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Abstract: A kernel-based signature space orthogonal projection (KSSP) technique is proposed for nonlinear subpixel target
detection in hyperspectral imagery. As a nonlinear version of the signature space orthogonal projection (SSP), the SSP is adopted

in a high-dimension feature space after the pixels of input space are mapped into the feature space via nonlinear mapping. The
kemnel trick allows the KSSP ignor the actual nonlinear mapping. Experimental results of simulated and real data prove that the
proposed KSSP approach outperforms the SSP method in target detection, and improves the robustness to noise.
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1 INTRODUCTION

Object detection and identification by using hyperspectral
image is a hot topic in the research area of remote sensing
processing. Due to the limitation of spatial resolution and
complexity of the ground objects, some interested objects can
only be shown as subpixels, that is, each scene pixel in the
image is generally mixed by the interested objects and the other
ground objects. Subpixel target detection and identification is
one of the critical key technologies for improving the utilization
of hyperspectal.

In application, while the object and background spectral are
known or obtained by some method beforehand, the spectral
distribution (abundant) of object and background is usually
computed approximately to estimate whether the object exists
or not. Recently, several algorithms have been investigated,
which include least squares, orthogonal subspace projection
approach (OSP), and signature space orthogonal projection
(S8SP) (Chang, ez al., 1998). But all these methods are proposed
based on linear spectrum mixture model.

Spectral mixing can be essentially classified into the linear
spectrum mixture model and the nonlinear spectrum mixture
model. The linear spectrum mixture model has the advantages
of simple structure with specific physical signification, and has
more scientific in theory, However, a linear spectrum mixture
model is mostly applied when ground object is basically or
mostly linear mixed or can be viewed as linear mixed in macro-
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scopic scale. The nonlinear mixture model is required for the
fine spectral analysis in microscopic scale or for the detection
of object with small probability. Some typical models used
nowadays are Hapke model, Kubelk-Munk model, vegetation
& soil mixed model based on radiation flux density theory and
SAIL model (Tong, et al, 2006). However, each of them has its
own appliable field and limitation. Furthermore, it is very hard
to build the nonlinear mixture model.

With the successful application of support vector machine
(SVM) in various research fields, it is popular in machine-based
learning that linear methods is expected to solve the nonlinear
problems by using kernel function. Kernel-based learning
methods are a kind of efficient nonlinear data analysis method
which can avoid making sure the nonlinear relationship and
computing nonlinear model (Shawe-Taylor, et al., 2005). Nowa-
days, kernel-based methods have been widely used in hypers-
pectral images classification and object detection. Particularly,
Kwon (2005) who worked in the America Army Research Lab
has extended the subspace-matched detector (MSD), orthogonal
subspace detector (OSD), spectral-matched filter (SMF) and
adaptive subspace detectors (ASD) to the kernel-matched
subspace detector (KMSD), the kernel orthogonal subspace
detector (KOSD), the kernel spectral-matched filter (KSMF),
and the kernel adaptive subspace detectors (KASD) respect-
tively. In addition, Capobianco, et al. (2008) presented contex-
tual versions of the KOSP.

SSP is a posteriori KOSP proposed by Chang, et al. (1998)
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based on the least squares. Based on the ideas of SSP and
kernel-based learning theory, a kernel version of the SSP also
called kemel signature orthogonal space projection (KSSP) is
proposed In this paper, which maps the pixels of input space
into the high-dimension feature space so as to satisfy the linear
mixture modal. Then, the object detection will be fulfilled by
using the SSP algorithm in the feature space. In order to
evaluate the performance of the SSP and KSSP, we model their
associated least squares errors as a signal detection problem in
the framework of the N-P(Neyman-Pearson)theory. The
effectiveness of the two algorithms can be measured by using
the ROC (Receiver Operating Characteristic Curve)analysis.
Experimental results of both simulated and real data demons-
trate that the proposed KSSP approach outperforms the SSP
method in the target detection of nonlinear-mixed hyperspectral
image, and improves robustness to noise.

2 SIGNATURE SPACE ORTHOGONAL PROJEC-
TION

Let r be a Lx1 column vector representing the observation
spectrum and M be a Lxp matrix whose columns are the
endmember spectra. Let o is a px1 column vector whose
elements are the coefficients that account for the proportions
(abundances) of each endmember spectrum contributing to the

mixed pixel and 7 is a Lx1 vector representing an additive noise.

The linear mixture model (LSMM) for pixel r is described by
Eq.(1).

r=Ma+n 4))

The OSP algorithm assumes that each pixel is made up of a

designed signature d=m,;, 1 <i<p and the undersigned

background signature matrix U=(m,,*--m;_,m;,1,"*, my,). Then
Eq.(1) can be rewritten as follows.

r=da,+Uy+n (2)

where ¢; is the fraction of m; in the pixel r and (e, ",

m_l,ml,--',q,)T is the corresponding abundance column

vector of the background signatures.

The OSP algorithm is obtained by maximizing SNR under
the assumption that the complete knowledge of signature
abundance a priori, which is generally difficult to obtain in
practice. Under the circumstance, we must estimate the
signatures from the data themselves. The SSP use the posteriori
model as follows.

r=Md+i=da;+Uj+h 3)
where @,4; and § are estimates of @ ¢; and % respectively,

based on the observed pixel r itself.
Fig.1 shows the sketch map of the SSP approach, where

PM=M(MTM)_1MT is the signature space orthogonal

projector and Pj‘ =I-UWWU)'W" denotes the backg-

round rejection operator.

Fig.1 Signature space orthogonal projection

The SSP operator is given by Eq.(4).
gssp =d" PPy “)
and the normalized SSP operator can be defined by Eq.(3).

‘IsTSP - ‘ISTSP (5)
Tpl Tpl
d PyPyd d Pyd

T _
qssp =

where the Jast equality holds because of d"Pjd =d"PyPyd .
The output of the SSP classifier is now given by Eq.(6).
dTPfPyr

d'Pyd ©

Dgp(r) = Ggspr =

Applying qgsp to both a priori model (4) and a posteriori
model (5), the estimation error is given by Eq.(7).

v _d"PyPyn

£=a; - Dggp =Ggspht = )
t —Lssp = gssp Fo

with the corresponding SNRgspmax given by the maximum
eigenvalue (Chang, et al., 1998) as follows.

AssP, max =§édTPULd (®)

where &'is the noise root variance.
If d is very similar to one or more signatures in U, the
normalization coefficient d TPI}Ld will be small, and so will
be the SNR. Therefore, the magnitude of d TPuld can be used

as a measure of the target signature discrimination power of

SSP. The larger the d TPULd is, the better the discrimination.

3 KERNEL SIGNATURE SPACE ORTHGONAL
PROJECTION

3.1 LSMM and SSP in feature space

Linear mixing is a kind of special nonlinear mixing which
the multiple reflections can be ignored. Assuming that the input
data has been implicitly mapped into a high-dimensional
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feature space H by a nonlinear mapping ¢, the mixture model in
feature space is approximately linear if the multiple reflections
of all pixels in H is small. Let M, be a matrix whose columns
are the endmember spectra in the feature space; o be a
coefficient vector that account for the abundance of each
endmember spectrum in the feature space; and n, be an additive
noise, the linear mixture model in feature space is given by the
following equation.
¢gr)=Mya +n, )
Corresponding to Eq.2, the model (9) can also be further
rewritten as follows.

o(r) =¢(d)a; +U¢y+n¢ 10)
where @(d) represents the spectral signature of the desired target
with the corresponding abundance & in the feature space and
the column of U, represents the undesired background
signatures in the feature space with the related abundance ¥

The normalize SSP operator of pixel r in the feature space
can easily be derived by using the same procedure for the
conventional SSP operator Eq.(5) and Eq.(6). The normalize
SSP operator in the feature space is given by Eq.(11) and
Eq.(12).

1 ¢@) PPy,

= 11

gsspy ¢(d)TPj¢¢(d) an
9(d)Py, Py 9(r)

D. - ¢ T 12

sseel?) 9@ By, 9(d) )

where Py, =MyM;My) M Pl}; =1,-UU4=1,-

Uy(Uy'Up)™'U,", and I, is the identity matrix in the feature

space.
Similarly, the estimation error of abundance is given by
Eq.(13).

#(d)P; Py n
ga—t 0l (13)
#d)" Py, 9(d)
with the corresponding maximum SNR as follows.
SNR - % o)™ B g (14)
SSP@, max 92 U,

where @is the noise root variance in the feature space.

Due to the difficulty to confirm an actual nonlinear mapping
@, Eq.(11)-Eq.(14) are not able to directly implement. However,
it can be implemented by employing kernel functions using an
efficient kernel trick without any knowledge of the actual

nonlinear mapping ¢.

3.2 KSSP algorithm

In this section, we demonstrate how to kernelize the SSP in

0d) MyX o Z31 X "M T9(r) - 9d) UyA S AJUG M X 431 X5 M, 9(1)

the feature space by kernel trick, and the corresponding
algorithm is called kernel signature space orthogonal projection
(KSSP). The definition of the kernel function is given as
follows.

Definition 1 (Kernel function) A kernel is a function k that for

all x,ze X, X cR" satisfies
k(x,2)=(p(x) #(z)) (15)

where ¢ is a nonlinear map from input space X to a dot
production feature space H, and (- ) is the dot products.

Any function satisfied Mercer theorem or the positive
property can be used as a kernel function (Shawe-Taylor, et al.,
2005). Some commonly-used kernel functions include radial

2
basis function (RBF) kernel: k(x,z)=exp[—"x_—2”}
20

where o is the kemnel parameter, and the polynomial kernel

function: k(x,z) = (axTz + c)b , where a, b, ¢ are parameters.
According to the definition of kernel function, each element

in matix Kyy =UsU, and Kpypy =MjM, is a kemel

function, and the matrix Kyy and Ky are the kernel matrixes.

In order to express Eq.(12) as an kernel function expression,
we analyze the matrix Ky and Ky, in detail.

Suppose the rank of matrix UsU, is Ny, (=12, Ny)
are the nonzero eigenvalues of matrix U;U¢, 2y =diag
(ll,ﬂ,z,--~,/1Nh), and A4, =[a;,a;,---,a;v"] is the eigenvector

matrix of U, ; Uy corresponding to X, then using the singular

value decomposition theorem and its deduction (Zhaogi Bian,
et al., 2000), we get

Ty _ T
UsUy= A2 A, (16)
therefore,
Pu,=U,A,Z; AU an
1 _ 24T T
PU¢ —I¢—U¢A¢2¢‘A¢U¢ (18)

Similarly, suppose the rank of matrix M g My ist, v is the
nonzero eigenvalues of M,}M¢ » Ly =diag(yy,vy,0,)
and X, is the eigenvector of M g M, corresponding to X,
then

T _ T
MyMy=X,2y Xy (19
therefore,
-1 Tay T

Substituting Eq.(18) and Eq.(20) into Eq.(12) results in the
following equation.

@n

Dgspy(r) =

(@) p(d) - 9(d) U4A,Z 51 AJU S9(d)
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Similarly, each element of vectors ¢(d)TM Py M¢T¢(r),

o(d )TU g and U g @(d) is also a kernel function, denote these

vectors as Ky, Kyr, Ky and Ky respectively, each element of

-1 T 14T -1 T
KauXoZit, Xo Ky ~ Ky ApZ5 AJK gy X X1y X4 Ky

matrix U g M Iy which can be denoted as Ky, is also a kernel

function, kg4 =¢(d)T¢(d) is a kernel function too. Then,

Eq.(21) can be simply rewritten as:

Dygsp(r) =

Using Eq.(22), Dgssp can be calculated by kernel trick
without any knowledge of the actual nonlinear mapping ¢.

Through the above analysis, after choosing the kernel
function and appropriate parameters, the KSSP algorithm is
presented as follows.

Step 1 Construct the kernel matrix Ky, =U;U¢, then
calculate its rank Ny, matrix X, which is composed by N,

nonzero cigenvalues and the related eigenvector matrix A 4

Step 2 Construct the kernel matrix Ky =M g M, , then
calculate its rank f, matrix Xy, which is composed by ¢

nonzero eiegnvalues and the related eigenvector X4
Step 3 Calculate Ky, Kyy, Kyjg, Kypy and kyy, respectively
Step 4 For each pixel, calculate Ky, and the projection
Dyssp using Eq.(22).

4 ALGORITHM PERFERMANCE EVALUATED BY
ROC ANALYSIS

A receiver operating characteristics (ROC) curves is a graph
plotted by the detection power and versus the false alarm
probability. The validity of the detector could be measured by
the ROC analysis via the N-P detection theory. Instead of using
common ROC analysis, Chang, et al. (1998) has defined
measurement method called detection rate (DR), which
calculates the area under an ROC curve for the effectiveness of
the detector. Obviously, DR always lies between 1/2 and one.
The worst case occurs when DR =1/2 , and the best case occurs
when DR =1.

The estimation errors of the abundance obtained by SSP and
KSSP reflect the penalties resulting from inaccurate estimation
of unknown signature abundances. In order to evaluate the error
performance of SSP and KSSP, we cast their associated
estimation errors as a standard signal problem. In the following
section, the performances of the two algorithms are evaluated
by using ROC curve via N-P theory.

4.1 Neyman-Pearson theory

N-P theory is a signature detection method based on
likelihood-ratio that maximum the detection probability for a
fixed false alarm probability.

We assume that z is the projection resulting from a classifier
q" applied to the observed pixel r. A signal detection model
based on z can be described by the test of two hypotheses as

22)

14T
ki - KayAyZ;' AjKyg

follows.

Hy:z=¢"n EfO(Z) 23
Hyz=a,+q nzp(2)
where the null hypothesis Hy and the alternative hypothesis H,
represent the case of noise existance alone and the case of the
true target signature ¢, presented in the z model, respectively.
The N-P detector associated with Eq.(23) is given by
Eq.(24).

1, z=an21

Oyp(2) = { (24)

0, z= an <7
where 7is the threshold. Eq.(24)represents that Hy is true when
zz rtand H| is true when z<7.

From Eq.(24), we can also define the false alarm probability
P and detection probability Pp as follows.

Pr = [ po(2)dz (25)

Py = [ m(2)dz (26)

In Eq.(26), Pp specifies the capability of the detector in
detecting the true target signature ¢,. Therefore, the higher Pp,
the smaller the estimation error becomes, the better perfor-
mance of the detector shows.

4.2 The detection probability and false alarm proba-
bility of SSP

Substituting égsp specified by Eq.(5) for ¢" in Eq.(23)
results in a subpixel target detection model given by Eq.(7).
Hy: 2= sspn =Assp = P, (2) @n
Hy:z=a, +figsp = p1(2)
where the noise fAggp is generated by the estimation error
produced by SSP. The hypothesis H, represents the case in
which the mixed pixel does not contain the target signature d,

while H, indicated the presence of d in the mixed pixel.
Based on Eq.(7) and Eq.(27), we obtain the error covariance

matrix Zggp as follows.

T A AT
Zgsp=E [%spfssp] =E ':"ssp"ssr»} =
52 d"PyPyPyPid  o°
d"Prdd"Prd  d"Pjd
We assume that 7 is a white Gaussian noise with zero mean

and covariance matrix o’/. Substituting Eq.(28) into Eq.(27)
yields the equation.

(28)
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Po(D)=NO,c*d " Prd)™)

(29)
p(2)=N(a,.0*d Pid)™)
and the threshold %gp given by Eq.(30).
tosp = 0(d PFd) 207 (1- Py) (30)

where ®(x) is the cumulative distribution of the standard

Gaussian random variable given by Eq.(31).

12

x 1 -
(I>(x)=LEe 24 31)

And ®7'(x) is the inverse function of d(x).
The desired detection power Pp gsp can be derived from
Eq.(30)

- a _
Py ssp=1-@| @7 (1-Pr)-——L— =1—(I>(<I> W1-Pp)-/ NRSSP,ma.x) (32)

od"Pid)”

In Eq.(32), Pp ssp is expressed in terms of 4 TP,,ld , which
measures the projection of d onto the orthogonal complement
space <U J'>. The larger the projection is, the less similarity
between d and U becomes, therefore, the better the discri-
mination. On the other hand, Eq.(32) illustrates that Pp gsp 1S

measured by the magnitude of SNR, the larger the SNR, the
higher the detection power.

4.3 The detection probability and false alarm proba-
bility of KSSP

Substituing qgw specified by Eq.(11) for ¢" in Eq.(23)

results in a subpixel target detection model given by the
following equation.
Hy: 2= Gaspgh = Asspg = P, (2
0 ‘Issp¢A fisspg = P, (2) (33)
Hl :Z =ap +nssp¢ = pl(Z)
where the noise figgps is generated by the estimation error

%p

produced by SSP in feature space.
Based on Eq.(13) and Eq.(33), we obtain the error cova-
riance matrix Zggpy as follows.

T " R
Zsspp=E [Essp¢£ssp¢] =E ["ssw"sTspd =
6° (34)
kit - KayAsZ; AjKyy

Let us assume that n, is a white Gaussian noise with zero
mean and covariance matrix @1, Substituting Eq.(34) into
Eq.(33) yields.

Po(2) = N(0,6% (kyy - K,,UA¢2¢71A,} Kyp™H

(35)
Pi(2) = N(@,, 0 (kyg — Kay AgZ ;' A Kya)™)
and the threshold 7ssp given by Eq.(36).
o7'1-p
Tgssp =0 (4-Fr) (36)

(kg ~ Kay ApZ 3 Ag Ky

The desired detection power Pp xssp can be derived from
Eq.(36).

Pp_kssp=1-®| &7 (1= Pp)-

In Eq.(37), Ppsse is expressed in terms of @(d)T

PULW(d ), the projection of d onto the orthogonal complement
space <U J‘>. The larger the projection is, the less similarity

between d and U becomes, thus the better the discrimination.
On the other hand, Eq.(37) illustrates that Pp, kssp is measured
by the magnitude of SNR, the larger the SNR is, the higher the
detection power is.

5 EXPERIMENT RESULTS

The data sets used in the experimental are the mineral
spectra from the U.S. Geological Survey (USGS) digital
spectral library (Clark, 2007) and the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) urban image scene
(Pazak, 2009).

5.1 Experiment using synthetic hyerspectral data

We select three spectral signatures from the USGS digital
spectral library, which are Carnallite, Ammonioalunite, and

Bkas ~ Koy ApZ5 A Kya) ™

=1-0(07' (1~ P) - SNRspp,mat ) @

Biotite. Fig. 2 shows these three endmember signatures with
224 spectral bands, Biotite is assumed as the object to be
detected. The synthetic nonlinear mixture data is created by us-
ing the Hapke Model described by Wu, et al. (2006). In order to

09
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04y
03f

02}

0.1

9 - . -
0 0.0 0.5 1.0 1.5 2.0 25

Wavelength/um
---- Ammonioalunite

— — Carnallite — Biotite

Fig. 2 Reflectances of carnallite, ammonioalunite, and biotite
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demonstrate the effectiveness of KSSP for subpixel object
detection, We use two different methods to create the abun-
dance fractions, and Hapke model to generate two synthetic
datasets. Each data set has 50 mixture pixels, and the angle of
incidence is 30° and SNR is 30:1. There are two datasets as
follows.

Datasets 1: Dirichlet distribution(Nascimento, et al., 2005)

Abundance matrix @ of the mixed pixels is generated
randomly according to a Dirichlet distribution.

Datasets 2: small probability object distribution

The abundance fractions of the 50 synthetic mixture pixels

are shown in Table 1.

Table 1 Assigning relative abundances of endmembers for

datasets 2
1-19 20 21 29 30-50
Carnallite 05 045 0455 0.495 0.5
Ammonioalunite 05 045 0.455 0.495 05
Biotite 0 0.1 0.09 0.01 0

Since the real abundance of the synthetic mixture pixels is

[

Abundance

0 10 20 30 40 50
Pixels sequence number

@
——— S§P

known prior, to evaluate the performance of the SSP and KSSP
algorithms, the correlation coefficients (Tao, et al, 2008), the
abundance angle distance (AAD) (Miao, et al., 2007) and
the root mean square error (RMSE) are used to measure the
similarity between the true abundances and the estimated
abundances. Furthermore, the ROC curve described in
section 4 is used to evaluate the detection performance of
the two algorithms.

By several experiments, the kernel parameters of KSSP was
chosen as a=0.001, b=0.2, c= -0.01 for datasets 1 and a=0.1,
b=0.01, ¢=0.8 for datasets 2. Table 2 and Table 3 give the three
performance comparisons of the SSP and KSSP for datasets 1
and datasets 2. The detection result curve of datasets 1 and
datasets 2 are shown in Fig.3(a) and Fig.3(b). Fig.4 is the ROC
curves produced by SSP and KSSP with SNR = 30.

Fig.3 shows that the result obtained by KSSP is very
similarly with real abundance, and it also shows that the KSSP
obviously restrains the noise. The performance comparison in
Table 2 and Table 3 demonstrate that all the three performances
of KSSP are better than SSP. Furthermore, Fig.4 shows that
KSSP outperforms the conventional SSP approach.

0.3 "

0.2
:

0.1
H
<

0.0

-0l 0 10 20 30 40 50
Pixels sequence number
®
KSSP ----- sewpans Real

Fig. 3 Comparison between performance curves generated by SSP, KSSP and real abundance

(a) datasets 1; (b) datasets 2

1 seaneset ] ot
.‘.'..'-“‘ ' P sus®’
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= 06 - E 06
=] o o) o
‘3 "f...w . s o 0y
£ 04 - 2 04
Q ""'. Q " .‘.
02 ‘.".,..0 02 ‘.....»
¢ 4
00 r I —_ —_ 1 —_— 00 } —_ i -~ A )
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False alarm rate False alarm rate '
(a) ssressenns SGP KSSP )

Fig.4 ROC curves produced by SSP and KSSP
(a) datasets 1; (b) datasets 2

Table2 The performance comparison between target abundances
from SSP & KSSP and the real abundance based on Cor, AAD and

Table 3 The performance comparison between target abundances
from SSP & KSSP and the real abundance based on Cor, AAD and

RMSE for datasets 1 RMSE for datasets 2
Cor AAD RMSE Cor AAD RMSE
SSP 0.957691 0.231915 0.153329 SSp 0.986418 0.151409 0.0487654
KSSP 0.998236 0.0459696. 0.0223425 KSSP 0.996017 0.081963 0.0338377
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5.2 Experiment for real image

For the experiments on real data, we selected a 307x307
pixel urban image scene (Fig. 5) from AVIRIS data extracted
from the Hyperspectral Digital Imagery Collection Experiment
(HYDICE). It is composed of 210 spectral channels. To

Fig. 5 Urban hyperspectral data set (band 50)

improve the unmixing performance, we have removed bands
with low SNR and the water-vapor absorption bands (including
bands 1—4, 76, 87, 101—111, 136—153, and 198—210) from

the original 210 band data cube. Therefore, a total of 162 bands
are used in the experiment.

This region contains a mixture of man-made objects and
forestry. There are four targets of interest: asphalt, roof, grass
and tree. Owing to the spectral variability, the reference
endmember spectra are manually chosen from the hyperspectral
data (e.g., the spectrum in the coordinate position of [197, 62]
is selected as the asphalt spectrum).

In this experiment, we choose the RBF kernel as the kernel
function of KSSP. Its parameter 20” is proved by experiments
to be between Eq.(2) and Eq.(5). Fig.6 is the detect result of
SSP for the object asphalt, roofs, grass and trees respectively.
Fig.7 is the results of KSSP for the four objects with 2¢°=4,
where figures labeled by Fig.7(a), Fig.7(b), Fig.7(c) and Fig.7(d)
are results for asphalt, roofs, grass and trees respectively. In Fig.
6 and Fig.7, pure black denotes that the abundance of a certain
material in this pixel is 0%, whereas pure white denotes 100%.
As shown in these figures, each object is detected, but the
results of SSP are more blurry than that of KSSP.

()

Fig. 6 Detection results for the four targets in urban hyperspectral data set using SSP
(a) Asphalt; (b) Roofs; (c) Grass; (d) Trees

Fig. 7 Detection results for the four targets in urban hyperspectral data set using KSSP
(a) Asphalt; (b) Roofs; (c) Grass; (d) Trees

6 CONCLUTION

In this paper, a kernel-based signature space orthogonal
projection (KSSP) technique is proposed for nonlinear subpixel
target detection in hyperspectral imagery. By mean of kernel

trick, mixed pixels are implicitly mapped nonlinearly into a
high-dimensional feature space to satisfy linear mixed in the
feature space and to detect the objects using SSP in the feature
space. The KSSP using the kernel function could keep the
better performance of nonlinear method as well as avoid
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complex computation of the nonlinear mapping. Experimental
results demonstrate that the proposed KSSP approach
outperforms the SSP method in target detection, and improves
robustness to noise.
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