1007-4619 (2011) 04-778-14

A shadow detection of remote sensing images based on statistical
texture features

XIA Huaiying, GUO Ping
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Abstract: Shadow detection for high spatial resolution remote sensing images is very critical for image segmentation, feature
extraction, image matching, automatic target detection and target location. In order to improve the accuracy of shadow detection,
we propose a new shadow detection method based on a statistical mixture model, which combines several radial basis function
neural networks. Four statistical features, including energy, entropy, contrast and inverse difference moment, extracted from grey
level concurrence matrix are used as the model input features. EM-like algorithm is adopted to estimate the model parameters
through optimizing the system cost function. Comparative experiments are performed between the Gaussian background model
and the histogram threshold method. Experimental results show that higher detection accuracy of the proposed approach is ob-
tained. The proposed method can solve the problem such as high reflective regions and false alarms in the presence of water, as
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well as the repeated threshold calculation.
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1 INTRODUCTION

The shadow on the remote sensing images is a dark area
with little information because the solar rays are blocked by
tall buildings, trees, mountains and other tall objects. On one
hand, the existence of shadow has a negative influence on image
processing operations, such as feature extraction, image regis-
tration, image retrieval (Bao& Guo, 2006), and image segmen-
tation. Specifically, the existence of shadow has a deep impact
on the accuracy of image classification, target detection, target
location, which lead these operations become impossible. On
the other hand, the shadow region in remote sensing images may
provide more about three-dimensional information of objects
than the surrounding background, such as buildings. Therefore,
it becomes necessary for preprocessing shadow areas. While
shadow detection is a key step in the shadow processing, it plays
an important role in the follow-up processing operations for re-
mote sensing images.

Existing shadow detection methods for remote sensing
images can be divided into two main categories: one is based
on model (Finlayson, et al., 2002) which employs a priori
knowledge of the illumination, DSM data and the 3D geom-
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etry of the scene to calculate positions of shadows (Yao &
Zhang, 2006; Gils, 2001). However, this method has rarely
been used because the prior knowledge is not always avail-
able. The other one is based on property which is generally
used by analyzing the difference of lightness, geometry struc-
ture and color character between shadow regions and non-
shadow regions (Gwinner & Schaale, 1997; Wang & Wang
2002; Tsai, 2006). Shadow properties include spectroscopic
properties, texture properties and marginal. For example,
Jiang and Ward (1992) propose a detection method, mainly
based on lower intensity of shadow region than non-shadow
region while geometric properties are used in Funka-Lea
G and Bajcsy (1995). Other properties, such as histogram
threshold, homomorphic filtering and color invariance in
shadow region were also reported (Highnam & Brady, 1997;
Elemadmia, et al., 2003; Salvador, et al., 2004). With the
theoretical foundation of those methods, researchers in China
have proposed a number of different detection methods, such
as shadow detection of color image based on RGB color
space (Wang, et al., 2002), total variation model that based
on K-L transform (Wang, ef al., 2004). Xu and Xu(2003) pro-

posed automated extraction of shadows using very-high reso-
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lution spatial satellite images based on normalized processing
and texture analysis. Guo, et al. (2006) proposed multispec-
tral detection method; Xia, et al. (2009) proposed a detection
method based on Affinity Propagation algorithm. Ji and Yuan
(2007) proposed hange detection of man-made objects; Bao,
et al. (2010) proposed a detection method based on green
component in RGB color space and intensity component in
HSI color space.

The above analyzed methods play an important role in cer-
tain fields of applications. However, there is no common detec-
tion method for all remote sensing images yet, because of the
complexity of the formation mechanism of the shadows. For
examples, the detection method based on the property of color
invariance has more restrictive conditions on the scene, which
supposes that shadow region is flat surface texture with single
light. Detection method based on threshold segmentation has the
problem of high reflective regions and false alarms in the pres-
ence of water, as well as repeated threshold calculation. Fur-
thermore, it is only for suitable for grayscale images. Detection
methods based on homomorphic filtering may mistakenly detect
useful information as shadow regions, for most of the informa-
tion concentrated in the low frequency, as well as the parameters
of low-pass filter need be decided by experience. Besides, high
complexity of the algorithms of conversion between spatial
and frequency may be resource intensive. Many other detection
methods also have the problem of subjectivity of threshold se-
lection and repeated experiment verifications.

In perspective of recognition research, shadow detection can be
treated as a problem of image classification and target recognition,
which is to partition an image into several regions. The clustering
algorithm is most widely used algorithm in pattern recognition, and
it can be applied to shadow detection. The goal of clustering is to
group image pixels together that exhibits some type of similarities
such as color, texture, or brightness to form shadowed regions and
no-shadowed regions. The clustering algorithm is based on pixel
similarity, and the locations of boundaries between regions come
naturally to the human observer. In order to improve the accuracy
of shadow detection, we propose a new shadow detection method
on considering a statistical mixture model which combines several
radial basis function neural network (RBFNN). Experimental re-
sults show that higher detection accuracy of the proposed method is
obtained. And the proposed method can solve the problem such as
high reflective regions and false alarms in the presence of water, as
well as the repeated threshold calculation.

2 BACKGROUND KNOWLEDGE
2.1 Gaussian RBF neural network

RBF neural network is an important artificial neural network.
Due to its nonlinear processing capabilities, simple structure and
fast training speed, it has become a widely used network model.
The architecture of RBFNN is shown in Fig. 1, and the mathemati-
cal description is as follows.

gX. W) = S wg(IX = )+, )

where X is the input of the network, g(X, W) is the output of the
network and W=(w/i=1, 2, ..., K)) is the weight, u; is the centre val-

ue of the radial basis function, w, is a bias constant, ¢(|| x — £,]]) is
the radial basis function. When radial basis function adopts Gaus-
sian function, RBF neural network can be expressed as following:
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T 27,
The training of the RBF neural network includes identification
of the center x of the Gaussian kernel function, the variance y and
the weights W of the output.
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Fig. 1 Architecture of the RBFNN

2.2 Mixture model of RBF neural network

Given the data sets D = {x,}, to be classified are assumed to be
samples from a mixture of / Gaussian densities with joint prob-
ability density of which the mathematical expressions are shown as

p(Z|X,0)=) P(j)p(Z| X.0,)

J=1

H
with p(j)>0 and Y p(j) =1 (€)
Jj=1
where X and Z are the input vector and output vector in feature

space, and the dimension are d, and d, respectively. @ represents
the parameter group. H is the number of component in the mixed
model. P(j) is the parameter of mixture weight, and each compo-
nent is composed of K; radial basis functions. Fig. 2 shows the ar-
chitecture of the mixture model.

Assume each component is in the form of Gaussian function,

P(Z|X,0)=Gzg (X, W).07)

1 2
—erxp{—?‘i“Z-g,(X, W)H p@
where gj(X,W) is considered as radial basis function (RBF) neural
network.

The cost function of the system, which also called the error

function, can be written as

N
E=-1(0) = Ip(|x,0)
i=1

H

=2 PPz 1%, 0) ®)

where /(@) is the log-likelihood function of the system, @={o, W,
Vs M5
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Fig.2 Architecture of Mixture RBFNN

2.3 EM-LIKE learning algorithm

Given the learning samples, the parameters in mixed RBFNN clas-
sifier can be estimated by maximizing the log-likelihood function,
which can be described as the following steps (Guo, et al., 2003):

E-Step: Fix up the parameter P(j)" and @, and compute the
variable A(j, n) according to the following equation:

PG Gz, g, (x, 7). (%))
PG Gz, 8,5, )00 )

M-Step: Compute the new estimates of the parameters P(j)

h(j,n)=

(6

new

and ©™" according to the following formulae:
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Apply the EM-like algorithm above to estimate parameters, and the
expected output of the mixture model can be summarized as Eq. (8):

(z)= jzp(z | X,0)Z
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Jj=1
2.4 Texture feature

Texture feature of remote sensing image represents the shape,
homogeneity, orientation and intensity between different categories
of landmarks and spatial relations. Gray Level Co-occurrence Ma-
trix (GLCM)), is one of the most known texture analysis methods to
estimate image properties related to second-order statistics. There
are four statistical features commonly used, including Energy,
Entropy, Contrast and Inverse Difference Moment (Baraldi & Par-
miggiani, 1995).

Energy is also called Angular Second Moment and uniformity
is a measure of textural uniformity of an image. Energy reaches its
highest value when gray level distribution has either a constant or a
periodic form.

Energy = z Z VA ©

=1 j=1

Entropy measures the disorder of an image and it achieves its
largest value when all elements in GLCM are equal. When the im-
age is not texturally uniform, many GLCM elements have a very
small value which implies that entropy is very large. Therefore,
entropy is inversely proportional to GLCM energy.

N N
Entropy = =3 > P, (i, ))log P, (i, /) (10)
i=1 =1

Contrast reflects the clarity and the depth extent of grooves. The
deeper of texture grooves, the greater of the contrast, and the clear-
er of the visual effects. On the contrary, the smaller of the contrast,
the shallower of the grooves, and the more fuzzy of the effect.

N N
Contrast = "> (i— /) P,(i, /) an
=1 =1

Inverse difference moment (IDM) measures image homogene-
ity. This parameter achieves its largest value when most of the oc-
currences in GLCM are concentrated near the main diagonal. IDM
is inversely proportional to GLCM.

DM - 33 L) (12)
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3 SHADOW DETECTION
3.1 Analysis of principles

3.1.1 Analysis of the texture feature

Through extensive experiment studies, it can be concluded that
entropy and contrast statistical features of shadow region decrease
gradually while region of non shadow has a fluctuated response.
Intensity of shadow region is very close and has little changes, thus
the energy of the shadow regions is higher than that of non-shadow
regions. Fig. 3 shows one of the remote sensing images which have
many shadows. Fig.4 and Fig.5 show the comparative analysis of
four statistical characteristics between shadow regions and non-
shadow regions of Fig. 3.

At present, many shadow detection methods are based on
the spectral characteristics of the shadow, setting one or more
thresholds using the lower intensity of shadow regions. However,
it is difficult to distinguish similar targets such as water bodies,
green grasses, and the blue roof as well as the process of repeated
threshold calculation. Through the analysis between shadow and
non-shaded areas on the texture analysis, we conclude that it will
be easier to separate by using the feature of the entropy, energy,
contrast and inverse difference moment.

Fig.3 Orignal remote sensing image
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Fig. 4 Analysis of entropy and contrast between shadow and non-
shadow region

3.1.2  The Statistical mixture model

The basic idea of Gaussian background model is to regard the
natural landscape and artificial surface features as background (Ji, et
al.,2007) and detect shadow region by considering them to be consist-
ent with Gaussian distribution, which is not the property of the shaded
area. However, a simple Gaussian model cannot express the natural
background and artificial surface features appropriately. Further-
more, high-resolution remote sensing image is different from the
nature image which contains a lot of surface features, and the tradi-
tional Gaussian model cannot describe high resolution remote sens-
ing images well. In theory, multi-component compositions of the
mixture model can describe the complicated distribution as well as
high scalability. By adjusting the parameters of the mixture model,
the mixture model can meet the requirements to describe the actual
high-resolution remote sensing images. As the RBF network has the
strong nonlinear and localized capabilities, it further enhances the

remote sensing image classification and shadow detection accuracy.

3.2 Construction of mixture model

The structure of the mixture RBFNN we designed is shown in
Fig. 2, in which RBF network is adopted as the component of the
mixture model.

(1) Input of the mixture model: Four statistical features of an
image were extracted as input vector: X={X,e.ys Xgnmopy> Xcontrasts
Xip }- When calculating GLCM and the texture feature, we decom-
posed the image into a set of small pixel region. The size of the
set is very important to the accuracy of the classification. We tried
to set the sizes of window to 8x8, 6x6, 4x4 and 2x2 respectively,
and compared the accuracy of classification of test samples. As the
process based on 4x4 window has a higher computing precision
and a faster computing speed, the size of 4x4 window finally was
adopted to extract features. When use different directions, it has lit-
tle effect. In our experiment, 45 degree direction was used.

(2) Expected output: The expected output of the hybrid model
includes shadow regions, border regions and non-shadow regions.
We use one-of-K encoding method: Z,=(1,0,0)" represents for class
one that belongs to shadow region,; Z,=(0,1,0)" represents for class
two that belongs to border region; and Z;=(0,0,1)" represents for
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Fig. 5 Analysis of energy and IDM between shadow and non-
shadow region

class three that belongs to non-shadow region.

(3) Actual output: Actual output is a probability vector P={p,,
DP» D3}, p: denotes the probability that X belongs to class i (i=1, 2, 3).
If p; is the largest in P, X will be divided to class ;.

3.3 Experimental procedure

3.3.1 Training Sample Selection

The training data set used in our experiments was downloaded
from Google Earth without particular selection. We selected three
training classes as following, C1: shadow, C2: The junctione of
shadow and non shadow, C3: non-shadow, and there are fifteen se-
lected traning images for each class.

3.3.2  Parameter Initialization

As discussed above, eight parameters are included in the experi-
ment: {H, K, P(j), o, W, y, u, n}. The initial value of these param-
eters can have great effect on the accuracy of classification.

(1) The number of component A in the mixed model is set to 5,
that is H=5;

(2) The node number K; of the middle layer for RBF neural
network are 11, 12, 13, 14, 15, respectively, that is K,=11, K,=12,
K=13,K=14, K~15;

(3) The initial probabilities P(j) of the five components are set
to the average value 0.2, P(j)=1/H (=1, 2, ..., 5);

(4) The variance ajz is set to 9 as the initialization value which is
an experience value;

(5) The initial RBF weight vector is set as expression (13):

w(j,i,1)=0.25+0.75x Z(j,I) (13)

J=L...H,i=1,...,K, [=1,...,d, Z(j,]) is a column vector;

(6) The mean x of each RBF network is calculated by K-means
clustering algorithm, and the specific process can be described as
follows:

stepl The mean of /" RBF network ;, 1s selected randomly;

step2 By the minimum Euclidean distance principle, x, will be
assigned to the center y; ;

step3 Calculate the mean of class i and update the cluster center s, ;

step4 Loop iteration, until all cluster centers no longer change,
and then acquire all of the initial mean y,,, (j=1,--+, H, i=1,-*-, K);

(7) The variance of /" RBF network is calculated as:
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(8) The learning factor # is an import parameter in the model.
If being poorly set, the EM algorithm may not get a convergence
result, or the result may locate in a local minimum or maximum
point. With experiments, we find that for the multi-source data, the
learning factor should be a relatively small value. Otherwise, the
algorithm may not converge. In our experiments, we have tried
several values and find that the best classification result can be ob-
tained when 7 =—0.5.
3.3.3 Description of Training process

The EM-like learning algorithm is applied to train the RBFNN
model. The detailed steps are shown in subsection 2.3. In our
experiments the training procedure terminates and reaches the
extremes just after several loops and this takes less than a few
seconds, which can be described in Fig. 6. Then we can obtain the
parameters @={ W, ¢’, y, u}of mixture model.
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Fig. 6 Trainning flowchart

4 EXPERIMENTAL ANALYSIS

We run a series of experiments of shadow detection based on the
proposed method. The computer configuration is listed as follow-
ing: Memory 2 G, CPU Core II 1.8 G. The remote sensing images
with heavy shadows for experiments are downloaded from Google
Earth, and the sizes of those images are not changed. In this study,
only detection results of three images are listed. Fig. 7(a), Fig. 8(a)
and Fig. 9(a) are examples of three images with heavy shadows,
respectively. We denote

them as Imgl (200x200), Img2 (230x200) and Img3 (230x150).
It can be seen that the original remote sensing image has heavy
shadowed buildings, high reflective regions, and dark green lawns.
In order to observe the effect of detection and compensate the in-
formation of shadow regions later, the pixel with grey value of 255
will represent shadow regions, and the pixel value which is original
represents that the pixel belongs to no-shadowed region. We also
compare them with the Gaussian background and the histogram
threshold method. Subfigure (b) in Fig. 7, Fig. 8 and Fig. 9 are the
results of applying SMM-RBFNN method respectively. Subfigure
(c) shows the results using the Gaussian background method and
subfigure (d) is the detection result using the histogram threshold
method.

For a more objective analysis of test results, suggested from the
analytical methods used in the literature (Martel-Brinson N, ef al.,
2005), we mainly analyze three types of data TN, FN, FS, where
TN expresses the number of correct recognition of the shadow
region, FN expresses the number that mistakenly identify the non-
shadow area as shadow area, and FS expresses the number of
missed the shadow region. Two indicators for evaluating the detec-
tion accuracy are calculated, one is the correct detection rate DR,
the other is the missed rate FR. DR and FR are defined as:

R=—TN . 100%
TN+FN 15)
R=— 55 L 100% (
TN+FN+FS

A good shadow detection method should satisfy the DR as large
as possible, while keep the FR as small as possible.

We calculate the two indices for the SMM-RBFNN method, the
Gaussian background model method and the histogram threshold
method according to Eq. (15), which are illustrated in Table 1.

We can draw the following conclusions according to results
shown in Table 1:

(1) Histogram threshold has the problem of false dismissals, and
it is easy to detect dark roads, blue water which also exhibits higher
hue and lower luminance as the same as shadow regions as shadow
region;

(2) The accuracy of the Gaussian background method is better
than that of the histogram method. However, it has the problem of
dismissals that to detect similar areas such as dark roads, blue water
and green vegetation as shadow areas;

(3) The average DR of the proposed method is 92% and FR is
about 7%. The comparison results show that the proposed method
can distinguish dark objects from shadows, and the shape of the
segmented shadows is preserved well. It has a higher detection
precision than that of Gaussian background method and histogram
threshold method.

Threshold method is mainly suitable for gray images. Mean-
while, there is no universal method to determine the threshold for
all images. Besides, repeated experiments show that the proposed
method has better stability than the Gaussian background method.

In contrast to the Gaussian background model, which has the
problem of dismissals, we observe that the proposed method can
solve the problem of false dismissals, and it improves the accuracy
of shadow detection. Thus, SMM-RBFNN test method shows bet-
ter detection accuracy than the Gaussian background method and
the histogram threshold. As long as to set a good initial parameter



XIA Huaiying, et al.: A shadow detection of remote sensing images based on statistical texture features 783

values, the detection process can be run automatically to achieve a
high standard of automated inspection.

Meanwhile, there is no universal method to determine thresh-
old for all images when use the histogram threshold. Furthermore,
histogram threshold needs to remove the isolated points by using
mathematical morphology.

The reason that mixture model is able to obtain high detection
accuracy is incorporation of the mixture model to describe high
resolution remote sensing image. Therefore, it is more suitable to
keep in accordance with actual distribution, as well as the good
scalability of the RBF network.

Table 1 Analysis of two indices

Method Image DR FR Test Result
Imgl 92.86% 6.67% Very Good
SMM-RBFNN Img2 91.67% 7.69% Very Good
(©) (C))
Img3 92.62% 6.78% Very Good
Fig. 8 Img2 detection results
Imgl 81.25% 11.11% General (a) Orignal image, (b)Result of SMM-RBFNN,
(c) Result of Gaussian background, (d) Histogram threshold
Gaussian o o
Background Img2 83.33% 14.28% General
Img3 88.27% 10.74% General
Imgl 68.42% 9.52% Bad
Histogram o o
Threshold Img2 75.00% 14.28% Bad
Img3 74.17% 13.27% Bad

Fig. 9 Img3 detection results.
(a) Orignal image, (b)Result of SMM-RBFNN,
(c)Result of Gaussian background, (d) Histogram threshold

In principle, by adjusting the mixture model parameters (number
of mixture components /, the number of radial basis function X
in RBF network, K; generally depends on the number of training
samples N, usually take K={2/3xN+j}(j=1,---, H) that can satisfy
the requirements of specific problems, which improves the output
accuracy of combination of the network model.

5 CONCLUSION

In this paper, a statistical mixed model based on radial basis
function neural network is applied in detection of shadows of re-
() (d) mote sensing images. By analyzing the properties of shadow and
Fig.7 Imgl detection results non-shadow areas, four statistical features, including energy, en-
(a) Orignal image, (b) Result of SMM-RBFNN, tropy, contrast and inverse difference moment, extracted from grey

(c) Result of Gaussian background, (d) Histogram threshold level concurrence matrix are used as the model input features. EM-
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like algorithm is adopted to estimate the model parameters through
optimizing the system cost function. The comparison results show
that the proposed method can distinguish dark objects from shad-
ows, and the shape of the segmented shadows is preserved well.
It has a higher detection precision than that of the Gaussian back-
ground and the histogram threshold method. Mixture model is more
suitable to express the actual distribution of the complex than the
simple Gaussian model. Compared with the Gaussian background
and the traditional histogram threshold method, mixture model
shows higher shadow detection accuracy. At the same time, this
method does not require assumptions, it leads much broader appli-
cations.

In this paper, we use four texture features as input vector and it
works well for shadow detection. The combination of texture and
spectral features is our next research goal. Besides, the number of
RBF network K;, and the learning factor of EM-Like algorithm
both have an important impact on detection accuracy. Thus, in the
future work, we will focus on how to find a more efficient initiali-
zation method instead of selecting initial values by experience.
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