1007-4619 (2011) 04-811-20

Assessment of Pb-induced stress levels on rice based on fractal
characteristic of spectral high-frequency components
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Abstract: How to extract and calculate subtle spectral feature information of crop under various environmental-induced stresses
from hyperspectral remote sensing is crucial for the application of remote sensing in monitoring agricultural pollution. The objec-
tive of this paper is to monitor the stress levels of rice under the Pb pollution. Hyperspectral data and heavy metal content were
collected in the field experiment. The fifth level high—frequency component (d5) was obtained by performing wavelet transform
to hyperspectral reflectance (350-1300 nm) and the fractal dimension of d5 was also calculated. Then the relationship between
fractal dimension of d5 and different stress levels of rice was established by the fuzzy logic model. The results showed that: (1)
d5 can effectively distinguish the stress levels of rice Pb pollutions; (2) the annual relative variation ratio for fractal dimension of
d5 was below 4%, and the classification accuracy of fractal dimension of d5 was above 75%. Namely, fractal dimension values of
d5 for rice under high, medium and low pollutions have percentage of 86.7% between 1.160 and 1.200, 75% between 1.220 and
1.275, 91.7% between 1.280 and 1.320, respectively. (3) the high (low) semi-trapezoidal functions were carried out to construct a
model to detect stress levels of rice.
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culture (Kooistra, et al., 2001; Osborne, et al., 2002; Dunagan, et

Heavy metal contamination in agricultural soil is one of the
important ecological environmental problems, which is charac-
terized by serious toxicity, strong concealment and complicated
ecological effects (Wang & Zhang, 2002; Qi, et al., 2008). It is
reported that the area of soil heavy metal contamination in China is
2x10” hm’, accounting for 1/6 of the total area of farmland (Zhao,
et al., 2002a). In Jiangsu Province, China, the ratio of Pb content
in foodstuff (such as rice and wheat) serious than food quality
standard is 21.4% and values of specific local regions even have
reached as high as 66 % (Zhao, et al., 2002b). Due to the rapid
economic development of society and environmental protection
measure remaining lagging, heavy metal pollution in agricultural
soil has become more and more serious. Therefore, accurate and
fast detection of heavy metal-induced stress in crops is critical
for agricultural ecology and food security. To date, the detection,
simulation and assessment of status, dynamic process and change
in crops under heavy metal pollution are the important issues for
the application the hyperspectral remote sensing in precision agri-
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al., 2007; Montzka, et al., 2008). The emergence of hyperspectral
data has led to its widespread and fast use in detecting heavy metal
pollution and crop stress due to their capabilities in detecting vari-
ations in biochemical compositions. Excessive heavy metal con-
centrations in plant can affect its biochemical composition (such
as chlorophyll content and nutritious component), which can be
reflected in hyperspectral reflectance. Therefore, some researches
applied hyperspectral reflectance directly to detect the stress of
plant under heavy metal pollution. Choe, et al. (2008) established
relationships between heavy metal content in abandoned mines and
reflectance characteristics, biochemical composition, and pigment
content of the plants (Choe, et al., 2008; Li, et al., 2008). Clevers,
et al. (2004) monitored heavy metal contamination in river flood-
plains by exploring field vegetation indices and the positions of the
red edge (Clevers, et al., 2004; Kooistra, et al., 2004). They dem-
onstrated that spectral characteristic parameters in some wavebands
are regarded as effective indicators for detecting soil heavy metal
contaminations. Specifically, these experiments were performed
under laboratory conditions to analyze the effect of heavy metal on
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spectral reflectance of controlled crop. Collins, ef al. investigated
the variation in spectral reflectance, such as chlorophyll absorption
valley and red edge of sorghum, mustard, and fern, under labora-
tory conditions by adding different doses of copper, lead, zinc, or
arsenic (Collins, et al., 1983; Schuerger, ef al., 2003; Slonecker, et
al., 2009). Similarlly, Liu, et al. also investigated the changes in
spectral reflectance of wheat, cabbage, and rice, under laboratory
conditions by adding copper, zinc or lead (Liu, et al., 2006; Chen,
et al., 2007; Ren, et al., 2008). The above results showed that there
were strong relationships between the blue-shift of ‘red edge’, the
changes in near-infrared reflectance and chlorophyll concentration,
heavy metal content in crops. Many researches demonstrate that the
obvious changes (such as the blue shift of ‘red edge’, shallow chlo-
rophyll absorption valley, near infrared reflectance plateau lower-
ing) in spectral reflectance of crops occurred are due to changes in
physiological parameters of crops under high pollutions. However,
the level of pollutants in natural ecosystems is relatively low, which
means that there may be no visible and steady symptoms in leaf
reflectance spectra. And therefore it is necessary to develop spectral
analysis methods to enhance the vegetative stress signals through
minimizing the effects of background materials, such as those
caused by non-photosynthetic components and soil reflectance. Re-
cently, some studies extract the diagnostic spectral index to detect
and assess the stress levels of plant under heavy metal pollution
through the approaches of enhancement and transformation of the
original spectrum, such as spectral absorption feature parameters,
multi-dimensional spectral index space, artificial neural network or
fractal technology (van der Meer, 2006; Noh, ef al., 2006; Wang,
et al., 2006; Guan & Liu, 2009; Du, et al., 2009). However, the
spectral feature information associated with heavy metal pollution
is subtle, as well as random and uncertain on a large scale. Thus, it
is difficult to extract the weak spectral characteristic information
of polluted crops only applying some simple or single method for
spectral analysis.

The objective of this research is to detect and assess the stress
levels of rice under heavy metal pollution based on wavelet trans-
form, fractal techniques in combination with fuzzy mathematics.
The results of our study may provide scientific reference for the
enhancements, calculation and modeling the subtle spectral charac-

teristic information associated with environmental-induced stress
on crop. It can provide some insights into identifying Pb pollution
in natural agricultural ecosystems.

2 MATERIALS AND METHODS
2.1 Field experiment design and data collection

Field experiments, which is located in Dongqiao and Zhengyi
town in Suzhou, Jiangxu Province, China, were conducted in three
different contaminated levels with high, medium and low pollution
(labeled as A, B, and C respectively). The crop selected in this site
was rice, which belongs to one Changyou species. The rice grow-
ing in the three experiment field were cultivated scientifically, and
supplied with abundant fertilizers, manures and irrigation water to
avoid other environmental factors causing unwanted stress. The
site where located has a warm and humid subtropical climate with
an annual temperature of 15.7° C, rainfall of 1094 mm and average
sunshine of 1965 h. Soils are mainly paddy soils formed on calcar-
eous deposits of the Yangtze River with sufficient organic matter
about 3% and soil pH of 6.2. The main heavy metal contents of the
soil are presented in Table 1.

The hyperspectral data collections were carried out in clear
days in 2008 and 2009 according to critical growth stages of
rice, which corresponded to the seedling, tillering, jointing, an-
thesis and mature growth stages of rice. Spectral measurements
were taken under cloudless or near-cloudless conditions between
10:00 and 14:00, using an ASD FieldSpec Pro spectrometer
(Analytical Spectral Devices, Boulder, Co., USA). This spec-
trometer was fitted with a 10° field of view fiber optics, operated
in the 350—2500 nm spectral regions with sampling intervals
of 2 nm. BaSO, calibration panel was used for calculating the
black and baseline reflectance. A panel radiance measurement
was taken before and after the crop measurement by 2 scans
each time. Rice radiance measurement was made at 30—40
sites over each plot and each site was scanned 10 times. The
biochemistry data of soils and rice was collected to synchronize
spectral measurements. Heavy metal concentration (Cu, Zn, Pb,
Cd, Cr and As) in the soil were determined by flame atomic ab-
sorption spectrometry (AAS).

Table 1 The heavy metal concentrations of agricultural soil in experimental sites
As Cr Cu Zn Pb Cd
Experimental sites ~ Geographical location ~ Background (Ci) Pollution level
13.6 62.6 244 80.1 29.1 0.065
Mean (S7) 8.90 54.2 23.8 78.5 128.3 0.097
A 31°25'N, 120°31'E High
Polluted index (Pi) 0.65 0.87 0.98 0.98 441 1.49
Mean (S7) 7.20 60.5 223 59.3 71.7 0.082
B 31°24'N, 120°33'E Medium
Polluted index (Pi) 0.53 0.97 0.91 0.74 2.46 1.26
Mean (S7) 6.50 61.4 239 37.4 30.8 0.04
C 31°21"N, 120°51"E Low
Polluted index (Pi) 0.48 0.98 0.98 0.47 1.05 0.66

Note: Ci is Background value of heavy metal concentrations according to the Environment Monitoring Centre of China. Si is measured value of heavy metal concentra-
tions, Pi=Ci/Si, Pollution level is classified as low (1<Pi< 2), medium (2 < Pi < 3) or high (Pi > 3).
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2.2 Methods

To effectively detect and amplify subtle spectral characteristic
information associated with heavy metal pollution, methods based
on wavelet transform, fractal analysis in combination with fuzzy
mathematics were used. The procedure can be summarized as the
following (Fig.1). Firstly, the wavelet high-frequency component
was generated at each level of decomposition of an original spectral
signal to derive and enhance subtle spectral characteristic informa-
tion associated with rice under heavy metal stress. The reason is
that wavelet transform has proven to be quite useful in the study of
spectral smoothing, noise removal and singularity signal detecting.
Secondly, fractal dimension of the fifth high-frequency component
was explored as a new comprehensive parameter to quantitatively
analyze stress levels of rice under heavy metal pollution. Thirdly,
the fuzzy logic model was established between fractal dimension
of high-frequency component and stress levels of rice under heavy
metal pollution by using the membership function.

2.2.1 Extracting spectral high-frequency component through
wavelet transform

Wavelets are mathematical functions that are used to dissect
data into different frequency components and each component is
characterized with a resolution appropriate to its scale. Wavelet
transforms (WT) can be viewed as a rotation from function space
into a different domain, which contains an infinite set of possible
basis functions called mother wavelets. WT has excellent time and
frequency properties, and therefore it is suitable to detect signal sin-
gularity, which are discontinuous (shocks) points at x0 waveband
in original spectrum signals or derivatives of the spectrum signals
(Daubechies, 1990). Many wavelet functions have been widely
used in solving a range of real world problems. However, the se-
lection of wavelet function depends on different signal processing
problems. Previous result showed the Daubechies wavelets (‘db5”)
was able to detect stress information in a satisfactory way by reduc-

ing impacts of atmospheric scattering, absorption, background and
equipment noise on spectral signal of rice (Liu, ez a/.,2010). In this
research, WT was implemented by using a dyadic filter tree. The
wavelet low-frequency component (a) and high-frequency compo-
nent (d) were generated at each level of decomposition (denoted by
subscript numbers) of an original signal. An inverse discrete wave-
let transform can accurately reconstruct the original signal as all of
information in the original signal is contained in the low-frequency
component at a particular level plus the high-frequency component
at that level plus previous levels by the following equation:

F=a,(A)+>d (2) (1)
i=l

where f(A) is original spectral signal, j is wavelet decomposi-
tion level, ¢; and d; are the wavelet low-frequency component and
high-frequency component, respectively. Low-frequency signals
(signals with relatively stable) can reflect the global characteristic
of the signal spectrum, due to it is characterized by high frequency
resolution and low band (time) resolution. While high-frequency
signals can be used in the analysis of nonstationary signals and
have particular advantages for detecting short-lived and singularity
phenomena. This is because high-frequency signals have the prop-
erty of high band resolution and low frequency resolution and thus
obtain information on the frequency variations of these signals and
to detect their structures localization in time and/or in space. In this
research, wavelet disassembled signal were performed by wavelet
transform to original hyperespectral reflectance (350—1300 nm)
with Daubechie 5 (db5) wavelet function. The result showed that
the five decomposition levels were able to detect stress information
of rice under heavy metal pollution in a satisfactory way. In five
decomposition levels, the behavior of the wavelet component for
spectral data at levels j= 1, 2, 3, 4, 5, denoted by a5 for low-fre-
quency wavelet component, d1, d2, d3, d4 and d5 for high-frequen-
cy wavelet component (Fig. 1). As seen in Fig. 1, large amplitude
of dl, d2, d3 and d4 present noise signal and the large amplitude of
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The general flow chart of deriving, calculating and establishing models for metal-induced spectral subtle information
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d5 present singularity signals. It is concluded that five decomposi-

tion levels are determined to be the most appropriate level for both

identifying the stress levels of rice under heavy metal pollution and

removing noise.

2.2.2 Calculating fractal dimension of high-frequency
component

Fractals, here referring to broken or irregular fragments, can
describe complex and irregular natural objects. A number of studies
demonstrate that remote sensing images and hyperspectral reflect-
ance are proved to have fractal characteristics (Du, ef al., 2009).
Similarly, d5, which belongs to the fraction of original reflectance,
has fractal properties. In order to comprehensively and accurately
compare and quantify subtle spectral characteristics information
of rice under different Pb pollutions, the fractal dimension of fifth
high frequency component (d5) is calculated by the fractal tech-
nology. The two reasons are as follows. Firstly, fractal analysis is
consistent with wavelet transform in ‘scaling transformation’ and
‘self-similarity’ of signal. Secondly, fractal dimensions can be used
to explain the comprehensive variations of spectrum curves as a
‘global parameter’. Therefore, it has the advantage of capturing
more information provided by reflectance spectra than previous
analytical approaches and thus improves the sensitivity of spectral
parameter for investigating changes in plant stress.

Fractal dimension are commonly calculated by using the meth-
ods for box-counting dimension, isarithm dimension and Hausdorff
dimension, etc. In this study, fractal dimensions are calculated by
the box-counting method which is based on the division of an area
into regular boxes with the same box edge length value of n (Bo-
rodich, 1997). The equation is as follows:

D = lim 28 M(1)
e log, n

@

where D is the fractal dimension, M (n) and n is the count of boxes

in the grid divided curve and scales, respectively.

2.2.3 Establishing membership function between fractal
dimension and stress levels of rice under heavy metal
pollution

It is well-known that fuzzy model serves as an appropriate

mathematical tool for solving fuzzy and uncertain problems.
The spectral characteristic of rice under heavy metal pollution is
very complex, which is predominantly contributed by the com-
plicated response mechanism of spectrum on the variation of
physiological and biochemical compositions in rice under heavy
metal pollution. Considering that the stress levels assessment is
a fuzzy concept with multiple indicators and classes, member-
ship functions of fuzzy set theory are used, which have been
proved effective in solving problems of fuzzy boundaries and
avoid the effect of subjective factors on assessment results. The
typical methods for establishment membership function include
high (lower) semi-trapezoidal functions, Gaussian membership
function and triangular membership function. In this study, high
(lower) semi-trapezoidal functions were selected to construct
models between fractal dimension of d5 and stress levels of rice
under heavy metal pollution. The stress levels were determined
by the function degree of measured fractal dimension values of
d5, which belonged to different membership functions according
to the domain of fractal dimension of d5.

3 RESULTS

3.1 Response mechanism of fractal characteristic of
high-frequency components on stress levels of
rice under Pb pollution

In general, the singularity of the spectrum is caused by the discon-
tinuous of signal in some distinctive absorption features. The primary
reason is that the phenomena of electron or atoms transition and the
shift of inherent absorption characteristic bands or regions (chlorophyll
absorption) in crop could be exhibited in reflectance spectra. When
rice is stressed by Pb pollution, the change of shift and amplitude in
singularity (shocks) points occurs, because heavy metal can lead atoms
or ions coming into the rice and further destroying the molecular envi-
ronment. However, it is difficult to indentify the singularity points in
the original spectrum. The extraction of subtle characteristic spectral
information associated with heavy metal stress is necessary for moni-
toring heavy metal pollution, and a reliable method for detecting signal
singularity points is wavelet transform. Since wavelet transform has an
excellent time and frequency property. It can make the interested com-
ponent submerged in an original signal become distinct under certain
scales. Singularity points of spectral signal across the specific bands
can be quantitatively calculated and analyzed (Fig. 2). As seen in Fig.
2, the difference of positions and amplitudes of singularity points in
d5 curves of rice with differing heavy metal pollution were displayed.
Such differences can serve as a basis for distinguishing the stress levels
of rice under heavy metal pollution. Compared with the singularity
points of rice under low pollution, the variations of singularity points
were calculated, including the shift of singularity position and singu-
larity amplitude of rice under high and medium pollution (Table 2).
As shown in Table 2, regardless of the rice under high pollution and
medium pollution, the variation of singularity position and singular-
ity amplitude were observed. In detail, there were apparent shifts of
singularity position in the spectral region between 696 nm and 788 nm.
While obvious shifts of singularity amplitude occurred in the spectra
between 876 nm and 1183 nm. In order to explain the overall variation
of spectral singularity points of rice under differing Pb pollution, the
fractal dimension of d5 for all rice samples was calculated and summa-
rized. The values of fractal dimension of d5 curve in rice under high,
medium and low pollution were 1.232, 1.267 and 1.290, respectively,
from Fig. 2. Low values in fractal dimension of d5 indicated that the

rice was suffering from very serious contamination.
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Fig.2 The singularity points of spectrum in rice under different
heavy metal pollutions
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Table 2 The shift and amplitude of singularity points for spectrum in rice under different heavy metal pollutions

Singularity points of

Pollution level*  rice under low pol- 555 579 606 624 696 716 742 766 788 876 897 941 1101 1129 1152 1183
lution
Shift/nm -1 -2 -3 -3 -42 -33 -39 -31 -38 1 9 -1 -2 -3 -3 -42
High-Low

Amplitude /% 32 34 56 91 106 25 26 46 31 57 10 69 83 61 64 64
Shift/nm 0 -3 0 -1 2 0 5 -1 -2 2 10 -14 17 5 13 2

Medium-Low
Amplitude /% 20 30 21 0 6 22 2 4 10 29 129 22 76 81 82 81

Note: *The variation is based on high and medium pollution according to low pollution as standard value. Amplitude = \a -b|/ \b\ . Here, b is d5 value corresponding to
singularity points of rice under low pollution, a is dS value corresponding to singularity points of rice under high or medium pollution.

3.2 Analyzing spectral characteristic of high-
frequency component of rice at different growth
stages

To illustrate spectral characteristic of high-frequency component
of rice at different growth stages, hyperspectra data from seedling
stage, tillering stage, jointing stage, anthesis and maturity growth
stage of rice were obtained for different levels of heavy metal pol-
lution. For clarity, the average value from 200 data sets of each
growth stage in different level pollution respectively were calcu-
lated and then performed by fifth wavelet decomposition level with
‘Db5” wavelet function. Fig. 3 showed the d5 curve of rice at five
growth stages for different levels of Pb pollution. As shown in Fig. 3,
the obvious variation of d5 curve of rice under high pollution was
validated. The number of extreme points is increasingly becoming
large. And also the curve is becoming more complex from the seed-
ling stage to maturity. The fractal dimension and singularity am-

plitude of d5 of rice under different level pollutions at each growth
stage were shown in Table 3. From Table 3, regardless of rice under
contaminated levels, it can be seen that the singularity amplitude
increased from seedling to tillering and then decreased from til-
lering to mature growth stage. The maximum value in singularity
amplitude in rice with different pollution levels occurred at the
tillering growth stage. The reason is that the maximum velocity of
heavy metal diffusion in rice occurred at the tillering growth stage.
Therefore, in this study, the tillering growth stage was selected as
best growth stage for detecting heavy metal concentrations in rice
to distinguish different heavy metal stress levels. Whereas, fractal
dimension of d5 increased from seedling, tillering, jointing, anthe-
sis to mature in the whole growth stage. This can be interpreted
by the shock points that are increasingly becoming large and then
spectral curve is becoming more complex with the increase of Pb
diffusion in rice from soil.
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0.00 W\/\j\rw 0.00 0.00
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Fig.3 The d5 curve of rice with different pollution levels for each growth stage
(a) High pollution; (b) Medium pollution; ( ¢) Low pollution
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Table 3 The amplitude of singularity point and fractal dimension of dS of rice with different heavy metal pollutions for each growth stage

Growth stage

Pollution level Parameters - -
Seedling Tillering Jointing Anthesis Mature
Minimum /107 -1.20 -1.72 -1.46 -1.30 -1.29
Maximum /107 1.20 1.78 1.50 1.39 1.20
High
Singularity amplitude /10~ 2.40 3.50 2.96 2.69 2.49
Fractal dimension 1.151 1.191 1.202 1.235 1.261
Minimum /107 -1.50 -2.04 -1.99 -1.83 -1.73
Maximum /107 1.29 1.79 1.72 1.61 1.59
Medium

Singularity amplitude /10~ 2.79 3.83 3.71 3.44 3.32
Fractal dimension 1.249 1.259 1.261 1.265 1.274
Minimum /107 -1.45 -1.99 -1.78 -1.67 -1.46
Maximum /107 1.26 1.82 1.62 1.45 1.34

Low N
Singularity amplitude /10~ 2.71 3.81 3.40 3.12 2.80
Fractal dimension 1.278 1.281 1.286 1.297 1.302

Note: Singularity amplitude =Maximum- minimum

3.3 Distinguishing high-frequency components of
rice under Pb pollution

In order to examine whether high-frequency component of d5
was credible and extensive in distinguishing stress levels of rice
under Pb pollution, 200 data sets from the tillering growth stage of
rice with different levels of Pb pollution were randomly selected.
The average value was calculated from 10 consecutive data sets and
thus 20 groups spectral curve were obtained. 20 groups original re-
flectance of rice with differing Pb pollution in the regions between
350 nm and 1300 nm were performed by wavelet transform with
‘Db5” wavelet function. Fig. 4 showed the original reflectance and
d5 curve of rice with differing Pb pollution. As seen in Fig.4(a),
reflectance spectra of rice with three levels of Pb pollution showed
intersecting distribution tendency in 350 nm and 1300 nm, espe-
cially for reflectance spectra of rice with medium pollution. This
indicates that original reflectance spectral is poor at differentiating
the stress levels of rice with Pb pollution in a ‘real world’ agro-
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Fig. 4 The original reflectance and d5 curve of rice under different
heavy metal pollution
(a) the original reflectance; (b) d5 curve

ecosystem. However, from Fig. 4(b), variety separation of d5 in
rice with three levels of Pb pollution is clear, which indicates that
the d5 from WT can provide diagnostic information to distinguish
the spectral signal of rice with three levels of Pb pollution, espe-
cially for obvious separation occurred around 680 nm, 700 nm, 730
nm, 1120 nm, 1150 nm and 1180 nm. In addition, d5 of rice with
equivalent level of Pb pollution was closely arranged. Obviously,
three relatively independent clusters for d5 curves were exhibited
in Fig. 4 (b). It can be interpreted that the equivalent level of heavy
metal pollution have similar effect on the heavy metal diffusion in
crops from soil and the difference of heavy metal content in crops
occurred in different contaminated levels in soil.

3.4 Analyzing fractal dimension of high-frequency
of rice under different Pb pollution

To assess the effectiveness of the proposed method for fractal
dimension of d5 in distinguishing stress levels of rice under Pb pol-
lution, hyperspectral data was processed using wavelet transform
in conjunction with fractal technology. Firstly, the d5 was obtained
by performed wavelet transform to the average spectral reflectance.
Secondly, the fractal dimension of d5 was calculated. Our previous
analysis indicated that the best stage for monitoring heavy metal
stress is at the tillering growth stage of rice (Liu, et al., 2010). Thus,
fractal dimension of d5 in rice at tillering stage was calculated and
analyzed (Fig. 5). As shown in Fig. 5, the obvious distinction of the
fractal dimension of d5 was observed at rice under all three levels
of Pb pollutions. At the same time, the close distribution tendency
was displayed in the fractal dimension of d5 in rice with the equiv-
alent level of Pb pollution in 2008 and 2009. It can be inferred that
d5 of rice with three levels of Pb pollution was characterized by
three closely clusters curve with relatively independent distribution
tendency. In order to investigate whether the fractal dimension of
d5 was a stable indicator for detecting the heavy metal induced-
stress in crop in growing different years, annual variation rate was
viewed as the parameter for assessing the stability of the fractal
dimension of d5. Low values in annual variation rate indicates that
fractal dimension of d5 is a very stable indicator. The equation of
annual variation rate is as follows:
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a =Dy —Dy (3)

o' = Doy = Dus| x100% )
08

where a and o' are the annual absolute variation rate and annual
relative variation rate of fractal dimension respectively. Dy and
Dy, are fractal dimension of d5 in 2008 and 2009, respectively. Ac-
curate statistics for fractal dimension of d5 are calculated in Table
4 according to the above equations. As seen in Table 4, the mean
fractal dimension values of d5 in the rice samples are found in the
order of Dy, < Dy, < D; (fractal dimension of d5 as high, medium
and low pollution labeled as D, D, D, respectively) for rice
growing in 2008 and 2009. Generally speaking, the annual varia-
tion rate for fractal dimension values of d5 is low. In detail, on the
one hand, according to the annual absolute variation rate, fractal
dimension values of d5 of rice will either decrease or increase
slightly. Namely, d5 of rice under high pollution and low pollu-

tion decrease slightly, while that of rice under medium pollution
increases slightly. On the other hand, the annual relative variation
rate for the fractal dimension values of d5 is lower than 4%. It can
be concluded that the fractal dimension value of d5 is a stable in-
dicator, and that it can eliminate the meteorological conditions on
spectral reflectance of crops. As shown in Table 4, the annual rela-
tive variation rates for fractal dimension of d5 value in rice with
high pollution and low pollution are slightly greater than that of
rice with medium. The possible reason is that the effect of low or
high Pb concentrations in soil on rice is relative stable. Specifically,
low Pb concentrations in soil are of great benefit to rice and high
Pb concentrations in soil will be harmful to rice and prevent rice
from growing. However, if rice is contaminated by the medium Pb
concentration in soil, the pigment, cell and physiological structure
of rice are gradually stressed. And the effect of Pb concentration in
soil on rice is dependent on the rice growing environmental condi-
tions, such as temperature, light, water and so on.
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Fig. 5 The scatter map of fractal dimension for d5 curve of rice under different heavy metal pollution
(a) 2008 year; (b) 2009 year
Table 4 The statistics of fractal dimension for d5 curve of rice under different heavy metal pollution
Year Parameter High pollution Medium pollution Low pollution
Range 1.183 - 1.209 1.206 - 1.258 1.286 -1.319
2008 Mean 1.194 1.229 1.305
Stdev 0.006 0.013 0.006
Range 1.162 -1.212 1.254 -1.279 1.277 - 1.309
2009 Mean 1.179 1.267 1.293
Stdev 0.013 0.006 0.010
Annual absolute variation ratio -0.015 0.038 -0.012
Annual variation ratio*
Annual relative variation ratio (%) 1.26 3.09 0.92

Note: *The variation of fractal dimension is based on rice in 2009 according to rice in 2008 as standard value

3.5 Relationship between fractal dimension of high-
frequency components and stress levels of rice
with heavy metal pollution

The three linguistic variables (High, medium and low) as
stress levels were defined as fuzzy sets using high (lower) semi-
trapezoidal functions from a set of given subsets of rice samples
in 2008. The membership functions represent the degree to which

the specified fractal dimension of d5 belongs to the fuzzy set. The
membership degrees of assessment parameters at each class can be
described quantitatively by a set of formulae comprised of mem-
bership functions as follows:

(i) The membership function of assessment fractal dimension
of d5 for rice with high pollution can be described quantitatively
as :
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1 D,<1.200
u(D,) = 1.220-D,
1.220-1.200
0 D,>1.220
(i1) The membership function of assessment fractal dimension of
d5 for rice with medium pollution can be described quantitatively
as:

1.200 < D, <1.220 3)

D, ~1.200
1.220-1.200
1 1.220<D <1275

1280=D 595 p <1280 ©)
12801275

0 D,<1.200, D, > 1.280

(iii) The membership function of assessment fractal dimen-

1.200 < D, <1.220

u(D) =

sion of d5 for rice with low pollution can be described quantita-
tively as :

0 D<1275
D,-1275

1.280-1.275
1 D,=1280

u(D) = 1.275 < D, <1.280 0)

To examine whether established model has the stable performance
of predictions for stress levels of rice under heavy metal pollution,
experiments were then conducted to verify the accuracy of the fuzzy
logic model. The correct classification ratio was measured by dataset
from 2009. Experimental results are shown in Table 5. From Table 5,
it can be seen that high accuracy was obtained from the fuzzy logic
model with 93.33% accuracy for high pollution, 93.33% accuracy for
medium pollution and 96.67% for low pollution. It suggests that fuzzy
logic model can work well in monitoring the stress levels of rice under
Pb pollution with high accuracy of the predicted stress levels through
semi-trapezoidal functions for the respective stress levels of rice under
Pb pollution.

40f  <120086.7%) !

Frequency/%

Frequency/%

Furthermore, the frequency histograms for rice under different
levels of heavy metal pollution in 2008 and 2009 were shown in
Fig. 6. As seen in Fig. 6 (a) (b) (c), fractal dimension values of d5
for rice samples under high, medium and low pollution were 86.7%
between 1.160 and 1.200, 75% between 1.220 and 1.275, 91.7%
between 1.280 and 1.320, respectively. The general distribution
in 2008 and 2009 for fractal dimension values of rice under heavy
metal pollution were shown in Fig. 6 (d), and fractal dimension
values of d5 for rice samples under three pollution levels lacked of
clear boundary with interaction regions. Namely, rice under high and
medium pollution has a uniform region with fractal dimension values
of d5 between 1.220 and 1.220. Similarly, rice under medium and
low have a uniform region with fractal dimension values of d5
between 1.275 and 1.280. Based on the above analysis, it is suitable
for fuzzy logic model to solve the uncertainty and fuzzy problems,
such as crop under heavy metal pollution. Since membership function
on the basis of fuzzy model could provide a comprehensive and
operational method to assess stress levels of rice under heavy metal
pollution and the evaluation results are reasonable and credible.

Table 5 The verification of fuzzy logic model for rice with differ-

ent pollution levels

Experimental Sample Measured Predicated result  Classification
sites P pollution level  poiiution level Sample ~ accuracy
High 28
A 30 High Medium 2 93.33%
Low 0
High 0
B 30 Medium Medium 28 93.33%
Low 2
High 0
C 30 Low Medium 1 96.67%
Low 29
501
40+ | 1.220— 1.275(75%) |
30 :
20t |
101

0 0
1.160 1.180 1.200 1.220  1.200 1.220 1.240 1.260 1.280
Fractal dimension Fractal dimension
(a) (b)
507> 1.280(91.7% 50T
<40 i 401
g 30[ £30(
& &
= o
= 20[ =20 [
High edium\ | Low
10 107
0 0
1.2751.2801.290 1.300 1.310 1.320 1150 1220 1.250  1.300
Fractal dimension Fractal dimension
(c) (d)

Fig. 6 The frequency distribution for d5 curve of rice under different heavy metal pollution
(a) High pollution; (b) Medium pollution; (¢) Low pollution; (d) Three pollution levels
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4 RESULTS AND DISCUSSIONS

(1) The fifth high-frequency component (d5) of rice can effec-
tively detect the subtle spectral characteristic information related to
heavy metal pollution and discriminate different stress levels of rice
under heavy metal pollution. This is because that wavelet trans-
form to spectral reflectance can succeed both in removing the non-
spectral scattering effects and eliminating the environmental condi-
tions (such as light, temperature, moisture and other meteorological
conditions) on spectral reflectance of crops. It suggests that wavelet
transform appears to be very promising in removing noises and
amplifying the subtle spectral characteristic information associated
with various environmental stresses. Compared with the traditional
derivative transform, original reflectance or vegetation indices (Liu,
et al., 2006; Li, et al., 2008; Chi, et al., 2009), wavelet transform
have a particular advantage in detecting stress levels of crop under
heavy metal pollutions. The two primary advantages are as follows.
First, it is suitable for hyperspectral high-frequency component af-
ter performing wavelet transform to reflectance to detect the stress
information in both high-polluted crop and crop growing in natural
agro-ecosystems with relative low level of pollutants. In addition,
wavelet transform technology can be widely used to detect spectral
singularity information and amplify subtle spectral characteristic
information of crop under various environmental stresses. Second,
wavelet transform has the ability for wavebands localization in ab-
normal phenomenon of spectral reflectance of metal-induced crops.
Thereby, it is conductive to investigate the distinction of spectrum
among crop under different heavy metal pollution.

(2) When rice is polluted by heavy metal, the subtle differences
in spectral reflectance occur at rice growing at different growth
stages. Such difference can be disclosed by the fractal dimension
values of d5. In 2008 and 2009, the annual relative variation rate
for the fractal dimension values of d5 is lower than 4%. While the
classification accuracy for three stress levels of rice under Pb pollu-
tion are all above 75%. Namely, fractal dimension values of d5 for
rice samples under high, medium and low pollution are 86.7% be-
tween 1.160, 1.200, 75% between 1.220 and 1.275, 91.7% between
1.280 and 1.320, respectively. It indicates that the fractal dimension
of d5 is a stable and sensitive indicator for identifying the stress
levels of crop. The mainly two reasons are as follows. Firstly, after
original reflectance is performed by wavelet transform, d5 succeeds
both in removing the non-spectral scattering effects and in amplify-
ing the stress information related to heavy metal pollution together
with wavebands localizations. Secondly, fractal dimensions of d5
in the 350—1300 nm can be used to explain the comprehensive
variations of spectrum curves as a ‘global parameter’, and it has the
advantage of capturing more information provided by reflectance
spectra than previous analytical approaches such as single-band or
some spectral vegetation indices for investigating changes in plant
stress (Kemper&Sommer, 2002; Slonecker, et al., 2009).

(3) The relationship between the fractal dimension of d5 and
stress levels of rice Pb pollution are constructed by using high (low)
semi-trapezoidal functions. When it comes to the fractal dimension
values of d5 located at the two overlap regions between 1.200 and
1.220, between 1.275 and 1.280, membership functions succeeds in
dealing with such problem because the specified fractal dimension
of d5 belongs to the fuzzy set, namely, high pollution, medium or

low pollutions. The membership degree can effectively describe the
status of gradual change in stress levels of crops. In addition, it can
be expected to solve many problems with uncertainties, random-
ness and fuzziness. Therefore, the membership functions are served
as useful tools to solve the fuzzy problems, such as stress levels of
crop under environmental conditions.

In summary, wavelet transform, fractal analysis in conjunction
with fuzzy mathematics can effectively detect the stress levels of
rice by extracting, calculating and modeling subtle spectral charac-
teristic information associated with heavy metal pollutions. Yet it
should be noted that constructed models will need revisions accord-
ing to different crop types and sources of pollutants, when member-
ship functions based on the fractal dimension of high-frequency
components and stress levels are used to assess the stress levels of
crop under heavy metal pollution in other environmental condi-
tions. The proposed model can be applied to ground hyperspectral
data as well as spaceborne or airborne hyperspectral imagery
through the atmospheric corrections.
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