coarse to fine method
CTF fusion strategy 2 86.56 0.7274 19.66 10.60
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Based on the accuracy of indicators listed in Table 4:

(1)The accuracy of the two CTF decision fusion strategies is
higher than for a single dataset. Their overall accuracy and Kappa
coefficient are 86.54% and 0.7288, 86.56% and 0.7274, respective-
ly, which indicate an increase of 3—5 percentages than the single
dataset detection results.

(2)The predominance of two CTF decision level fusion strate-
gies is different. In strategy 1, only changes occurred in one dataset
are viewed as final changes, which efficiently reduce the omission
errors. Therefore, it has the lowest omission rate (15.28%) among
all methods. Strategy 2 integrates the detection results of three da-
tasets, changes occurred simultaneous in two or more datasets are
regarded as final changes, and changes only appeared in one dataset
are viewed as false alerts which will be abandoned. Therefore, the
false alerts are restrained well, producing the lowest commission
rate among all methods (10.60%). It can be shown that the pro-
posed approach can combine the merits of different change detec-
tion algorithms and datasets obtains a more complete and compre-
hensive detection results.

(3)The defects of the two proposed strategies also cannot be
ignored. The former one overlaps of the two datasets changes
which will lead to a small increase of commission errors inevitably.

Table 5 Ratios of different

However, the latter one will produce more omission errors because
of the abandoning false alerts (occurred in only one dataset) which
may contain a small amount of real change information. Therefore,
according to the practical needs of the specific applications, the ap-
propriate CTF fusion strategy should be selected in order to create
the best detection results.

(4)For the results of a single dataset, Fusion data have the high-
est detection accuracy, indicating that by integration the spectral
and spatial characteristics of multi-spectral and panchromatic data,
the effect of change detection will be improved. Other remaining
two single datasets have higher omission errors which lead to the
poor performance of the overall detection accuracy.

Table 5 shows the ratios of different change intensity level areas
to the total area using the two CTF fusion strategies. It can be seen
that during 2006 to 2008 the change areas of study case area A occu-
py a 5%—7% of the total region area. Through redefining all pixels,
the strong change areas occupy a 1.7%—1.82% of the total areas
are simultaneity detected in different datasets, which can be set to
the areas of maximized probability changes in the real scene. These
strong change areas are the most important target of field work, and
the obvious change areas can be considered as the important goal
target of second periods of field work.

change intensity levels

Subtle change/

0, 1, 0, 0, 0,
Method/Accuracy Strong change/% Obvious change/% False alarms/% Unchanged/% Total/%
CTF fusion strategy | 1.82 2.14 1.47 94.57 100
CTF fusion strategy 2 1.70 2.41 3.29 92.60 100

An image block located in the campus of CUMT is chosen as the
local analysis object to compare the performance of different CTF
fusion strategies. Fig. 6 describes the changed areas of the regions
from 2006 to 2008, in which the changed buildings are indicated by
blue circles, and changed vegetation is indicated by red circles. The
detailed ground change information obtained by field investigation
are listed as: (1) library; (2) new student dormitory named as

Fig. 6 Land cover changes in the Nanhu campus of
CUMT from 2006 to 2008

Xingyuan; (3) new refectory and dormitory; (4) new museum; (5—7)
new man-made vegetation and green space.

Local detection results of three single image datasets and two
CTF decision fusion strategies are shown in Fig. 7. It can be con-
cluded that: (1) excepting some omission errors of vegetation in
panchromatic dataset, most of real changes are detected effectively
by all methods. Due to the lack of spectral information, single-band
panchromatic data produces higher omission errors on vegeta-
tion changes; (2) both CTF strategies are effective in detecting the
building change of the four locations where pixel intensity classi-
fied as strong change (areas in red), and vegetation change of three
locations where classified into obvious change (areas in blue).
Those results are completely consistent with filed work; (3) false
alerts appeared in the experiment of CTF strategy 2 (areas in green)
are mainly the detection errors of building shadows. Through the
CTF decision fusion processing and removing these errors artifi-
cially, we can restrain the commission rate and improve the overall
detection accuracy effectively; (4) from the local change results of
a single dataset, the low resolution, incomplete structure of multi-
spectral data, is inclined to cause a large number of commissions.
Single-band panchromatic data lacking of spectral information
will increase omission errors. Fusion dataset takes advantages
of the former two dataset, but the new commission errors will be
increased inevitably. Through the novel method proposed in this
paper, the limitations of different single dataset will be improved,
making the overall detecting results more consistent with the real
changes.
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(d

Strong change Obvious change

(©

Subtle change/

False alarms Unchanged

Fig. 7 Results of different methods experiments (detailed analysis on an image block)
(a)CVA change map of MS data; (b) SVM change map of Pan data; (¢) CVA change map of Fusion data;
(d)Strategy 1 CTF fusion result; (e) Strategy 2 CTF fusion result

4.2 Experiment on case study area B: Pangzhuang
mining area

In the experiment of case study area B, CVA is also used in

detecting changes from multi-spectral coarse dataset and fusion

fine dataset. SVM is selected to detect the change of the fine pan-

(d)

Obvious
trong change change

chromatic dataset. Then the coarse dataset result (375x375) is
resampled to the same spatial resolution with the results of the fine
dataset (1500x1500). All the change results are overlapped on the
panchromatic image of year 2006 (Fig. 8), which (a) — (c) repre-
sent the CVA change detection result of Ms data, SVM change map

(©

(e)

Subtle change/
False alarms Unchanged

Fig. 8 Results of different change detection approaches
(a) CVA change map of MS data; (b) SVM change map of Pan data; (c) CVA change map of Fusion data;
(d) Strategy 1 CTF fusion result; (e) Strategy 2 CTF fusion result
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of Pan data and CVA result of Fusion data, respectively. Accord-
ing to the CTF decision fusion rules, final change intensity maps
are generated by combining change results of all three datasets, as
shown in Fig. 8 (d) and (e).

A group of test samples including changed (2937 pixels) and
unchanged (5172 pixels) pixels are selected as ground truth data to
calculate the accuracy indices of different change detection meth-
ods, which are shown in Table 6.

Table 6 Accuracy and errors of four change detection approaches

Method/Accuracy Overall Accuracy(OA)/% Kappa Omission/% Commission/%
Coarse dataset (Ms) CVA 86.46 0.7060 26.09 10.50
Fine dataset (Pan) SVM 85.99 0.6940 28.31 9.67
Fine dataset (Fusion) CVA 86.85 0.7131 26.80 8.70
CTF fusion strategy 1 90.65 0.8038 11.38 12.12
Coarse to fine method
CTF fusion strategy 2 89.67 0.7767 20.73 6.83

From the experimental results and the above table, we can sum-
marize that:

(1)Two CTF fusion strategies have higher detection accuracy
than any other single dataset, indicating that after decision level fu-
sion, the proposed method integrates the merits of different datasets
and different algorithms. It is an effective method that could be
utilized in operational applications to improve the overall accuracy
of change detection.

(2)CTF decision fusion effectively reduces the omission errors
occurred in the single image dataset change detection, and in-
creases the overall accuracy. Meanwhile, from the results it can be
concluded that strategy 1 could well reduce the omission rate and
strategy 2 could restrain the commission error effectively, which
are consistent with the previous experimental results, confirming
the feasibility and advantages of the proposed methods. However,
in the practical utilization, the most appropriate CTF fusion strat-

Table 7 Ratios of different

egy should be selected according to the application requirements,
including omission minimized-oriented and/or commission mini-
mized-oriented, to meet the needs of various applications.

(3)Due to the inherent characteristics of different single dataset,
high omission rate is the main reason affects the final detection
accuracy.

Ratios of different change intensity level areas to the total study
areas are shown in Table 7. It can be seen that the change areas
occupy nearly 10% in the case B total areas between year 2006
and 2008. After the change intensity reclassify, the strong changes
occurred in all three datasets that occupy 1.82%—2.30% of the
total area. These changes are mainly construction sites and vegeta-
tion changes in mining area according to investigation. Most of
the obvious changes are the reconstruction of subsidence areas and
vegetation of mining area. Those regions are also important targets
in fieldwork.

change intensity levels

. Subtle change/
0, 0, 0, 0,
Method/Accuracy Strong change/% Obvious change/% False alarms/% Unchanged/% Total/%
CTF fusion strategy 1 2.30 4.17 3.74 89.79 100
CTF fusion strategy 2 1.82 5.57 2.88 89.73 100

5 CONCLUSION

A novel change detection method based on CTF information
processing and decision level fusion strategy is designed and pro-
posed in this paper. Multi-temporal and multi-resolution ALOS
remote sensing images are used in experiments to test its applica-
bility in land cover change detection. Through this work, we can
conclude that:

(1)The proposed decision level fusion change detection method
for multi-resolution image data is demonstrated to be feasible and
effective in land cover change detection. After integrating the
results from different scales and different types of image datasets,
the merits and characteristics of multiple datasets and algorithms
are sound, which results in the better final detection result com-
paring to real land cover changes. Experimental results show that
the proposed approach can remedy the limitations and uncertainty
caused by a single dataset or a single detection algorithm, further
narrowing and determining the change locations. Therefore, the

new method could be of potential to be used in the practical land
cover/use change detection tasks.

(2)Two CTF decision fusion strategies designed and experi-
mented in this work have their own advantages. Strategy 1 can
effectively reduce omission error, while strategy 2 performs well in
restraining the commission error. According to the specific practical
change detection applications, the appropriate strategy should be
selected to obtain the most potential valuable change information,
and then produces the most reliable change map in which the over-
all error is minimized.

(3)The proposed method converts the traditional “hard detec-
tion” into “soft detection”. Different level detection results are
combining to realize the reclassifying of the change intensity step
by step, which has more practical reference meaning and flexibility
than simply separating all pixels into change and unchanged two
classes. Moreover, the strong changes occurred in all datasets can
be set as the maximum probability change areas, which are the

most important detecting target areas of late land surveying and
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monitoring. Obvious changes occurred in most datasets are viewed
as second place. Therefore, this approach will save labor cost and
workload in field investigation process.

It should be noted that, according to the different characteristics
and advantages and disadvantages of the two CTF fusion strategies,
when using the proposed method we should consider the practical
study areas and the datasets firstly. Further work will be focused on
the selection of the most appropriate and effective detection algo-
rithms for each single dataset, in order to make the change informa-
tion more accurately. Meanwhile, how to minimize the omission er-
ror and commission error to improve the overall detection accuracy

still needs to be analyzed further.
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