|
|
|
|
  • 软件名称:LSTM支持下时序Sentinel-1A数据的太白山区植被制图
  • 软件大小: 0.00 B
  • 软件评级: ★★★★★★
  • 开 发 商: 杨丹, 周亚男, 杨先增, 郜丽静, 冯莉
  • 软件来源: 《地球信息科学学报》
  • 解压密码:www.gissky.net

资源简介

摘要:

植被分类是森林资源调查与动态监测的基础与前提。当前植被分类研究大都利用光学遥感影像,然而,光学遥感成像易受到云雨覆盖的影响,难以构建完整时间序列,植被分类精度有限。微波遥感具有全天时全天候、时间序列完整的优势,在植被调查与分析中具有巨大的应用潜力。本文利用2018年Sentinel-1A微波遥感时间序列数据和深度循环网络方法,对秦岭太白山区的森林植被进行分类制图。首先利用Sentinel-2光学影像与数字高程数据对研究区进行多尺度分割;然后将处理后的时间序列Sentinel-1A数据空间叠加到分割地块上,构建地块的多元时间序列曲线;最后利用深度循环网络提取与学习多元时间序列的时序特征并分类。实验结果表明:① 与传统机器学习方法(如RF、SVM)相比,本文提出的深度循环网络方法的分类精度提高10%以上;② 在Sentinel-1A微波极化特征组合中VV+VH表现最好,与VV+VH+VV/VH极化特征组合的精度相近;③ 使用全年的时间影像构建时间序列分类精度最高,达到82%。研究表明,利用深度循环网络与时间序列Sentinel-1A数据的方法能够有效提高植被分类的精度,从数据源与分类方法上为森林植被分类研究提供了新的思路。

关键词: 植被分类, 太白山, 时间序列, Sentinel-1A数据, 深度循环网络, 微波遥感, 机器学习

Abstract:

Vegetation classification is the basis and premise of forest resource investigation and dynamic monitoring. Remote sensing techniques have long been important means of forest monitoring with their ability to quickly and efficiently collect the spatial-temporal variability of vegetation. Vegetation classification is a key issue for forest monitoring and is critical to many remote sensing applications in the domain of precision forestry such as vegetation area estimation. Remote sensing applications in vegetation classification have traditionally focused on the use of optical data such as MODIS. However, due to cloud and haze interference, optical images are not always available at phenological stages that are essential to vegetation identification, making it difficult to construct complete time-series vegetation growth and limiting the vegetation classification accuracy. Unlike passive visible and infrared wavelengths which are sensitive to cloud and light, active SAR (Synthetic Aperture Radar) is particularly attractive for vegetation classification due to its all-weather, all-day imaging capabilities. In addition, SAR provides information on the stem and leaf structures of vegetation and is sensitive to soil roughness and moisture content, making it effective in forest applications. In this study, a deep-learning-based time-series analysis method employing multi-temporal SAR data is presented for forest vegetation classification in the Taibai Mountain (the main peak of Qinling Mountains). Firstly, Sentinel-2 optical images and digital elevation data in the study area were used for multi-scale segmentation to produce a precise farmland map. Then pre-processed SAR intensity images were overlaid with the farmland map to construct time-series vegetation growth for each parcel. Finally, a deep-learning-based classifier using the Long Short-Term Memory (LSTM) network was employed to learn time-series features of vegetation and to classify parcels to produce a final classification map. The experimental results show that: (1) Compared with traditional machine learning methods (such as Random Forest and Support Vector Machine), the classification accuracy of the deep-learning-based method proposed in this paper was improved by more than 10%; (2) Among different combinations of Sentinel-1A polarizations, VV+VH performed best, having a similar accuracy with the VV+VH+VV/VH; (3) Time-series classification using all images in the whole year achieved the best performance, with an overall accuracy of 82% using VV+VH. The study shows that the combination LSTM network and time-series Sentinel-1A data can effectively improve the accuracy of vegetation classification and provide new ideas for forest vegetation classification from the perspectives of data source and classification method.

Key words: vegetation classification, Taibai Mountain, time series, Sentinel-1A data, LSTM network, microwave remote sensing, machine learning

下载说明

·如果您发现该资源不能下载,请通知管理员.gissky@gmail.com

·为确保下载的资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源,缺省解压密码www.gissky.net ,如果是压缩文件为分卷多文件,请依次下载每一个文件,并按照顺序命名为1.rar,2.rar,3.rar...,然后鼠标右击1.rar解压.

·为了保证您快速的下载速度,我们推荐您使用[网际快车]等专业工具下载.

·站内提供的资源纯属学习交流之用,如侵犯您的版权请与我们联系.