卢松耀¹,王东晓²,王德征²

(1. 广东有色工程勘察设计院,广东广州 510080; 2. 海南省三亚市测绘院,海南 三亚 572000)

摘 要:对曲线放样的常见方法进行了比较分析,提出了改进方法,结合实例对自由设站极坐标法、DGPS-RTK 法曲线测 设方法进行了深入讨论,给出了相应的数据处理方法和实验方法,实验结果表明 DGPS-RTK 技术使曲线放样精度更高,实 现更便捷。

关键词:曲线放样;极坐标法;差分全球定位系统;实时动态差分法 中图分类号: P258 文献标志码: B

Method for Road Curve Lofting

LU Songyao¹, WANG Dongxiao², WANG Dezheng² (1. Guangdong Nonferrous Metals Engineering Investigation Institute, Guangzhou 510080, China; 2. Sanya Institute of Surveying and Mapping, Sanya 572000, China)

Abstract: This article described common methods of setting out on the curve were compared, the improved method, a station with an example of polar coordinates by random setting station, DGPS-RTK method Curve method of in-depth discussions, the corresponding data processing methods and experimental methods, experimental results showed that the DGPS-RTK technology allowed more precise curve setting to achieve more convenient. Key words: curve lofting; polar coordinates; difference global positioning system; real - time kinematic

根据国家有关规定,在工程施工建设中不能偏离 工程设计的要求,需要测量技术人员将设计的待建工 程建(构)筑物的位置、大小和形态在实地中标定出 来。放样或测设是工程设计及施工之间的桥梁和纽带, 在实际工程中,标桩就是放样的结果,是工程施工建 设的依据 ¹¹。

铁路、公路、隧道、运河等线状工程都是由直线 段和曲线段组成的,直线段的放样技术比较成熟,而 曲线段放样相对比较复杂。在进行曲线测设时,需要 检核测设的成果质量是否达到设计要求,同时还应考 虑放样方法的实用性、适用性、效益性、便捷性及实 现的难度等。在优化现有放样方法的基础上进行创新, 以充分发挥曲线测设在线状工程项目建设过程中的作 用□。

1 传统曲线测设方法及比较

1.1 偏角法

偏角法的原理是以曲线起点或终点至曲线上的任 一点 i 的弦线与切线 T 之间的弦切角 δ (偏角) 和弦长 1来确定实际的位置,其优点是计算和操作方法比较简

图1 偏角法测设圆曲线

1.2 切线支距法

切线支距法测设缓和曲线是以缓和曲线起点(ZH) 或终点(HZ)为坐标原点,以过原点的切线为 X 轴, 过原点的半径为 Y 轴,利用缓和曲线和圆曲线段上各 点的坐标 x、v 来设置曲线。切线支距法测设圆曲线如 图 2 所示,一般用在支距较短的场合,如果支距较长, 可用偏角法,而全站仪则采用极坐标法最佳。

1.3 极坐标法

极坐标法是以自然站点出发,后视另一已知点, 拨出极角 Qi, 在此方向上量极距 Si, 即可确定待定点

文章编号: 1672-4623 (2010) 06-0136-03

的位置。该方法具有计算简单,操作灵活方便的优点, 但需要根据实际所选定的极坐标系进行各待测设点的 坐标反算。

1.4 几种传统曲线测设方法的比较 [2]

在以钢尺量距的常规方法进行曲线放样中,应用 较为普遍的是偏角法及切线支距法。在偏角法中,以 曲线起点、终点为依据,用偏角法测设曲线的计算和 操作都较为简单灵活,且可以自行闭合,自行检核,不 必再用其他途径进行误差检核,这样给测设工作带来 了很大的方便,提高了作业的效率,且减少了误差的 产生。而切线支距法测设曲线时,由于各曲线点是独 立测设的,其测角及量边的误差都不积累,所以在支 距不太长的情况下,具有精度较高,操作较简便的优 点,但用切线支距法进行测设时,它不能自行闭合,自 行检核,单个测设点误差不易控制。所以对已测设的 曲线点,要实量其相邻两点间的距离,以作检核,切 线支距法适用于支距较短的场合,如果支距较长宜采 用偏角法进行测设。在传统钢尺量距的常规方法外,极 坐标法具有比以上几种方法更优越的特点,用测距仪 量距代替钢尺量距可达到更高质量 高效率放样的目的。

曲线放样优化改进方法使得曲线测设操作更便捷, 解算更快速,而且在测设方法上有了很大的改变,从 钢尺量距到电子测距再到 GPS 或全站仪自动测距,评 断曲线放样的优化方法的指标就是在工程施工测量中 的精度的提高。

2 自由设站极坐标法曲线测设

2.1 自由设站极坐标法曲线测设原理

应用全站仪自由设站极坐标法测设曲线,使曲线 测设中距离测量的便捷性、精确性大大提高。该方法 的关键步骤是各待测设点极坐标的计算问题。为了便 于计算放样元素,该方法将由直线段、圆曲线段、缓 和曲线段组合而成的曲线归算到统一的导线测量极坐 标系统中。如图 3 所示为以 ZH 点为坐标原点建立的切 线支距坐标系,α为线路的转向角。

图 3 自由设站极坐标法测设曲线

曲线进行了放样实验,在放样中使用徕卡 TC702 全站 仪对线路的中桩进行测设。

圆曲线放样:已知曲线转角 α_i =33 ° 20 01 ,半径 R_i=100 m ,线路前进的偏向为(右偏为1),交点JD_i的 里程桩号为K₀+100 JD₁的坐标(35731.464 ,30121.226), JD₁到 ZY 点方位角 A0=225 ° 10 30 。根据以上已知 信息计算得到曲线综合要素为:切线长 T=29.938 m ,曲 线长 L=58.178 m ,外矢距 E=4.385 m ,切曲差 q=1.698 m。在此次放样中,以10 m 为桩距,计算所得的各放 样点中桩的里程、横坐标以及纵坐标如表1所示。

表 1 圆曲线放样计算成果表/m

点号及桩位	桩号	坐标 X	坐标 Y
ZY 中桩	K 0+70.06	35710.359	30099.992
1 中桩	K 0+80.00	35717.004	30107.377
2 中桩	K 0+90.00	35722.916	30115.436
QZ 中桩	K 0+99.15	35727.598	30123.295
4 中桩	K 0+100.00	35727.995	30124.046
5 中桩	K 0+110.00	35732.189	30133.119
6 中桩	K 0+120.00	35735.456	30142.566
YZ 中桩	K 0+128.24	35737.428	30150.564

表 2 带缓和曲线的圆曲线放样数据

综合曲线放样计算成果表						
点号及桩位	桩号	坐标 X	坐标 Y			
ZH 中桩	K 0+28.23	35743.356	30179.722			
01 中桩	K 0+30.00	35743.708	30181.455			
02 中桩	K 0+40.00	35745.665	30191.262			
03 中桩	K 0+50.00	35747.468	30201.098			
04 中桩	K 0+60.00	35748.984	30210.982			
05 中桩	K 0+70.00	35750.081	30220.92			
HY 中桩	K 0+78.23	35750.573	30229.136			
07 中桩	K 0+80.00	35750.622	30230.904			
08 中桩	K 0+90.00	35750.51	30240.901			
QZ 中桩	K 0+98.39	35749.902	30249.27			
10 中桩	K 0+100.00	35749.732	30250.869			
11 中桩	K 0+110.00	35748.292	30260.763			
YH 中桩	K 0+118.55	35746.539	30269.133			
13 中桩	K 0+120.00	35746.196	30270.539			
14 中桩	K 0+130.00	35743.485	30280.163			
15 中桩	K 0+140.00	35740.283	30289.636			
16 中桩	K 0+150.00	35736.723	30298.98			
17 中桩	K 0+160.00	35732.932	30308.233			
HZ 中桩	K 0+168.55	35729.602	30316.111			

带缓和曲线的圆曲线 :已知曲线转角 α_2 =34 30 00 , 半径 R₂=150 m,缓和曲线长 l₀=50 m,线路前进的偏向 为(右偏为 1),交点 JD₂ 的里程桩号为 K₀+100, JD₂ 的 坐标(35757.654,30250.052), JD₂ 到 ZH 点方位角 A₀=258 ° 30 31 。根据以上已知信息计算得到曲线综 合要素为:切线长 T=71.768 m,曲线长 L=140.321 m, 138・第6期

地理空间信息

表 3 圆曲线对比/m

中桩	DGPS-RTK		全站仪		Dx	Dy
点号	坐标 X	坐标 Y	坐标 X	坐标 Y	cm	cm
ZY	35710.359	30099.992	35710.364	30099.98	-0.5	1.2
1	35717.004	30107.377	35717.024	30107.367	-2	1
2	35722.916	30115.436	35722.91	30115.454	0.6	-1.8
QZ	35727.598	30123.295	35727.581	30123.282	1.7	1.3
4	35727.995	30124.046	35727.984	30124.031	1.1	1.5
5	35732.189	30133.119	35732.191	30133.131	-0.2	-1.2
6	35735.456	30142.566	35735.454	30142.564	0.2	0.2
YZ	35737.428	30150.564	35737.433	30150.556	-0.5	0.8

外矢距 E=7.791 m,切曲差 q=3.216 m。在此次放样中,以 10 m 为桩距,计算所得的各放样点中桩的里程、横坐标以及纵坐标如表 2 所示。

3 DGPS-RTK 法曲线测设

3.1 DGPS-RTK 法曲线测设原理

实时动态(Real Time Kinematic,简称 RTK)是以 载波相位观测量为根据的实时差分 GPS(DGPS)测量 技术,DGPS-RTK 法曲线测设原理如图 4 所示^[34]。

图 4 DGPS-RTK 法曲线测设

3.2 GPS-RTK 放样道路曲线实例

用 DGPS-RTK 方法分别对一条单圆曲线和一条带 缓和曲线的圆曲线的放样实例,本放样实验使用美国 天宝 GPS Trimble R8 接收机,只对线路的中桩进行测 设,实地放样所使用的数据与前面自由设站全站仪极 坐标法放样所用的数据相同,目的在于对于同样的道 路曲线的放样,可以比较自由设站全站仪极坐标法放 样和 DGPS-RTK 方法放样的点位之间的差值。

曲线测设信息同 2.2 所述。DGPS-RTK 放样单圆曲 线和带有缓和曲线的圆曲线的各中桩在 CASS 6.0 成图 软件中的放样展点图如图 5、图 6 所示。

图 5 圆曲线放样展点图

图 6 带缓和曲线的圆曲线放样展点图

在本实例中,分别使用了自由设站的全站仪极坐标法和 DGPS-RTK 方法对两段道路曲线进行了中桩测设。同时用钢尺量得的两次放样对同一个放样点的点位测设坐标之差,如表 3、表 4 所示。通过比较测量结果可以看出:同一中桩二种方法测得坐标之差的最大值分别为: X=2.4 cm, Y=3.0 cm。均在规定的容许范围内,说明 GPS-RTK 的测量成果是精确可靠的。从上述定位精度一致性检验结果来看,GPS-RTK 技术测量的点位精度可达厘米级,各放样点之问不存在误差积累,内符精度较好,与全站仪测定结果符合得较好,较好地满足了公路设计和施工中的定线、放样测量的精度要求 ^[5]。

表 4 缓和曲线对比/m

中桩	RTK		全站仪		Dx	Dy
点号	坐标 X	坐标 X 坐标 Y		坐标 Y	cm	cm
ZH	35743.356	30179.722	35743.359	30179.728	-0.3	-0.6
01	35743.708	30181.455	35743.715	30181.464	-0.7	-0.9
02	35745.665	30191.262	35745.678	30191.256	-1.3	0.6
03	35747.468	30201.098	35747.455	30201.072	1.3	2.6
04	35748.984	30210.982	35748.975	30210.997	0.9	-1.5
05	35750.081	30220.92	35750.094	30220.932	-1.3	-1.2
HY	35750.573	30229.136	35750.564	30229.145	0.9	-0.9
07	35750.622	30230.904	35750.631	30230.925	-0.9	-2.1
08	35750.51	30240.901	35750.533	30240.913	-2.3	-1.2
QZ	35749.902	30249.27	35749.913	30249.258	-1.1	1.2
10	35749.732	30250.869	35749.738	30250.86	-0.6	0.9
11	35748.292	30260.763	35748.287	30260.774	0.5	-0.9
YH	35746.539	30269.133	35746.541	30269.121	-0.2	1.2
13	35746.196	30270.539	35746.182	30270.544	1.4	-0.5
14	35743.485	30280.163	35743.461	30280.155	2.4	0.8
15	35740.283	30289.636	35740.274	30289.606	0.9	3
16	35736.723	30298.98	35736.732	30298.988	-0.9	-0.8
17	35732.932	30308.233	35732.925	30308.242	0.7	-0.9
ΗZ	35729.602	30316.111	35729.609	30316.121	-0.7	-1

4 结 语

从本文实验结果可看出,基于自由设站全站仪极 坐标和 DGPS-RTK 的曲线测设方法完全可以满足道路 曲线放样的需要,虽然曲线放样方法随着科学技术的 进步在不断发展,但基本原理大致相同,在保障放样 精度的前提下,可根据工程的实际需要,因地制宜选 择适合的曲线放样方法为工程建设服务。(下转第141页) 5 所示, 分别采用 2 个、4 个、6 个、9 个、13 个、16 个地面控制点进行辅助空三平差计算。该区域网内外 业均匀布测了 36 个精度检查点,其精度与控制点精相 同。

图 5 控制点布点方案及数量

2) 平差计算结果。不同地面控制点数量、布点位 置辅助空三平差计算结果如表3所示。

表 3	不同地面控制点数量、布点位置辅助空三平差计算结果

布点方案	2 个点	4 个点	6 个点	9 个点	13 个点	16 个点
定向点平面 中误差/m	0.012	0.420	0.520	0.965	0.848	0.983
定向点高程 中误差/m	0.011	0.038	0.071	0.331	0.277	0.289
检查点平面 中误差/m	3.279	2.788	2.900	2.856	2.926	2.875
检查点高程 中误差/m	20.604	15.261	6.157	2.902	1.810	1.658

3) 结果分析。由以上结果可以初步看到:当无构 架航线时,采用 IMU/GPS 辅助空三加密,一般平面控 制点应多于6个,高程控制点应多于13个。

4 结 语

从目前来看, IMU/DGPS 提供的摄站坐标还不可

(上接第138页)

参考文献

- [1] 张正禄 李广云 工程测量学[M] 武汉 武汉大学出版社 2005
- [2] 顾孝烈 程效军 鮑风 测量学[M] 上海 同济大学出版社 ,1999
- [3] 徐绍铨,张华海,杨志强,等.GPS测量原理及应用(修订版) [M].武汉:武汉大学出版社,2006

完全取代地面控制点的作用,因此采用 IMU/DGPS 辅 助空中三角测量,还需要布测一定数量的地面控制点 来解决和改正 IMU/GPS 系统漂移误差,但所需的外业 地面控制点的数量,相对常规空三加密来讲是减少了, 同时对于有构架航线的区域来讲,其控制点的位置要 求也没有常规加密对点位位置的要求严格。

因此, IMU/DGPS 辅助空三仅是减少了对地面控 制工作的依赖,从而节省野外控制测量工作量、缩短 航测成图周期、降低生产成本、提高生产效率。

从其他相关研究和分析来看,在绝对精度方面, 采用 IMU/DGPS 辅助空三与 GPS 辅助空三的实际精度 基本相当。

参考文献

- [1] 李德仁,周月琴.摄影测量与遥感概论[M].北京:测绘出版社, 2001
- [2] 袁修孝.GPS 辅助空中三角测照原理及应用[M].北京:测绘 出版社 2001
- [3] 李学友.IMU / DGPS 辅助空中三角测量概述[J].测绘科学, 2005,30(5):110-113
- [4] Li Xueyou.First Experience of IMU/DGPS Supported Photogrammetry in China [C].//Proccedings of XXth ISPRS. 2004,7: 870-875
- [5] 李学友,赵荣军.IMU / DGPS 辅助航测技术在大比例尺航 测成图中的应用[J].测绘科学 2006,31(1):60-61

作者简介:黄悦康,工程师,主要从事航测遥感测绘生产技术 管理工作。

[4] 高跃宏 城市道路曲线放样的一种新方法[J] .洛阳工业高等 专科学校学报 2002 49(2):41-42

[5] JTG C10-2007.公路勘测规范[S]

第一作者简介:卢松耀,工程师,主要从事工程测量的生产及 质量管理工作。

地理空间信息 第6期・141・