文章编号:0494-0911(2011)06-0008-03

中图分类号: P216

文献标识码: B

位于不同高度的特殊点的高程测量方法研究

龚德书¹ 蒋 华²

(1. 南通大学 建筑工程学院 江苏 南通 226019; 2. 南通大学 电子信息学院 江苏 南通 226019)

Study on Elevation Measurement Method of Paticular

Points in Different Height

GONG Deshu , JIANG Hua

摘要:介绍一种位于不同高度的特殊点的高程测量方法及计算公式,并推导误差分析公式,模拟位于不同高度的特殊点和不同观测角度、距离对高程测量精度的影响,从而得出一些结论。实例结果表明,该方法具有较强的实用性和可操作性,能较好地测量位于不同高度的特殊点的高程,可以满足工程测量的需要。

关键词:特殊点;高程测量;前方交会;误差分析

一、引言

在工程测量中,常常需要测量高差较大的位于 不同高度的特殊点的高程 即在其上或其铅垂线下 方不能安置棱镜的点,如架空线、桥梁、烟囱、高楼 大厦、高耸天线等建(构)筑物的顶端或其他特殊位 置。对于特殊点的高程测量,通常需要借助于各种 基线间接确定测站到特殊点的距离,如文献[1]提 出了在测站上变动仪器高度的方法 但其精度有待 商讨; 文献 [2-5] 介绍了在竖直面内建立水平基 线 采用竖直角前方交会的方法,但主要适用干架 空线等线状地物 对其他情况适用条件有待进一步 探讨; 文献 [5-8] 介绍了在水平面内建立水平基 线,采用水平角前方交会的方法,但文中给出的误 差分析公式均存在不同程度的错误,还需要仔细推 敲 部分结论有待商榷。基于上述情况,本文在水 平面内建立水平基线,采用水平角前方交会的方 法 对位于不同高度的特殊点的高程测量进行研 究。主要研究了位于不同高度的特殊点的高程测 量方法及计算公式,并推导了误差分析公式,模拟 了位于不同高度的特殊点和不同观测角度、距离对 高程测量精度的影响。最后选用实例数据验证了 本文测量方法的正确性。

二、测量方法及计算公式

1. 测量方法

如图1所示,设特殊点P为高程待求点,其在

收稿日期:2010-08-27 基金项目: 江苏省南通市应用研究计划资助项目(K2008015) 作者简介: 龚德书(1962—),男、江苏常州人、硕士、高级工程师,主要研究方向为工程测量。

水平面上的投影为 P', 在 P 的一侧选择互为通视的 $A \setminus B$ 两点作为测站点, 以 $A \setminus B$ 两点建立水平基线。 在 $A \setminus B$ 两点上分别安置全站仪, 观测水平角 $\alpha =$ $\angle P'AB \setminus \beta = \angle ABP'$; 竖直角 $\alpha_{AP} \setminus \alpha_{BP}$; 水平距离 D_{AB} ; 量取仪器高 $i_A \setminus i_B$ 。根据附近的已知水准点, 用 水准测量方法测量 $A \setminus B$ 两点的高程 $H_A \setminus H_B$ 。

图1 前方交会高程测量示意图

2. 计算公式

A、*B*、*P* 3 点在水平面上投影所组成的平面三角 形中 应用正弦定理得

$$D_{AP'} = \frac{D_{AB}}{\sin(180^\circ - \alpha - \beta)} \sin\beta = \frac{D_{AB}}{\sin\gamma} \sin\beta \quad (1)$$

$$D_{BP'} = \frac{D_{AB}}{\sin(180^\circ - \alpha - \beta)} \sin \alpha = \frac{D_{AB}}{\sin \gamma} \sin \alpha \quad (2)$$

式中 $\gamma = 180^{\circ} - \alpha - \beta$; $D_{AP'} \searrow D_{BP'}$ 分别为 $A \stackrel{}{=} \Lambda \searrow B$ 点到 P'点的距离。

利用三角高程测量计算公式 分别由 A 点、B 点 计算 P 点的高程

mm

$$H_{P}^{A} = H_{A} + h_{AP} + i_{A} = H_{A} + D_{AP} \tan \alpha_{AP} + i_{A} \quad (3)$$

$$H_P^B = H_B + h_{BP} + i_B = H_B + D_{BP}$$
.tan $\alpha_{BP} + i_B$ (4)
以上两式取平均值得特殊点 P 的高程

$$H_P = \frac{1}{2} (H_A + H_B + D_{AP} \tan \alpha_{AP} + D_{BP} \tan \alpha_{BP} + i_A + i_B)$$
(5)

在使用式(3)、式(4) 计算 P 点的高程时,因测 量误差的影响,其高程不可能相等,但两式高程之 差应不大于允许误差(如取3倍的高程中误差),否 则应分析原因后重新观测。

1. 误差公式

设测量特殊点 P 的高程中误差为 m_{H} ; 水平距离 D_{AB} 的距离中误差为 m_{D} ; 水平角 $\alpha \ \beta$ 的测角中误差 为 m_{β} ; 竖直角 $\alpha_{AP} \ \alpha_{BP}$ 的测角中误差为 m_{α} ; 仪器高 $i_{A} \ i_{B}$ 的量取中误差为 m_{i} 。假定高程 $H_{A} \ H_{B}$ 的测量 中误差为零 根据误差传播定律,对式(5) 进行全微 分可得

$$m_{H}^{2} = \frac{1}{4} \begin{pmatrix} \left(\frac{\sin\beta\tan\alpha_{AP} + \sin\alpha\tan\alpha_{BP}}{\sin\gamma}\right)^{2} m_{D}^{2} + \\ \frac{D_{AB}^{2}}{\sin^{4}\gamma} \left((\sin\gamma\cos\alpha\tan\alpha_{BP} - \sin\alpha\cos\gamma\tan\alpha_{BP} - \sin\beta\cos\gamma\tan\alpha_{AP})^{2} + \\ (\sin\gamma\cos\beta\tan\alpha_{AP} - \sin\beta\cos\gamma\tan\alpha_{AP} - \sin\alpha\cos\gamma\tan\alpha_{BP})^{2} + \right) \left(\frac{m_{\beta}}{\rho}\right)^{2} + \\ \frac{D_{AB}^{2}}{\sin^{2}\gamma} \left(\frac{\sin^{2}\beta}{\cos^{4}\alpha_{AP}} + \frac{\sin^{2}\alpha}{\cos^{4}\alpha_{BP}}\right) \left(\frac{m_{\alpha}}{\rho}\right)^{2} + 2m_{i}^{2} \end{pmatrix}$$
(6)

由式(6) 可得出以下结论:

1) 当 $m_D \ m_\alpha \ m_\beta$ 及 m_i 为一定值时 m_H 主要取 决于特殊点 *P* 的高度和 *P*、*A*、*B* 3 点所组成的立体 几何图形 即 $h_{AP} \ h_{BP} \ D_{AB} \ \alpha \ \beta \ \alpha_{AP} \ \alpha_{BP}$ 的大小。

2) 当 $\gamma = 90^{\circ}$ 时 m_H 受水平距离和水平角测量 误差的影响较小。

3) 当 $h_{AP} \cong h_{BP}$ 且 $\alpha \cong \beta \cong 55^{\circ} \gamma \cong 70^{\circ}$ 时 m_{H} 受 水平角测量误差的影响最小。

4) 当 $\alpha_{AP} = \alpha_{BP} = 45^{\circ}$ 时 m_H 受竖直角测量误差

的影响最小。

2. 精度分析

为了分析本测量方法对位于不同高度的特殊 点的高程测量精度,设 $m_{D} = \pm 2 \text{ mm}, m_{\alpha} = \pm 2'',$ $m_{\beta} = \pm 2'', m_{i} = \pm 1 \text{ mm}$ 并设 $\alpha_{AP} = \alpha_{BP}, h_{AP} = h_{BP}, \alpha = \beta$,使用式(6),模拟计算高度为 25 m、50 m、100 m、200 m、400 m 时不同观测角度、距离情况下的高程 中误差,计算结果如表 1 所示,限于篇幅表中仅列出 了高度为 100 m 时的计算结果。

表1 高度为100m的高程测量精度

$lpha_{AP}$	$A_{\scriptscriptstyle BP}$	D_{AP}	D_{BP}	α 或 β/(°)												
/(°)	/(°)	/m	/m	75	70	65	60	55	50	45	40	35	30	25	20	15
5	5	1 143	1 143	8.2	8.1	8.0	7.9	7.9	7.9	8.0	8.0	8.1	8.2	8.4	8.7	9.3
10	10	567	567	4.7	4.3	4.2	4.1	4.1	4.1	4.1	4.2	4.3	4.5	4.9	5.4	6.4
15	15	373	373	3.7	3.3	3.0	2.9	2.9	2.9	2.9	3.0	3.2	3.5	3.9	4.5	5.7
20	20	275	275	3.4	2.9	2.6	2.4	2.3	2.3	2.4	2.5	2.7	3.0	3.5	4.2	5.4
25	25	214	214	3.4	2.7	2.4	2.2	2.1	2.1	2.2	2.3	2.5	2.8	3.3	4.0	5.3
30	30	173	173	3.6	2.8	2.4	2.1	2.0	2.0	2.0	2.2	2.4	2.7	3.2	4.0	5.3
35	35	143	143	3.8	3.0	2.5	2.2	2.0	2.0	2.0	2.1	2.4	2.7	3.2	3.9	5.2
40	40	119	119	4.2	3.2	2.7	2.3	2.1	2.1	2.1	2.2	2.4	2.7	3.2	4.0	5.3
45	45	100	100	4.7	3.6	2.9	2.6	2.3	2.2	2.2	2.3	2.5	2.8	3.2	4.0	5.3
50	50	84	84	5.3	4.1	3.3	2.9	2.6	2.5	2.4	2.5	2.6	2.9	3.3	4.1	5.3
55	55	70	70	6.2	4.7	3.8	3.3	3.0	2.8	2.7	2.7	2.8	3.0	3.5	4.2	5.4
60	60	58	58	7.3	5.5	4.5	3.9	3.5	3.2	3.1	3.0	3.1	3.3	3.7	4.3	5.5

从表1中可得出以下结论:

误差逐渐增大。

2) 当竖直角在 25°以下或 40°以上时,高程中

3) 当水平角为 45°~60°(交会角为 60°~90°)
 时 高程中误差较小。

4) 当水平角为 25°~40°或 65°~75°(交会角

¹⁾ 当竖直角在 30°~40°时 高程中误差最小为 ±2.0 mm。

为100°~130°或30°~50°)时高程中误差其次。

5) 当水平角为 15°~20°(交会角为 140°~ 150°) 时 高程中误差较大。

另对模拟计算结果分析还可以得到:

当高度增大时,适当增大竖直角但不大于
 45°将减小竖直角观测误差对高程中误差的影响。

 2) 当高度增大时,任意减小竖直角,将明显增 大竖直角观测误差对高程中误差的影响。

综上所述,实际测量时应估计特殊点的高度及 周围地形情况,尽可能选择竖直角为30°~45°、水 平角为45°~60°(交会角为60°~90°)、水平距离为 高度的1.0~1.5倍的立体几何图形,以提高高程测 量的精度。

四、实例分析

为了验证本测量方法的正确性,使用尼康 (Nikon DTM-352C)全站仪,仪器标称精度为一测回

方向观测中误差为 ± 2",距离测量精度为 ± (2 mm $+2 \times 10^{-6} D$)。首先,选择有代表性的高度约为 50 m、100 m、200 m 的 3 幢建筑物 在上面选择观测 目标点 P 在目标点上直接安置棱镜,并参考表1选 择对应的竖直角以提高测量精度;其次,在地面上 根据地形条件概略选择水平基线方向 用全站仪照 准目标点 P 并读取竖直角 ,大致测量目标点与水平 基线方向的水平夹角 移动全站仪尽可能使竖直角 不小于选择的竖直角,水平夹角在45°~60°之间, 确定 $A \perp$; 再次 用与 $A \perp$ 相同的方法确定 $B \perp$ 并 使A、B两点与P点距离大致相等 使A、B两点距离 接近并大于目标高度;最后,按照本测量方法对角 度、水平距离各观测6个测回 不同方向量取仪器高 3次如表2所示。同时在A、B两测站上,用光电测 距三角高程测量方法测量 P 点的斜距 6 个测回并 计算高差 计算结果如表 3 所示。

表 2 观测成果表

建筑物	A /(° ´ ″)	B /(° ´ ″)	$lpha_{AP}$ /(° \checkmark ")	α _{BP} /(° ′ ″)	D_{AB} /m	i_A /m	i_B /m	H_A /m	H_B / m
1	53 13 06.3	56 41 35.8	33 39 10.8	34 37 10.3	75.4580	1.557	1.559	4.372	4.476
2	55 34 19.1	55 05 20.3	32 50 53.4	32 39 42.8	165.6698	1.534	1.450	4.521	4.726
3	54 31 38.0	58 17 42.8	31 49 59.9	32 57 00.3	368.3565	1.586	1.688	4.459	4.489

表3 计算结果比较表

建筑		本文测	量方法			对应差值					
運動物	h_{AP}	$h_{\scriptscriptstyle BP}$	H_P	$m_{_H}$	$h_{\scriptscriptstyle AP}$	$h_{\scriptscriptstyle BP}$	H_P	$m_{_H}$	$\Delta h_{\scriptscriptstyle AP}$	$\Delta h_{\scriptscriptstyle BP}$	$\Delta h_{\scriptscriptstyle P}$
	/m	/m	/m	/mm	/m	/m	/m	/mm	/mm	/mm	/mm
1	44.7383	44.6337	50.6680	±1.5	44.7408	44.6362	50.6705	±1.3	-2.5	-2.5	-2.5
2	93.7442	93.6211	99.7982	± 2.0	93.7458	93.6240	99.8004	±1.8	-1.6	-2.9	-2.2
3	211.0278	210.9002	217.0750	±3.5	211.0303	210. 892 7	217.0725	±3.4	-2.5	+7.5	+2.5

根据仪器标称精度取 $m_{\alpha} = \pm 2'' \cdot m_{\beta} = \pm 2'' \cdot m_{\beta}$ $m_{p} = \pm 2 \sqrt{1 + D_{AB}^{2}} \cdot m_{i} = \pm 1 \text{ mm}$,计算目标点的 高程和高程中误差,结果如表 3 所示。从计算结 果比较来看,对应差值均不大于 $3m_{H}$,精度同光电 测距三角高程测量方法相当。另外,对 6 个测回 的观测数据任意组合成 1 ~ 5 个测回,分别计算 Δh_{P} 并按区间进行统计,若取 $3m_{H}$ 为高程测量误 差的允许误差,则对于 50 m、100 m、200 m 的目标 点分别观测 1、2、3 测回均能满足精度要求。由此 可见,本文测量方法能较好地测量位于不同高度 的特殊点的高程,在工程测量实践中具有较强的 实用性和可操作性。

五、结束语

 1)对位于不同高度的特殊点进行高程测量时, 应根据文中精度分析的结论和地形情况,选择有利 的立体几何图形,尽可能使A、B两点与P点构成等 腰三角形,以提高高程测量的精度。

2) 当特殊点的高度增减时,视高程测量的精度
 要求,宜适当增减测量角度和水平距离的测回数,
 以提高测量工作效率,确保测量成果的质量。

3) 在测站观测结束时,应及时进行测站检查, 避免各种不必要的测量错误的发生。检查时,根据 高程测量的精度要求,各测回角度、水平距离之差 (下转第35页) 本数据库基本实现了上述数据库设计要求中 的所有功能,其他数据库系统实现的页面以及相关 的程序代码的编写由于文章篇幅原因不再赘述。

六、结束语

本文叙述了建立基于 B/S 结构的小城镇管网数 据的过程。本数据库具有维护成本低、服务器安全性 能高 图形数据和属性数据查询方便快捷等优点。当 然 其最大的优点是异地浏览和信息采集的灵活性, 即无论任何时间、任何地点,只要可以上网,通过浏览 器 IE 就可以使用 B/S 系统的终端,对于数据库的众 多用户和维护人员是非常方便的,本数据库的建立可 以有效地促进小城镇管网的科学管理。

(上接第10页)

应不大于2倍或3倍的测角、测距中误差 若超限应 分析原因及时重测。

4) 若要对特殊点进行悬高测量,可按本文测量 方法先求得特殊点的高程,再求其对应的铅垂线与 地面的交点高程、或求建(构)筑物的室内地平标 高,两高程之差就是特殊点的悬高。

参考文献:

- [1] 徐汉涛.精确悬高测量方法的探讨[J].测绘通报, 2004(6):65-66.
- [2] 郭宗河. 悬高测量及其改进[J]. 测绘工程,1999, 8(2):62-64.
- [3] 谭旭. 特殊情况下悬高测量方法的探讨 [J]. 城市勘

(上接第17页)

 3) 点位设计图具有公开性 较原有的地形图更 具有适用性。在外业生产中不会因为地形图的丢 失而造成重大安全隐患。

4)通过在 MapInfo 软件平台上新设计的点位 可以直接具有 WGS-84 坐标系下的坐标,通过导航 型手持接收机可以达到距离设计点位几十米范围 内。无需结合地形图判别地物、地貌,降低了对作 业人员的要求。

但在实际应用中会因为道路交通图配赋的不 准确性,导致道路交通图的扭曲,从而造成交通路 线的不准确,这就需要通过工地发现错误所在,并 重新配赋道路交通图,直到交通图尽量与实际最接 近为止。

参考文献:

- [1] 中华人民共和国建设部. CJJ61-2003 城市地下管线探 测技术规程[S]. 北京:中国建筑工业出版社 2003.
- [2] 路玲玲 吴晓明 任杰.城市地下管网信息管理问题研 究[J].地域研究与开发 2008 27(2):47-50.
- [3] 雷伟刚. 城市管线信息系统的几个问题 [J]. 测绘学报 2002 31(50):103-108.
- [4] 徐星圆,孙杨,王纪珩.浅议 MapInfo 在图形信息可视 化中的应用[J].计算机与数字工程,2008,36(8):
 126-128.
- [5] 何撼东,郭伟. 基于 MapXtreme2005 的数字化校园建 设[J]. 池州学院学报, 2008, 22(5): 19-21.

察 2002(3):1-4.

- [4] 郑定让. 精确悬高测量 [J]. 测绘通报,2002(6): 37-38.
- [5] 奚毓敏.不可到达点高程测量方法研究[J]. 电力勘测设计 2006(6):25-28.
- [6] 刘庆金. 特殊悬高之测量方法 [J]. 测绘通报,2006(3):43-45.
- [7] 梁建昌 何娟霞 杨国范 前方交会高程测量[J].铁道 勘察 2005 31(2):1-2.
- [8] 杜文举.关于建筑物塔顶悬高测量的研究[J].四川建 筑科学研究 2010(1):277-280.
- [9] 顾孝烈 鮑峰 程效军.测量学[M].上海:同济大学出版社 2006:136-158.

参考文献:

- [1] 国家测绘局. CB/T 18314—2009 全球定位系统(GPS)
 测量规范[S]. 北京: 测绘出版社 2009.
- [2] 邓跃明,濯娅娟,刘治枝.基于 MapInfo 的专题地图制 作[J].测绘通报 2001(7):17-18.
- [3] 费立凡,颜辉武,马晨燕,等. MapInfo 基础教程[M]. 北京:测绘出版社 2005:52.
- [4] 孔祥元,郭际明,刘宗泉.大地测量学基础[M].武汉: 武汉大学出版社 2001:70.
- [5] 杨玉华,郭圣权. WGS-84 坐标与 BJ-54 坐标之间的坐标转换问题 [J]. 科技情报开发与经济,2004(14): 165-167.
- [6] 徐绍铨,张华海,杨志强,等. GPS测量原理及方法[M].武汉:武汉大学出版社 2003:57.
- [7] 国家测绘局大地测量数据处理中心.西安市第二次土 地调查基础控制网技术报告(外业部分)[R].西安: 国家测绘局大地测量数据处理中心 2008.