|
|
|
|
  • 软件名称:基于Google Earth Engine的红树林年际变化监测研究
  • 软件大小: 0.00 B
  • 软件评级: ★★★★★★
  • 开 发 商: 刘凯, 彭力恒, 李想, 谭敏, 王树功
  • 软件来源: 《地球信息科学学报》
  • 解压密码:www.gissky.net

资源简介

摘要:

遥感技术已广泛应用于红树林资源调查与动态监测中,但仍然存在遥感数据获取困难、数据预处理工作量大、监测时间长而周期过大等问题,影响了学者对红树林演变过程的精细刻画与理解。本文基于Google Earth Engine(GEE)云遥感数据处理平台,选取Landsat系列卫星数据,生成长时间序列年际极少云影像集(云量少于5%),利用3个红外波段反射率(NIR、SWIR1、SWIR2)和3个特征指数(NDVI、NDWI、NDMI)建立阈值规则集,实现对实验区越南玉显县红树林、红树林-虾塘、不透水面-裸地、水体4种目标地物的专家知识决策树分类和土地覆盖的制图,并基于分类结果监测该区域1993-2017年的红树林年际动态变化。结果表明:GEE平台可满足多云多雨地区红树林的长时间序列年际变化监测需求;本文阈值分类方法可以有效提取红树林及红树林-虾塘,实验区有86%年份的影像分类精度达到80%以上;年际变化监测可精细刻画实验区红树林面积先增后减再增的变化过程,也能准确反映红树林与红树林-虾塘养殖系统面积之间的负相关关系。红树林年际动态监测结果可以降低红树林演变分析的不确定性,并能更精细地量化红树林与其他土地覆盖类型的转化过程,从而评估经济发展、政策等因素对红树林演变的影响。

关键词: 红树林, Google Earth Engine, 年际变化监测, 长时间序列, 特征指数, 虾塘养殖

Abstract:

Remote Sensing technologies have been widely used in the investigation and dynamics monitoring of mangrove forests. However, problems remained that severely hinder the precise description and deep understanding of mangrove forests' dynamics. The problems include difficulties in remotely sensed data acquisition, the heavy workload of data preprocessing, and the lengthy time period in long time series monitoring. Based on Google Earth Engine (GEE), a cloud platform of remotely sensed data processing, this study used raw images of Landsat series satellites to produce an inter-annual mostly-cloudless (cloud coverage less than 5%) image collection of top-of-atmosphere reflectance (TOA). Then, classification rules were established based on three infrared-band TOAs (NIR, band near infrared; SWIR1, band shortwave infrared 1; SWIR2, band shortwave infrared 2) and three indices (NDVI, normalized difference vegetation index; NDWI, normalized difference water index; NDMI, normalized difference moisture index). Next, four land cover types, i.e., mangrove, mangrove-shrimp pond, impervious surface-bare land, and water body, were classified for mapping our case study area of Ngoc Hien, Vietnam from 1993 to 2017. Finally, the inter-annual land cover maps were used to analyze the characteristics of mangrove dynamics. The results showed that the long time-series inter-annual change monitoring of mangroves in cloudy and rainy regions can be implemented satisfactorily on the GEE platform. The image classification had an overall accuracy of over 80% for 86% of the study years, indicating that our proposed thresholds-based approach can effectively extract mangroves and mangrove-shrimp ponds. Through the analysis of inter-annual changes, the change process of mangroves in this region was depicted in details: it first increased, then decreased, and later, increased again. The correlation between the area changes of mangroves and mangrove-shrimp ponds was accurately detected to be negative. The inter-annual change monitoring of mangroves reduces the uncertainty of researching mangrove evolution processes, and quantifies in more details the conversions between mangroves and other land cover types. In so doing, the impacts of economic development, policies, and other factors on mangrove dynamics can then be assessed.

Key words: mangrove, Google Earth Engine, inter-annual change monitoring, long time series, normalized difference indices, shrimp aquaculture

下载说明

·如果您发现该资源不能下载,请通知管理员.gissky@gmail.com

·为确保下载的资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源,缺省解压密码www.gissky.net ,如果是压缩文件为分卷多文件,请依次下载每一个文件,并按照顺序命名为1.rar,2.rar,3.rar...,然后鼠标右击1.rar解压.

·为了保证您快速的下载速度,我们推荐您使用[网际快车]等专业工具下载.

·站内提供的资源纯属学习交流之用,如侵犯您的版权请与我们联系.