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Abstract: A 3D digital image model is proposed to represent the LIDAR data. The mathematical morphology is extended to 3D

and then, dilation and erosion operators are re-defined. A method combining 3D mathematical morphology with clustering analy-

sis is developed . Sequential dilation operations and clustering analysis are introduced into the 3D point cloud to achieve the pix-

el-level results of point cloud. The relationships between the two parameters and data property, resolution of point cloud and the

minimum distance between objects, is discussed. Two case data are used to demonstrate the feasibility of the proposed method.

The result for the first dataset is compared with those from the two other methods, Mean Shift algorithm and adaptive TIN filter

method. The advantages and disadvantages are summarized using segmentation evaluation factors, segmentation accuracy, and

computation efficiency. Meanwhile the stabilization of proposed method is also analyzed.
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1 INTRODUCTION

Light Detection and Ranging (LIDAR) is a newly developed
technology system used to capture 3D spatial data in surveying and
remote sensing fields. It emits controlled laser beams to obtain the
reflected singles from terrain and objects in terrain. Compared with
the traditional surveying methods, it is of higher accuracy, density
and efficacy, and lower in cost. LIDAR have been widely used in
city modeling, 3D simulation and other fields.

Point cloud is the data generated from LIDAR system. It is a
dataset gathered by millions of dispersed points. Segmentation is a
kind of data processing for point cloud to separate the whole data
points into terrain points and non-terrain points. The current seg-
mentation methods can be divided into two kinds, and they are by
points’ geometry relationship and by assisted data source.

Mathematical morphology is the first algorithm used in point
cloud segmentation. This method assumes that the objects’ points
are higher or lower than terrain points. The point cloud is firstly
converted into digital image and then the points are separated using
height difference as threshold Which later been improved (Kilian,
et al. 1996; Hug & Wehr, 1997; Zhang 2003; Zhang & Whitman,
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2005). It can obtain great results in drastic rolling areas. However,
for the area with uniform changes in slop, limitations still exist.

Algorithms based on slope (Vosselman, 2000; Roggero, 2001)
and scan line (Sithole, 2001, 2005) are also used for segmentation.
But problems will be encountered using these kinds of algorithms
in applications, such as difficulty in extracting scan lines in raw
data point. Thus, additional data will be required to execute such
methods.

Fitting filter algorithms (Kraus & Pfeifer,1998, 2001; Elmqvist,
2001) are also important segmentation and filtering methods. These
methods assume that the terrain is continuous in each sub-area.
For each point in point cloud, a fitting curve will be calculated in
a near threshold area and then, computes the fitting distance along
the point and the fitting curve. The basis of these methods is least
square.

Algorithm used in object-detection is also suggested, such as
the Mean Shift algorithm (Liu & Zhang, 2009). This algorithm is
based on the assumption that the mean of shift vector of certain
field will move to the gradient direction of probability density. Af-
ter iterations, the center of the mean of shift vector will be stable at
a certain point. As it is a threshold-sensitive method, the selection
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of threshold will obviously affect the result. Therefore, series of
thresholds as well as manual interactions are required to improve
the segmentation results.

The second type of segmentation for point cloud is mainly
based on the relative independent data source, such as GIS data
and remote sensing imagery. It is reliable using GIS data in urban
area (Lohmann, et al., 2000). Owing to buildings, roads, and POIs
are the main objects included in GIS data, it is impossible to sepa-
rate the trees and temp-objects from point cloud. Remote sensing
imagery is also used to segment the raw point cloud. As the point
cloud and imagery are captured separately from different platforms,
it is a challenge to match the two data sources into the same coordi-
nation system (Liu & Zhang, 2005).

Considering the shortcomings of current segmentation methods,
a new algorithm which hires the 3D mathematical morphology and
clustering analysis is proposed in this paper. Point cloud will be
firstly converted into the 3D digital imagery. After that, 3D math-
ematical morphology is introduced into the 3D digital imagery.
Then, clustering analysis is used to process the morphological data
to obtain the segmentation results.

2 3D DIGITAL IMAGERY OF POINT CLOUD
AND 3D MATHEMATICAL MORPHOLOGY

2.1 3D digital imagery of point cloud

Traditional grey imagery can be regarded as a 2D function
f(x, ), where x, y is the coordination and the f'value in location (x, )
can be regarded as the luminance. Color image is a combination of
grey images.

The coordination (x, y) and its function value ( /) are continu-
ous. In order to make it possible for computer to store and process
the images, discretization is necessary to convert the imagery from
continuation to digital forms. In digital image processing, we call
discretization for coordinate as sampling and discretization for
function value as quantization. When x and y are limited and dis-
crete, the imagery can be regarded as 2D digital imagery or grey
digital image. Thus, a 2D imagery will be expressed as:

1(0,0) JO,1) J(O,N-1)
1,0 (1,1 LN~
r= /(1,0 f( ) /( ) M)
f(M=1,0) f(M-1,1) AM-1,N-1)

where M is the row number of the image, N is column number of
the image.

2D image can only express and handle 2D data composed by
plane coordinate information and its attributes. For remote sensing
processing, more data need to be processed, such as hyper-spectral
data, intensity, etc. Therefore, 3D digital imagery is proposed to
extend the usage of imagery.

Point cloud is mainly consisted of spatial data (x, y, z) and inten-
sity. 3D imagery of point cloud is sampled by a three-dimensional
coordinate system, and thus a three-dimensional matrix will be es-
tablished by discretizing the attribute of laser spot in the pixels. To
facilitate the application, the axis of the 3D digital image of point
cloud is defined as (Fig.1): coordinate origin is at the bottom left
of the data set, the positive direction of row i is along the east, the

positive direction of column j is along the north, the £ direction is
the positive direction of elevation. It is a right-handed coordinate
system. Therefore, 3D digital imagery of point cloud can be repre-
sented by f'(i, /, k) .

North

o

Fig. 1 Coordinate system definition of a 3D
digital image based on point cloud

Each pixel of the 3D digital imagery represents a cubic in the
space. The attributes of the pixel are expressed by the amplitude
of the pixel. The weighted method or middle point method of la-
ser point within the pixel can be used to obtain the attribute of the
pixel.

2.2 3D mathematical morphology

The fundamental of mathematical morphology is collecting
imagery information by structural elements. The relationship and
structural character of each part of imagery can be learnt from
keeping the structural elements moving in the imagery (He, et al.,
2006). 3D mathematical morphology operations are similar to the
2D mathematical morphology operations. It gets structural charac-
ter through the moving of 3D structural elements in the imagery.
Erosion and dilation are two basic operations in morphology. As
it is similar with the definition of 2D erosion and dilation, the 3D
morphology is defined as:

Assumed that B is a 3D structural element, X is a 3D digital im-
agery, B, will be obtained after B moves a .

If B, is included in X', then point a is noted. The point consisted
of a, is called the result that X is eroded by B. And it can be repre-
sented as the formula: E(X)={a|B,C X}, O stands for erosion opera-
tion, it is expressed as E(X)=XOB.

Dilation operation can be regard as dual operation of erosion. B,
is obtained after B moves a, If B, is included in X, then point a is
noted. The point set consisted of a, is called the result that X is di-
lated by B. The formula is expressed as D(X)={a|B,1X}. @ is used
to represent dilation, it can be expressed as: D(X)=X® B .

Convolution is a method used in the processing of imagery
which is similar with matrix calculations. The processing of image-
ry in pixel level can be considered as combination of convolutions.
Convolution can be regarded as a sum of imagery multiplies con-
volution kernel (convolution operator or convolution matrix) by its
weights at the corresponding position. The pixel value of original
image will be replaced by the result of convolution. This method is
widely used in the imagery processing.

3D erosion and dilation operation can also be represented by
convolution of 3D matrix. 3D binary imagery, for instance, its con-
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volution can be represented as: dilation is calculated by convolu-
tion R and initial imagery, if the result is larger than 0, set the pixel
value as 1, if not, set 0; and for erosion operation, if the result of
convolution is less than 27, set 0, if not, set 1.
R=(R,;=1),(i=1-3, j=1-3, k=1-3) ?2)

3 SEGMENTATION MODEL AND PARAMETERS
3.1 Segmentation model

The whole points in point cloud can be mainly divided as terrain
points and non-terrain points. Terrain points are the points located
in bare earth, such as hill points, road points, soil points. Non-ter-
rain points are the points that are locates in objects which are higher
or lower than terrain points, such as noisy points, building points,
tree points, wall points efc. The method proposed in this paper uses
3D digital image model and 3D mathematical morphology to make
sure that the points belong to the same object will be connected in
3D image after processing. And then clustering analysis is hired to
obtain the segmentation results.

The flowchart of the proposed method is described as Fig. 2. Let
G be the sampled 3D digital image. A new image, G1, will be ob-
tained after dilating G. As the point distance between points that lo-
cated in the same object is shorter than that between different objects,
therefore, during dilation processing, the pixels belonged to the same
object will be connected firstly, and meanwhile the pixels belonged
to different object will keep separating. Then, clustering analysis is
hired to obtain connected points as the segmentation results.

Point cloud
The cluser result of
image after dilation
Discretization operation
L Segment of
3D digital image

The cluser result of
raw image

Y

The cluser result of
raw point cloud

Cluser based on
minimum distance

Fig.2 The flowchart of proposed method

3.2 Segmentation parameters

Cellsize for sampling and iteration times (n) are the two param-
eters of proposed method. The resolution of the 3D digital image is
determined by cellsize, while the times for dilation are determined
by n.

Let d, be the resolution of point cloud along flight direction, d,
be the resolution along scan line, d; be the minimum height dif-
ference between terrain points and objects’ points, and d, be the
minimum height difference between adjacent objects. The two pa-
rameters, cellsize and n, could be evaluated by these four values.

During each dilation operation, any pixel of the 3D image will
be expanded along six neighborhoods. Thus the maximum width

of a pixel is (2n+1)xcellsize after n times of dilation. To separate
different kind of object points, the same object points should be
stretched. Thus inequality Eq. (3) should be satisfied:
(2n+1)xcellsize=max(d,,d,) 3)
Meanwhile, different kinds of object points, terrain and object
points, will remain separated, then inequality Eq. (4) should be sat-
isfied:
(2nt+2)xcellsize<min(ds,d,) 4)
So, the relationship of cellsize and iteration times can be repre-
sented as inequality Eq. (5):
max(d,,d,) min(d,d,) 5)
2n+1) (2n+2)
In the inequality Eq. (5), n is integer. In fact, the value of n can

<cellsize<

be 1, 2, 3, etc., and the range of cellsize parameter can be obtained.

4 EXAMPLES ANALYSIS
4.1 Experimental data

The experimental data are two sets of point cloud which cover
different kinds of surface. The first data is downloaded from the
website (http://isprs.ign.fr/packages/packages en.htm) of the 8th
work group of III committee of ISPRS. The data was captured
at 2003, including 108092 points. It mainly includes buildings,
ground points, vegetation, fence, vehicles, efc.. This kind of data
represents typical urban areas (Fig. 3).

Fig. 3 Imagery of first dataset

The second data is downloaded from the website (http://metada-
taexplorer.gis.state.oh.us/metadataexplorer/explorer.jsp) of Digital
projects of Ohio in USA, collected by ALS50 system in 2006. It in-
cludes 47787 points and locates in the mountains of north Ohio. The
main objects within this area are mainly mountains, trees, detritus,

factory building, pendants, ditches efc.. The data are shown as Fig. 4:

Fig. 4 Imagery of second dataset

4.2 Segmentation result

For the first data, the resolution along flight line is about 1.8 m,
the maximum resolution along scan line direction is about 0.09 m,
the minimum distance between buildings is 2.3 m, the minimum

height difference between terrain points and object points is 3.3 m.
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According to Eq. (5), use n=1, cellsize=0.55 and n=2, cellsize=0.35
to process the point cloud, and results are shown as Fig. 5 and Fig.
6, respectively. The numbers in Fig. 5 and Fig. 6 stand for the seg-
mentation object serial numbers which are sorted by point count.

Fig. 5 Result by first set of parameters for first
dataset

Fig. 6 Result by second set of parameters for
first dataset

According to Eq. (5), use n=1, cellsize=0.55 as experiment pa-
rameter to segment the second data, and the result is shown as Fig. 7.

Fig.7 Segmentation result for second dataset

By comparing Fig. 3 and Fig. 5, Fig. 4 and Fig. 7, it is obvious
that the method we proposed is very effective to detect dense point
cloud areas both in urban and mountainous areas.

4.3 Comparison analysis

4.3.1 Experiment for comparison

Comparison analysis is conducted using the first dataset.

As no prior knowledge of experiment area is available, Mean
Shift algorithm, adaptive TIN filter method is used to segment
the point cloud and conduct a comparison with proposed method.
Firstly, raw points are processed by the Mean Shift algorithm.

The major parameter of the Mean Shift algorithm is bandwidth.
Select a random point as starting point, search points within the
bounds of bandwidth, and calculate the vectors and mean vector be-

tween searched points and starting point. Then move the search center
from original starting point to the mean center. Then use bandwidth to
research points, calculate the mean center and move the search center
to new mean center again. Stop the iteration until the center is steady.

After several experiments, we found that it reaches good results
when bandwidth is between 0.15 and 0.20. The results by these pa-
rameters are shown as Fig. 8 and Fig. 9.

Fig. 8 Result using the Mean Shift when
bandwidth=0.20

Fig. 9 Result using the Mean Shift when
bandwidth=0.15

TIN filter method is also hired to process the data, the two main
parameters, maximum building size and maximum angle hypsogra-
phy are settled as 55 m and 88°, respectively. The segment result is
shown in Fig. 10.

From Fig. 8 and Fig. 9, the Mean Shift algorithm can detect geo-
graphical objects in the point cloud. However, it is obviously that it
does not perform well as the proposed method in term of the integrity
of segmentation and result of separating the bulky objects. The seg-
mentation result could be better if the manual adjustment is added.

According to Fig. 10, adaptive TIN filter method is effective to
extract bulky buildings, but small buildings are often regarded as High
Vegetation. Moreover, it is highly sensitive to the terrain. The small
waves of terrain will usually be identified as Low Vegetation. Since the
adaptive TIN filter method is conducted on all data, the parameter is ap-
plied on the whole area without considering local situation. Therefore,
in practice, the classification can be improved by adjusting parameters.

Fig. 10 Result by adaptive TIN filter algorithm
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4.3.2  Quality evaluation
The quality of three methods is evaluated by four indexes, uni-
formity (UN), region contrast (GC), fuzzy entropy (£), shape meas-
urement (SM), all which are widely used in imagery segmentation.
Moreover, function F is used to evaluate segmentation quality com-
prehensively, where
F=UNXGCxExSM (6)
When the value of UN, GC, E, SM and F is higher, it denotes the
better segmentation result. The parameters of method in this paper,
including the Mean Shift algorithm and the adaptive TIN filter
method, are listed in Tablel.

According to Tablel, the similar UN values indicate that the
segmentation of three methods all conform to uniformity. GC of
the proposed method slightly lower than that of the Mean Shift
algorithm and the adaptive TIN filter method, that means, the GC
of proposed method is not as good as the other two methods. How-
ever, in terms of £ and SM, the proposed method is much better
than that of the Mean Shift algorithm and the adaptive TIN filter
method. As the comprehensive analysis of evaluation parameters,
the segmentation result of proposed method is better than the re-
sults conducted by both the Mean Shift algorithm and the adaptive
TIN filter method

Table 1 Evaluation table of segmentation result

Methods parameters UN GC E SM F
Proposed n=1 0.978 0.188 0.733 4.158 0.552
method =2 0.979 0.191 0.725 3.503 0.476
Mean Shift bandwidth=0.20 0.975 0.308 0.464 0.148 0.021
algorithm bandwidth=0.15 0.979 0.289 0.449 0.192 0.024
Adaptive TIN - 0.979 0.306 0.505 0.002 0.0004

filter method

Table 2  Statistics of segmentation accuracy for first dataset

Terrain points

Methed! Parametefs Commission Omission
rate/% rate/%
Proposed n=1 0.95 1.39
method = 083 210
Mean Shift bandwidth=0.20 0.00 8.69
algorithm bandwidth=0.15 0.16 6.11
Adaptive TIN - 1737 10.65

filter method

4.3.3  Accuracy Analysis

The manual segmentation of first dataset is added assisted by
imagery. Then we evaluate the segmentation accuracy of terrain
points using the proposed method, the Mean Shift algorithm and
the adaptive TIN filter method. The results are shown in Table 2.

As shown in Table 2, in terms of the accuracy of segmenta-
tion, the proposed method and the Mean Shift algorithm can both
achieve satisfactory effects with all commission rates within 1%.
And in term of integrity of segmentation, the omission rate of pro-
posed method is obviously lower than the Mean Shift algorithm
and the adaptive TIN filter method, which indicates that the integ-
rity of segmentation of proposed method is better than the other
two methods.

From Table 3, we can conclude that the commission and omis-
sion error is low, which ensures the proposed method to be used as

general method in point cloud segmentation.

Table 3 Segmentation accuracy for second dataset

Terrain points

Methods Parameters Commission Omission
rate/% rate/%
Proposed method n=1 0.11 1.42

4.3.4  Analysis of Operation Efficiency

The efficiency of three methods is analyzed by recording the
time consuming when running algorithms for the first dataset.
Proposed method and Mean Shift algorithm are operated in Mat-
1ab2008A, and CPU of computer is Intel P4 2.8 GHZ, the memory
is 4 G, and adaptive TIN filter method is operated in MicroStation.
The running times of each method are recorded as shown in Table 4.

As is known from Table 4, the proposed method is obviously
of higher efficiency than the Mean Shift algorithm, while barely
higher than adaptive TIN filter method.

Table 4 Staticastic of time consuming for each method

Methods Parameters Rllmnmg
time/s
n=1 4.7
Proposed method

n=2 55
Mean Shift bandwidth=0.20 26.8
algorithm bandwidth=0.15 53.2
Adaptive TIN - 55

filter method ’

4.4 Stabilization analysis

Stabilization is analyzed according to the comparison of two
results of proposed method using different parameters. As shown in
Fig. 5 and Fig. 6, the results two segmentations are consistent. The
statistics of point count of major area of two segmentation results
are listed in Table 5. The change rate referrs to the change between
segmentation points of two results of the same area.

According to the Fig. 5, Fig. 6 and Table 5, the 8th region of
segmentation result using n=1, cellsize=0.55 is divided into region
8 and region 12 when #=2, and cellsize=0.35.

It also can be seen from Table 5, except the 6th region (3.3%),
the change rate of other regions is around 1%, which shows good
stabilization of the proposed method, and the results remain simi-
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lar by using different parameters. Meanwhile, it indicates that the
model of calculating values of the parameter is effective.

Table 5 Staticastic of segmentation result using the
proposed method

Parameters n=1 Parameters n=2 Change
Number Point count Number Point count rate/%
1 45514 1 44910 1.3
2 13690 2 13622 0.5
3 12335 3 12214 0.1
4 12137 4 12063 0.6
5 5937 5 5937 0.0
6 3302 6 3193 33
7 2609 7 2608 0.0
8 2342
8 3193 1.4
12 807
9 2141 9 2141 0.0
10 1580 10 1563 1.1
11 1211 11 1211 0.0

5 CONCLUSION

Considering the shortcomings of current LIDAR segmentation
method, a new segmentation method based on 3D mathematical
morphology is presented in this paper. It is combined with dila-
tion of 3D digital imagery of point cloud and cluster analysis. The
sampling interval and times dilation can be obtained from point
cloud and trajectory design data, which are the keys for the pro-
posed method. Compared with the Mean Shift algorithm and the
adaptive TIN filter method, the result of proposed method is better
in terms of integrity, accuracy, running efficiency and stabilization,
and therefore, the proposed method can be generally used to point
cloud segmentation.

The main shortcoming of the proposed method is that the ad-
jacent objects with similar height, such as buildings and its neigh-
bored trees, cannot be properly separated. In fact, it is a common
shortcoming of the method based on point cloud data. The segmen-
tation result could be better if this kind of data are supported by

other information, such as an image.
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