文章编号: 0494-0911(2011) 03-0026-03

中图分类号: P208

文献标识码: B

复杂面状矢量要素快速形状匹配方法

付仲良1,2,邵世维1

(1. 武汉大学 遥感信息工程学院,湖北 武汉 430079;

2. 武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430079)

Methods of Complex Polygon Element Fast Shape Matching

FU Zhongliang, SHAO Shiwei

摘要:矢量要素匹配是数据库合并和数据更新的核心问题。在分析现有匹配方法不足的基础上,针对复杂面状要素匹配问题,提出先对复杂面要素进行基于 Douglas-Peucker 方法的形状简化,然后对简化后的形状再进行形状匹配。其中,形状匹配通过正切空间的方法对要素进行描述,然后利用形状匹配距离计算出形状差异。通过试验表明该方法能够有效提高矢量形状匹配的速度以及正确率,较好地解决复杂情况面要素匹配的问题。

关键词: 矢量匹配; 形状特征; 空间相似性; Douglas-Peucker; 正切空间

一、引言

矢量要素的匹配是通过对目标实体的几何、拓扑和语义的相似性度量,识别出同一地区不同来源的空间数据集中的同一地物,从而建立两个空间数据集之间同名目标的联系,并探测出不同空间数据集之间的差异或变化[1]。

矢量要素的匹配方法按照判别依据一般分为 几何匹配、拓扑匹配和语义匹配。拓扑匹配属于弱 条件匹配,微小的差异都将导致匹配失败;语义匹 配常常依赖于数据模型、属性数据类型及数据完整 性,它们都不足以确定两个面实体为同名实体,所 以实际应用中通常使用几何匹配进行目标之间的 相似识别。矢量要素的几何匹配是通过计算参照 目标与源目标之间的几何相似度进行的一种匹配 方法。现阶段针对面实体的几何相似度提出一些 解决方法,如文献[2]根据两个面目标的重叠面积 比值来计算其匹配的可能性,但会出现误匹配的情 况; 文献 [3] 通过傅里叶形状描述子,来进行多边形形 状比较以及形状查询,但涉及大量运算并且匹配效率 不高; 文献 [4] 提出基于空间实体特征(位置、形状及 大小) 的相似性确定同名面实体匹配总相似度的方 法,这种方法利用计算向量间绝对距离的方式来计算 形状相似度,但未考虑向量、数量不一致等情况。

为了提高面要素匹配的效率,同时又兼顾匹配的 准确度,首先将复杂面要素进行形状简化,这样既能 降低噪声的影响,又能排除不重要的形状特征,保留 其重要特征,从而提高匹配的速度;在形状匹配时,利用正切空间的形状描述方法对简化后的要素进行描述,然后利用形状匹配距离再计算出形状差异值。

二、复杂面状矢量要素快速匹配方法

1. 基于 Douglas-Peucker 的复杂面要素 形状简化

定义: 设简化距离阈值为 T; C 为实平面上的闭合多边形, P_0 , P_1 , \cdots , P_n 为该闭合多边形上顶点,并沿顺时针方向分布。计算出与 P_0 距离最长的顶点 P_k (如有几个最长值取 k 值最小的 P_k), 连接 P_0 与 P_k 。利用直线 P_0P_k 分别对两段复合线 P_0-P_k 和 P_k-P_n 上的节点计算到直线 P_0P_k 的距离 D_i ,选取其中距离最大的点 P_j ,如果 D_i 大于限差阈值,则保留点,反之剔除该点。利用保留的最大距离点 P_j 将原复合线分为两段,并用同样的方法对位于它们之间的节点进行检测,重复此操作,直至节点到两端点连线的距离最大值小于限差阈值为止,如图 1 所示。

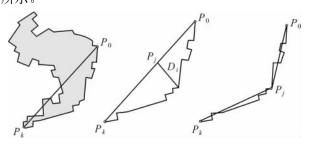


图 1 基于 Dauglas-Peucker 的形状简化

收稿日期: 2010-08-24

作者简介:付仲良(1965一),男,湖北麻城人,教授,博士生导师,研究方向为图形图像处理、GIS等。

2. 面要素形状描述方法

假设多边形的某一顶点作为参考点 P_0 , θ_1 表 示起始边 P_0P_1 的方位角, φ_1 表示从起始边 P_0P_1 到 P_1P_2 的转角, φ_k 表示沿着 $P_{k-1}P_k$ 到 P_kP_{k+1} 的转角, 多边形的正切空间形状描述函数为 $\theta(l)$, x 轴代表 从起点 P_0 沿着多边形周边到多边形上各点 P_k 的归 一化距离 $L_k = \sum_{i=1}^{\infty} L_i/L$, y 轴代表各点沿着周边的 转角(以顺时针为正方向)的累加 $\theta_k = \theta_{k-1} + \varphi_{k+1}(k)$ = 3,4,…,n),如图 2(a) 所示。由于不同起始点、 不同的方向所得到的面实体正切空间函数不同,在源 匹配多边形中,定义 $P_0(x_0,y_0)$ 为起始点,其中 x_0 = $\max\{x \mid (x_i, y_i) \in A\}$, $y_0 = \min\{y \mid x = x_0, (x_i, y_i)\}$ $\in A$ 。从起始点 P_0 沿着多边形顺时针旋转方向为 正方向, P_0P_1 为起始方向线。以 P_0 为原点、距离阈 值 T 为半径搜索包含在圆内的目标多边形 B 的节点 集合 Q,选取与 P_0P_1 的方位角 θ_1 差异最小的结点 为目标匹配多边形的起始点 P_0 (如图 2(b) 所示)。

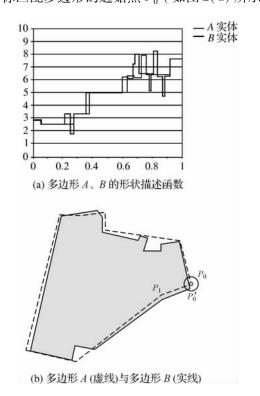


图 2 基于正切空间的形状描述函数

3. 面要素形状匹配方法

通过以上的形状描述方法对多边形 $A \ B$ 要素进行形状描述,将其形状化为正切空间表达式,分别为 $\theta_A(l)$ 和 $\theta_B(l)$,其中 s 为 x 轴坐标, θ 为 y 轴坐标。通过计算两个矢量要素之间的形状匹配距离来确定它们的相似性,进而判断两要素是否匹配。定义其匹配距离为

$$D_{\scriptscriptstyle AB} = \int_0^1 (1 - |\frac{\theta_{\scriptscriptstyle A}(l) - \theta_{\scriptscriptstyle B}(l)}{\max(\theta_{\scriptscriptstyle A}(l), \theta_{\scriptscriptstyle B}(l))}|) dl \quad (1)$$

 D_{AB} 的值越趋近于 1 ,表示多边形 A 和 B 的形状越相似,匹配的程度越好。

三、试验与结论

1. 形状简化试验与分析

采用上述方法对图 3 中数据进行形状简化试验,给出一个简化效果示意图(简化阈值分别为8 m、10 m和 15 m)。



图 3 形状简化效果

利用文中基于正切空间的形状描述函数,对比原要素与三种简化后要素的形状匹配距离、面积匹配距离和周长匹配距离(如表1所示),可以看出,通过形状简化,要素节点数大大减少,要素的形状、面积、周长的变化在8m和10m的简化阈值下可以满足匹配要求。

表 1 形状简化试验

匹配要素	节点数	形状匹配距离	面积/m²	面积匹配距离	周长/m	周长匹配距离后
原要素	126	1.000000	22 103. 052 709	1.000000	1 116.755 958	1.000000
8 m 简化	33	0.945 360	22 192. 898 973	0.995 935	1 018.678 339	0.912 176
10 m 简化	24	0.890359	21 785. 185 085	0. 985 619	970.717 558	0.869230
15 m 简化	14	0.623 541	21 060. 901 922	0.952850	907.635 205	0.812743

2. 形状匹配实例与分析

本文以某地区 2003 年与 2008 年的图斑要素 (见图 4) 进行实例匹配,采用 ArcGIS Engine 9.3 与 VS. NET 2008 为开发平台,进行了形状匹配试验 (如表 2、表 3 所示)。其中简化阈值分别为 15 m 与 20 m,匹配阈值选取为 0.85。

通过本文方法与文献 [2](利用两个面目标的重叠面积比值)和文献 [3](利用向量间绝对距离计算的方法)进行比较(如表3所示)。

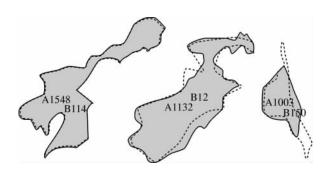


图 4 形状简化效果

表 2 多尺度面要素形状匹配

算法类型	匹配要素	简化阈值/m	节点个数	简化后节点个数	匹配距离	算法时间/s	是否匹配
本文算法	A154 8 与 B114	15	752	58	0. 973 580	1.053	匹配
		20		48	0.968 560	0.555	匹配
	A113 2 与 B12	15	660	49	0.763 251	0.682	不匹配
		20		42	0.795 233	0.414	不匹配
	A100 3 与 B150	15	201	22	0. 132 515	0.379	不匹配
		20		17	0.209836	0. 105	不匹配

表 3 匹配算法比较

算法类型	匹配要素	匹配值	算法时间/s	是否匹配
	A154 8 与 B114	0. 984 250	1.773	匹配
文献 2 算法	A113 2 与 B12	0.863624	1.330	匹配
	A100 3 与 B150	0.813695	0.732	不匹配
	A154 8 与 B114	0.861642	0.577	匹配
文献 4 算法	A113 2 与 B12	0.463 624	0.423	不匹配
	A100 3 与 B150	0.336248	0.091	不匹配

从表 2 和表 3 可以看出,利用本文的快速匹配方法在速度上明显快于文献 [2] 中的算法。文献 [2] 中计算两面目标的重叠面积,会消耗太多时间,而且通过重叠面积比值的方法匹配准确率不高,会出现误匹配情况。而文献 [3] 中的速度介于简化阈值 15 m 和 20 m 之间。综上所述,选择适当的简化阈值,可以明显提高形状匹配效率,并且准确率高于文献 [2] 和文献 [3] 中的算法。

四、结束语

实体匹配是多数据源多尺度数据集成与更新的关键技术,匹配效果的好坏直接影响到数据集成或更新的效果。本文将形状相似性的距离观与形状特征简化相结合,以形状匹配距离作为相似性特征,通过 Douglas-Peucker 算法对复杂面要素进行简化,大大提高了匹配速度,并提出一种基于正切空间的面状矢量要素形状相似性度量模型,利用形状描述函数较好地解决了匹配的准确率问题。最后通过对相同数据不同匹配算法进行试验比较,在匹

配的速度和准确率上有明显提高,说明本文的方法是有效的。

参考文献:

- [1] 张桥平,李德仁,龚健雅. 城市地图数据库面实体匹配 技术[J]. 遥感学报,2004,8(2):107-112.
- [2] 吴建华,付仲良. 数据更新中要素变化检测与匹配方法[J]. 计算机应用,2008,28(6):1612-1615.
- [3] 郝燕玲,唐文静,赵玉新,等. 基于空间相似性的面实体匹配算法研究[J]. 测绘学报,2008,37(4):501-506.
- [4] 唐炉亮,李清泉,杨必胜. 空间数据网络多分辨率传输的几何图形相似性度量 [J]. 测绘学报,2009,38(4): 336-340.
- [5] 杨得志,王杰臣,闾国年. 矢量数据压缩的 Douglas-Peucker 算法的实现与改进 [J]. 测绘通报,2002(7): 18-20.
- [6] 何磊,蒋大为,周敏.基于简化多边形类正切空间表示的图形渐变算法[J]. 计算机辅助设计与图形学学报,2007,19(3):304-310.