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Influence of land cover data on regional forest
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Abstract: In this study, six different land cover datasets were employed in conjunction with MODIS 1km reflectance data to
inverse LAI of forests using an algorithm based on the 4-scale geometrical optical model in Jian City, Jiangxi Province, China.
Land cover datasets used in this study include five global land cover datasets (Three were produced by the United States Geo-
logical Survey (USGS), University of Maryland (UMD), and Boston University (BU), respectively. Two were constructed in
Europe.) and a regional land cover map produced using Landsat TM images. For assessing the impact of land cover on the in-
version of LAI, LAl images inversely produced with different land cover datasets were compared with LAI data sampled from a
30 m LAI map at 1 km and 4 km scales, respectively. The 30 m LAI map was produced with TM reflectance images and ground
measurements of LAI. The results show that the land cover datasets of TM and GLOBCOVER which was created by European
Space Agency are the best for the inversion of LAI in this study area. At 1 km scale, the R values of LAl inversed using TM and
GLOBCOVER land cover datasets with TM LAl estimated using an statistical model are 0.44 and 0.40, respectively. At 4 km
scale, these R? values increase to 0.57 and 0.54. The MODIS land cover data of BU is the third best data for the inversion of LA,
the R? values between LAl inversed using this land cover dataset and TM LAl are 0.38 and 0.51 at 1 km and 4 km scales, re-
spectively. The land cover datasets of UMD and European GLC2000 resulted in large discrepancies between inversed LAl and
TM LAI. The averages of LAl inversed using these two land cover datasets are about 20% lower than TM LAl at 1 km and 4 km
scales. Sensitivity analysis shows that inversed LAl is sensitive to clumping index. This study proved that reliable land cover
data is required for improving the accuracy of inversed LA at regional/global scales.
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1 INTRODUCTION

Land cover plays important roles in physical, chemical, and
energy processes of land surface. Therefore, it is a key parame-
ter for global change research (Sellers et al., 1997). In recent
years, with the development of remote sensing technology, and
the increasing demands for land cover data in global change
research and resource management, many countries and inter-
national organizations have been conducting studies on re-
gional/global land cover mapping using remote sensing data.
For example, five different global land cover datasets were
produced by the United States Geological Survey (USGS) and
University of Maryland (UMD) using AVHRR data (LoveLand
et al., 2000; Hansen et al., 2000), Boston University (BU) using
MODIS data (Friedl et al., 2002), the European Joint Research
Center of Space Research Institute using VEGETATION data
(Bartholomsé et al., 2005) and the European Space Agency
using ENVISAT/MERIS data (Defourny et al., 2005). These
datasets support the global change research and the extraction
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of surface parameters (such as LA, albedo, etc.) from remote
sensing data. However, these global land cover datasets exhibit
certain inconsistencies, especially in some regions with high
complexity of land cover, mainly owing to the differences in
classification systems and methods, and data used to produce
these datasets (Quaife er al., 2008; Herold et al., 2008). The
uncertainties in land cover might induce errors in the parame-
ters derived from remote sensing data.

Leaf area index (LAI) is an extremely important vegetation
structural parameter of terrestrial ecosystems (Chen & Cihlar,
1996). At present, the methods used to retrieve LAI from re-
mote sensing data can be broadly classified to two different
groups (Fang & Zhang, 2003). The first one is based on the
empirical relationship between vegetation index (VI) and LAI.
The second type of methods retrieves LAI through inversing
radiation transfer or geometric optical models. Although the
first type of methods has the advantages of easy implementa-
tion and requirement of fewer input parameters, it is not appli-
cable for retrieving LAI at large regional or global scales due to
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the considerable spatial and temporal variations in the relation-
ship between VI and LAI. With the inversion techniques, the
inversion methods retrieve LAI through adjusting the vegeta-
tion structural parameters (including LAI) to minimize the dif-
ference between remotely sensed reflectance at various spectral
bands and that simulated by radiation transfer or geometric
optical models, which were constructed on the basis of the the-
ory of radiation transferring within canopy. This type of meth-
ods is suitable for large regional or global applications due to its
robust basis of physics. So, it is increasingly used in recent
years. For example, the MODIS LAI products were produced
mainly using an inversion method. Deng et al. (2006) devel-
oped a new LAI retrieval algorithm based on the 4-scale geo-
metrical optical model. The unique characteristic of this method
is considering the influence of the angles among sun, sensor
and target on reflectance and the relationship between LAI and
V1 in retrieving LAI. This algorithm has proved to be superior
to the MODIS LAl algorithm in studies conducted in Canada,
Northeast China and red soil hilly region of Jiangxi province of
China (Pisek et al., 2007; Liu et al., 2007; Li et al., 2009). Now,
this algorithm has been adopted by European Spatial Agency
for generating GLOBCARBON LAl products (Garrigues et al.,
2008).

Different types of vegetations possess different structures
and leaf shapes. Land cover is an essential parameter input into
LAI inversion models. The quality of land cover data has a
significant impact on inversed LAI (Liu et al., 2008). However,
the dependence of inversed LAI on land cover data at regional
scales still needs further study. In this study, five global land
cover datasets and a regional land cover map produced using
Landsat TM images were employed in conjunction with 8d
MODIS 1 km reflectance data to inverse LAI of forests using
an algorithm based on the 4-scale geometrical optical model
(Deng et al., 2006) for Jian City, Jiangxi Province, China. LAI
inversed with different land cover datasets were compared with
TM LAI, which was produced using TM reflectance images
and an empirical model set up according to the ground meas-
urements of LA, to assess the influence of land cover data on
the inversion of LAI quantitatively.

2 STUDY AREA

Jian city (25°58'—27°57' N, 113°46'—115°56' E) is located
at the mid-west of Jiangxi province and in the middle reach of
Ganjiang River. The total area of this city is 25271 km?. Moun-
tains and hills account for about 74% of its landmass. It is sur-
rounded by mountains in the east, south and west. The topog-
raphy declines from the south to the north and from the west
and east edges to the interior. Red soils predominantly distrib-
uted. The climate is semitropical monsoon, with an annual
mean temperature of 18.6°C and annual precipitation of 1668
mm. This city is abundant of forest resources. The forest cov-
erage is currently about 65.5%, consisting mainly of the natural
secondary forests, which are predominantly coniferous Majori-

ties of conifer forests are Masson Pine, Slash Pine, and Chinese
Fir. In addition, broadleaf forests (camphor, quercus,and Muhe)
and mixed forests also account for certain proportions of this
area.

3 STUDY METHOD

3.1 Model description

LAl was inversed using the algorithm developed by Deng et
al. (2006). This algorithm is based on the 4-scale geometrical
optical model, which was employed to construct the look-up
tables representing the relationship of LAl with simple ratio
(SR) and reduced simple ratio (RSR) under different conditions
of land cover types and sensor-sun-target angle combination.
SR and RSR are calculated as:

SR = pnir ! Pred 1

RSR = SR x (pswirmax — Pswir) /(Pswirmax — Pswirmin)  (2)
where, preq, pnir and pswir are the reflectance in red, near infra-
red (NIR) and short-wave infrared (SWIR) bands, respectively;
Pswirmax aNd pswirmin are the maximum and minimum values of
pswir, respectively. They are related to land cover types.

Considering the dependence of the relationship between LAI
and SR/RSR on variations in solar zenith angle, view zenith
angle and the relative azimuth angle between the sun and sensor,
the effective leaf area index (Lg) can be expressed as:

Le = fie sr (SR faror (6y.65.4)) 3)
Lg = fLE_RSR (SR X[pSWIRmax _pswmfswm —BRDF 6. %.9) «
pSWIRmax _pSWIRmin
fBRDF(gv:95x¢)] 4

where, fie srand fig rsr are the functions describing the rela-
tionships of Lg with SR and RSR at a specific sun, sensor and
target angle combination and they are simulated by the 4-scale
geometrical optical model, both depending on land cover types;
feror and fswir s ror are the functions quantifying the BRDF
effects, depending on the angular reflectance behavior of the
spectral bands involved, which are described mathematically
based on the modified Roujean’s model; 6, is the view zenith
angle of a sensor; 6; is the solar zenith angle; ¢ is the relative
azimuth angle between the sun and sensor.

Pswrmx ~ Pswir fswm _BRDF (QV‘HS’¢) %
P —-P

In Eq. (4), SRx

SWIR max SWIR min

JferoE(6y. 65, 9) is the RSR with the consideration of the BRDF
effects. The relationship of RSR with the LAl is stable and less
sensitive to changes in land cover types (Brown et al., 2000).
So, only Eq. (4) was used to inverse Lg in this study. The details
of this inversion algorithm were described in Deng et al. (2006).
The true LAI is defined as

LAl=Lg /02 (5)
where, 2 is the clumping index and changes with land cover
types, seasons and solar zenith angle. Due to the lack of the
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spatially distributed clumping index data, this parameter was
assigned for each vegetation type (Table 1) (Tang et al., 2007).

Table 1 Clumping index for typical vegetation types

Vegetation type Clumping index
Evergreen broadleaf forest 0.63
Deciduous broadleaf forest 0.70
Evergreen needleleaf forest 0.62
Deciduous needleleaf forest 0.68

Mixed forest 0.69
Closed shrublands 0.71
Open shrublands 0.71
Woody savannas 0.72
Savannas 0.70
Grasslands 0.74
Croplands 0.73

3.2 Data used

The reflectance in red, near infrared, and shortwave infrared
bands, the view zenith angle, the solar zenith angle, the relative
azimuth angle between the sun and sensor were download from
the MODIS 09A1 product archive. Five freely available land
cover datasets were also downloaded. The 30 m LAI map used
for validating inversed LAl was produced with TM reflectance
images and ground measurements of LAI.

3.2.1 Ground measurements of LAI and the construction of a
30 m TM LAI map
Ground LAI observations were taken using the TRAC

(Tracing Radiation and Architecture of Canopies) instrument at
47 representative forest plots during 24 to 27 July 2008. All
observations were made under clear sky condition during the
period from 9:30 am to 4:30 pm, strictly following the field
operational regulation of TRAC. The size of each plot is about
30 m x 30 m, equal to the grid size of the Landsat TM images.
The geographic information and altitude of each plot was re-
corded using a global positioning system (GPS).

Three scenes of Landsat-5 TM acquired on July 26, 2008
(122/41 and 122/42) and May 16, 2008 (121/41), were used in
this study. The first scene (122/41) covers the majority of the
study area. The geometric corrections of TM images were con-
ducted in the ENVI 4.3 platform. A 30 m map of forest re-
sources of Jiangxi province was used as the reference for col-
lecting ground control points. The overall error of geometric
correction for each TM image was limited to one pixel (30 m)
and the projection is UTM/WGS84. Atmospheric correction
was performed using the 6S model (Vermote et al., 1997) as-
suming a continental air mass, mid-latitude summer climate,
uniform target, and 30 km atmospheric visibility. After atmos-
pheric correction, radiances of each spectral band were con-
verted into reflectance for calculating Vs and land cover clas-
sification. Then three images were joined together. The resul-
tant maps were masked with the administrative boundary of
Jian city.

Various VIs indices were calculated from the TM reflectance

data and the R? value of each VI with the measured LAl was
also calculated. It was found that NDVI exponentially trans-
formed is the best predictor of LAI in this region (R?=0.68,
RMSE=0.25, N=47) (Li et al., 2009). The empirical equation
for predicting LAI from NDVI is LAI=0.0284e” 35NV The
average of LAI predicted by this equation is 2.77 while that of
measured LAI is 2.88. Therefore, this equation was used to
produce a map of forest LAI at 30 m resolution. Then, this 30 m
LAI map was resampled to 1 km and 4 km resolutions to act as
the benchmark for validating inversed LAI. Fig. 1 shows the
spatial distribution of LAI at 30 m resolution. Since there was
no any LAI measurement taken at croplands, LAl was only
calculated for forested pixels. LAI of forests showed distin-
guishable spatial distribution patterns. In the eastern and
northwestern parts, LAl was in the range from 3 to 5. In the
southwest area, LAl was relatively high, generally above 6.

LAI

1.0 3.0 5.0 7.0 9.0

Fig.1 30 m TM LAI map of Jian city produced using
an empirical model

3.2.2  MODIS reflectance data
The 500 m MODIS 8d MODO09AL1 product on 28 July 2008

was used in this study. The projection of the MODO09A1 prod-
uct is Sinusoidal and different from that of other datasets. This
product was projected into UTM/WGS 84 and resampled to 1
km resolution. The MODO09A1 product contains reflectance
values of bands 1 to 7, quality flags, solar zenith angle, view
zenith angle, and the relative azimuth angle between the sun
and sensor. Only reflectance in red, near infrared and short
infrared bands, quality flags and three angles were required in
the LAI inversion model. They were extracted from the
MODOQ9A1 product to generate a new dataset, which was
clipped using the administrative boundary of Jian city.
3.2.3 Land cover datasets

Six different land cover datasets were used, including five
freely available global land cover datasets and a 30 m map of
forest distribution created using Landsat TM images in 1996.
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The 30 m map of forest distribution was kindly provided by
meteorological bureau of Jiangxi province. This dataset classi-
fies lands into 14 cover types, namely broadleaf forest, needle
leaf forest, mixed forest, bamboo, sparse vegetation, shrub land,
open forest, barren land, cropland, water body, shadow of hill,
urban and built-up, grassland and Island of Poyang Lake. For
convenience, this dataset was named as TM land cover data in
following sections. The TM land cover map was resampled to 1
km resolution. The dominant cover type was assigned to each
resampled 1kmx1km pixel. The five global land cover datasets
used are:

(1) The global land cover dataset at 1 km resolution pro-
duced by the University of Maryland using data from the Ad-
vanced Very High Resolution Radiometer (AVHRR) in years
1992 and 1993 and the temporal matrix supervised classifica-
tion method based on the classification system of the Interna-
tional Geosphere-Biosphere Program (IGBP). There are totally
14 cover types in this dataset. This dataset was named as the
UMD land cover dataset.

(2) The global land cover dataset at 1 km resolution pro-
duced through the collaboration of the United State Geological
Survey (USGS), University of Nebraska-Lincoln (UNL), and
the Joint Research Centre of the European Commission using
the same data source as the UMD land cover dataset and an
unsupervised classification method based on the IGBP classifi-
cation system. There are 24 land cover types in total in this
dataset, which was named as the USGS land cover dataset.

(3) The global land cover dataset at 1 km resolution pro-
duced by Boston University (BU) using the MODIS data and
the decision tree and artificial neural network classification
methods based on the IGBP classification system. 17 land cover

types consist of 11 natural vegetation classes, three artificial
land classes, ice and snow, permanent barren land or sparse
vegetation, and water body. This dataset was named as MODIS
land cover dataset.

(4) The global land cover dataset at 1 km resolution was
produced by the European Commission’s Joint Research Centre
using the series of daily reflectance and NDVI from
VEGETATION during the period from November 1999 to De-
cember 2000 and the bottom-up classification approach based
on the land cover classification system (LCCS) of Food and
Agriculture Organization (FAO). There are totally 22 land
cover types in this dataset, which was named as GLC2000 land
cover dataset.

(5) The global land cover dataset at 300m resolution was
generated by European Space Agency (ESA) in cooperation
with other international organizations using the bimonthly
composite ENVISAT/MERIS data during the period from De-
cember 2004 to June 2006 and a computer automation and re-
gionally-tuned classification method based on the LCCS classi-
fication system of FAO. There are totally 22 land cover types in
this dataset, which was named as GLOBCOVER land cover
dataset. This dataset was also resampled into 1km resolution.

These six land cover datasets are different in classification
and coding systems. The LAI inversion model used in this
study requires the land cover data on the basis of IGBP classi-
fication and MODIS land cover coding system. Therefore,
conversions were made for USGS, UMD, GLC2000,
GLOBCOVER and TM land cover datasets to make them
compatible with the IGBP/MODIS classification and coding
systems. The conversion relationships of classification codes
used by different land cover datasets are shown in Table 2.

Table 2 Conversion relationship of classification codes used in different land cover datasets

IGBP/MODIS USGS UMD GLOBCOVER GLC2000 ™
1 Evergreen needle leaf forest 14 1 70 4,10 2,4,12
2 Evergreen broad leaf forest 13 2 40, 160, 170 1,78 1
3 Deciduous needle leaf forest 12 3 90 5 -
4 Deciduous broad leaf forest 11 4 50, 60 2,3 -
5 Mixed forest 15 5 100, 110, 120 6,9 3
6 Dense shrub 8 8 130 11,12 6
7 Sparse shrub 9 9 150 14 -
8 Woody savannas 21 6 - - 5
9 Savannas 10, 20, 22 7 - - 7
10 Grasslands 7 10 140 13 8
11 Permanent wetlands 17,18 — 180 15 14
12 Croplands 2,3,4 11 11,14 16 10
13 Urban and built-up areas 1 13 190 22 13
14 Cropland/natural vegetation mosaic 5,6 - 20, 30 17,18 -
15 Snow and ice 23,24 12 220 21 -
16 Barren or sparsely vegetated 19 - 200 19 9
17 Water bodies 16 0 210 20 11
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3.3 Evaluation of the impact of land cover data on
the accuracy of inversed LAI

The influence of land cover data on the inversion of LAI
was evaluated by comparing inversed LAl with TM LAI. There
are lots of mixed pixels in this study area. With the assumption
that each pixel in the 30 m resolution map is purely covered by
one type, the proportions of pixels covered by forests in the 1
km and 4 km resolution maps were calculated. The evaluations
of inversed LAI were only conducted for pixels in which the
area fractions of forests were above 50%. The criteria used to
evaluate the influence of land cover data on LAI inversion in-
clude the coefficient of determination (R?), the Root Mean
Square Error (RMSE) and the relative difference of mean value
(RE) of inversed LALI.

4 RESULTS AND ANALYSISES

4.1 Consistency of different land cover datasets

The proportions of different land cover types calculated
from six land cover datasets differ considerably (Table 3). In
the USGS and UMD land cover datasets, the forest coverage is
less than 10%. This is in contrast with the reality. The study
area is rich in forest resource. The forest coverage is up to
65.5% according to the statistical data. In the MODIS,
GLOBCOVER and TM land cover datasets, the forest coverage
are all above 50%, which is in good agreement with the actual
situation. But the forest types are different among these three
land cover datasets. In the GLOBCOVER and TM land cover
datasets, needle leaf forests account for large proportions, being
41.77% and 37.64%, respectively. In the MODIS land cover
dataset, the largest proportion is mixed forests, amounting to
40.66%. While in the GLC2000 land cover dataset, the cover-

age of deciduous broadleaf forests is up to 63.97%. There are
no savannas in the GLOBCOVER and GLC2000 land cover
datasets. But in the USGS and UMD land cover datasets, the
proportions of savannas are 41.09% and 48.17%, respectively.
GLC2000 land cover dataset has large differences with other
land cover datasets in water bodies, cropland and urban/built-up.
Croplands occupy a large fraction of the study area. But in the
GLC2000 land cover dataset, there are no any croplands. While
in other land cover datasets, the proportions of croplands are all
above 15%. The study area is located in the mid-latitude sub-
tropical zone. No ice and snow exist here. But in the GLC2000
land cover dataset the proportion of ice and snow is up to
14.23%. The large discrepancies among these land cover data-
sets may be attributed to the differences in the classification
system and methods used to produce them. The difference in
time when these datasets were constructed might also result in
such discrepancies.

4.2 Distribution of inversed LAI

The 1 km LAI inversed using six land cover datasets in
conjunction with MOIDIS reflectance and angular data shows
considerable differences (Fig. 2). LAI inversed using the
MODIS, GLOBCOVER, and TM land cover datasets exhibits
similar spatial distribution patterns, with distinguishable spatial
variations. LAI of forests in the western part is larger than that
in the eastern part (Fig. 2(d), 2(e) and 2(f)). But the proportion
of high LAI values (above 7) inversed using the GLOBCOVER
and TM land cover datasets is higher than that of LAI inversed
using the MODIS land cover data. The spatial distribution of
LAI inversed using the MODIS, GLOBCOVER, and TM land
cover datasets mostly mirrors that of the 30 m TM LAI. How-
ever, LAI inversed using the MODIS, GLOBCOVER, and TM
land cover datasets is larger than the 30 m TM LAl in the

Table 3 Proportion of various land cover types in six land cover datasets

1%

Land cover type USGS UMD GLOBCOVER GLC2000 MODIS ™
Evergreen needleleaf forest 432 9.04 41.77 0 5.56 37.64
Evergreen broadleaf forest 0 0.24 13.60 0 3.12 1.28
Deciduous needleleaf forest 0 0 0 17.41 0.02 0
Deciduous broadleaf forest 1.79 0.08 0.03 62.97 1.46 0
Mixed forest 0.22 0.18 0.63 0.23 40.66 10.35
Mixed forest 0.18 0.06 9.88 0 0.36 4.27
Open shrublands 0 0.03 0 0.65 0.60 0
Woody savannas 0 17.93 0 0 25.02 0.47
Savannas 41.09 30.24 0 0 0.65 3.77
Grasslands 0.19 25.38 0.03 0 1.97 0.66
Permanent wetlands 0.01 0 0 4.49 171 0
Croplands 30.63 15.71 30.31 0 16.43 36.87
Urban and built-up 0.03 0.03 0.21 0 0.20 1.67
Cropland/natural vegetation mosaic 20.52 0 2.49 0 1.89 0
Snow and ice 0 0 0 14.23 0 0
Barren or sparsely vegetated 0 0 0 0 0.03 0.14
Water bodies 1.02 1.09 1.05 0 0.32 2.88
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Fig. 2 Maps of LAI at 1 km resolution inversed using the GLC2000
(a), UMD (b), USGS (c), MODIS (d), GLOBCOVER (e) and TM land
cover datasets (f) in combination with MODIS reflectance data

northwestern part. The spatial variability of LAI inversed using
the UMD and USGS land cover datasets is less obvious (Fig.
2(b) (c)). Inversed LAI are significantly lower than the TM LAI
in the western part. The LAI of forests is mostly in the range
from 3 to 5. Only a few LAl is larger than 7. Especially, LAI
inversed using the USGS land cover dataset is almost totally

below 7. As the GLC2000 land cover dataset differ noticeably
from other land cover datasets, LAI inversed using this dataset
shows very large discrepancy with LAI inversed using other
land cover datasets in the eastern part of the study area. In the
GLC2000 land cover dataset, parts of forests and croplands
were misclassified as snow and ice. In these cases, inversed
LAl equals zero (the black area in Fig. 2(a)). Overall, the
consistency of LAI inversed using different land cover datasets
is better in the middle and east parts than in the west part.

4.3 Effects of land cover data on the accuracy of
inversed LAI

Table 4 shows the statistics of LAI inversed using six dif-
ferent land cover datasets compared with resampled TM LA at
1 km resolution. TM land cover dataset is the best land cover
data for LAI inversion among six land cover datasets, with R?
of inversed LAI equal to 0.44. The GLOBCOVER land cover
data is the second best land cover data for LAI inversion
(R?=0.40). The UMD and GLC2000 land cover datasets re-
sulted in large errors in inversed LAI, with R? of inversed LA
equal to 0.24 and 0.15, respectively. The maximum and mini-
mum RESE values of inversed LAI are 2.7 and 1.8, resulting
from the applications of the GLC2000 and TM land cover
datasets to LAl inversion, respectively. The average of LAI
inversed using the GLC2000, GLOBACOVER and TM land
cover datasets are 3.4%, 5.1% and 2.4% higher compared with
that of TM LAI while the averaged LAI inversed using remain-
ing three land cover datasets is lower than averaged TM LAl.
The underestimation of LAl inversed using the UMD and
USGS land cover datasets are 19.8% and 18.8%, respectively.

In order to limit the influence of errors in remote sensing
image registration on assessing the accuracy of inversed LA,
the inversed LAI and TM LAI were compared at 4 km resolu-
tion. The agreement between LAI inversed using six different
land cover datasets and TM LAl obviously improves. The R?of
LAl inversed using the TM land cover dataset is the highest
(0.57). The R? of LAI inversed using the GLC2000 land cover
dataset increases to 0.23. However, it is still the lowest one. The

Table 4  Statistics of LAl inversed using six land cover datasets compared with TM LAl

Land cover dataset 1km 4km
used in LAI inversion R RMSE" Mean™ RE™ R RMSE" Mean™ RE™
GLC2000 0.15 2.7 42 3.4% 0.23 21 4.0 ~1.0%
UMD 0.24 21 32 ~19.8% 0.34 18 31 —21.8%
USGS 0.30 20 33 ~18.8% 0.40 16 32 ~20.5%
MODIS 038 19 39 —4.1% 051 15 38 5.7%
GLOBCOVER 0.40 19 43 5.1% 0.54 1.4 41 3.1%
™ 0.44 18 42 2.4% 0.57 13 40 1.8%

=
Notes: "RMSE= \/1/NZ(LAI"W (i) = LAl () , N is the number of the forested pixels; LAl;,, and LAl are the inversed LAl and resampled TM LA, respectively;
i=1

N
“Mean= %z LAl (?) , being the average LAI of all forested pixels.
i=1

""RE= (LA, - LAl )/LAl,, x100% , being the relative error of the average inversed LAI, LA, is the average of inversed LAI; LAl is the average of resam-

pled TM LAI.
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accuracy of LAI inversed using the TM, GLOBCOVER and
MODIS land cover datasets is still higher than that of LAI in-
versed using other three land cover datasets at 4 km resolution.
All RMSE values of LAI inversed using six different land cover
datasets are lower at 4 km resolution than those at 1 km resolu-
tion. The lowest RMSE of inversed LAI was 1.3 (using the TM
land cover dataset) and the highest RMSE of inversed LAI was
2.1 (using the GLC2000 land cover dataset). The RE values did
not change significantly at 4 km resolution compared with
those at 1 km resolution.

4.4 Sensitivity analysis of inversed LAI to parameters

Clumping index (£2), maximum and minimum values of re-
flectance in shortwave infrared band (Oswirmax anNd Pswirmin) are
the key input parameters in the LAI inversion model. In order
to evaluate the influence of these parameters on inversed LA,

sensitivity analysis was carried out by increasing or decreasing
these parameters by 10%. Table 5 shows the statistics of LAI
inversed using different values of 2, pswirmax @nd Pswirmin
compared with TM LAI at 4 km resolution. When 2 was in-
creased by 10%, the averages of LAI inversed using six land
cover datasets were all lower than the average of TM LAL
When ©Qwas decreased by 10%, the agreement of LAl inversed
using the UMD and USGS land cover datasets with TM LAl
increased. As indicated by equation 4, pswirmax and Pswirmin
affect the inversed effective leaf area index (Lg) and further
affect inversed LAIL. When pswirmax @and pswirmin Were in-
creased, the inversed LAl would increase. On the contrary,
when pswirmax @Nd Pswirmin Were decreased, the inversed LAI
would decrease. The responses of inversed LAI t0 psyirmax and
Pswirmin are non-linear. Inversed LAl is more sensitive to @
than sensitive t0 Oswirmax aNd Pswirmin-

Table 5 Statistics of 4 km LAI inversed using different £2, pswirmax @and pswirminvalues compared with TM LAI

Land cover data 1102 0.92 1.1 pswirmx 0.9o5wirmax 1.1 pswirmin 0.9p5wirmin

R* RMSE RE | R RMSE RE | R RMSE RE | R RMSE RE | R®* RMSE RE | R2® RMSE RE
GLC2000 0.23 20 83 [023 21 720024 21 64022 21 -104|023 20 06]023 20 2.3
UMD 0.32 19 279 |03 16 -146[034 18 211|034 18 —227[034 17 216|034 18 -220
USGS 0.38 1.8 266 (042 15 -131(039 16 -197|041 16 -213[040 16 -203|040 16 -20.6
MODIS 0.50 15 -125 |053 14 20053 14  -14(049 15 -110|051 15 491|051 15 6.4
GLOBACOVER | 0.54 14  -41 |054 15 115[055 15 71053 14 -18|054 14 41054 14 2.3
™ 0.57 14  -02 |057 13 45(059 14 63054 13 -36|057 14 29057 13 0.9

5 CONCLUSIONS AND DISCUSSION

In this study, six different land cover datasets were em-
ployed in conjunction with MODIS reflectance data to inverse
LAL The LAI estimated using TM remote sensing data and LAI
measurements was used as the benchmark to assess the impact
of land cover data on regional inversed LAI. The following
conclusions can be drawn from this study:

(1) There are large differences in the six land cover datasets
(MODIS, USGS, GLOBCOVER, UMD, GLC2000, and TM).
Such differences were caused by the differences in methods,
remote sensing data and classification systems used to construct
land cover datasets. The difference of average LAI inversed
using different land cover datasets might be above 20%.
Therefore, reliable land cover data is required for improving the
accuracy of inversed LAI at regional scales.

(2) Among six land cover datasets, the TM land cover data-
set is the best for inversing LAl in this study area. The R?values
of LAI inversed using this land cover dataset are 0.44 at 1 km
scale and 0.57 at 4 km scale, repetitively and corresponding RE
values are 2.4% and 1.8%. Among the five freely available
global land cover datasets, the GOLBCOVER and MODIS land
cover datasets resulted in better reliability of inversed LAI and
are practically applicable for inversing LAI in this study area.
The GLC2000 and UMD land cover datasets might induce
noticeable errors in inversed LAL.

(3) Sensitivity analysis showed that clumping index (£2) has
a significant influence on inversed LAI. However, this parame-
ter was assumed to change with land cover type only in this
study. Its variations with the development stage of forests and
season were ignored. Such simple treatment for this parameter
might increase the uncertainties of inversed LAI. The accuracy
of inversed LAI will be improved if clumping index can be
retrieved from the multi-angle remote sensing data.

In this study, a 30 m TM LAI map constructed using the
empirical model based on the ground measurements of LAI
data was used as the benchmark to assess the accuracy of the
inversed LAI. Doubtlessly, there are some uncertainties in the
30 m TM LAI data, which influence the evaluation of inversed
LAI to certain extent. The sensitivity of inversed LAI to land
cover data varies for different inversion models. In this study,
only the model developed by Deng et al. (2006) was used. This
is the inadequacies of this study and needs further remedy.
Land cover data is an important factor affecting the inversion of
LAI. Other factors, such as topographic effect and background
reflectance can also affect the inversion of forest LAI. The ex-
clusion of these factors in the inversion of LAI is one of candi-
dates resulting in certain differences between the inversed LAI
and TM LAI. Further efforts should be made to use the
multi-angle remote sensing data (such as MISR) to retrieve
background reflectance and correct on the influences of topog-
raphy on reflectance data to improve the reliability of LAI in-
versed using MODIS reflectance data.
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