
1007-4619 (2010) 05-928-16     Journal of Remote Sensing  遥感学报 

                                     

Received: 2009-08-13; Accepted: 2009-12-24 
Foundation: “863” project (No. 2009AA12Z121, No. 2009AA12Z148), Fundamental Research Funds for the Central Universities. 
First author biography: SUN Ning (1985—  ), female, graduate student, her research interest includes urban remote sensing and urban planning. E-mail: 

ningning8533@zju.edu.cn 
Corresponding author: CHEN Qiuxiao, E-mail: chen_qiuxiao@zju.edu.cn 

 

Coupling GA with SVM for feature selection in high-resolution 
remote sensing target recognition 

SUN Ning1, CHEN Qiuxiao1, LUO Jiancheng2, SHEN Zhanfeng2, HU Xiaodong2 

1. Institute of Urban Planning Engineering and Information Technology, Zhejiang University, Zhejiang Hangzhou 310058, China; 
2. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China 

Abstract:  As one of the key techniques for high-resolution remote sensing target recognition, feature selection focused on 
how to find the critical features in the feature set to represent the target. Generally, the classical methods for feature selection 
were as follows, principal component analysis, empirical method, etc. When using these classical methods, recognition accuracy 
was not guaranteed. In this paper, a new method was proposed, the main idea of which was to couple GA (Genetic Algorithm) 
and SVM (Support Vector Machine) for feature selection, and using recognition results to guide the revolution direction of GA. 
Meanwhile, to reduce the risk of premature convergence of the traditional GA, some modification had been made. The experi-
ment demonstrated the effectiveness of the proposed method. 
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1  INTRODUCTION 

The main task of remotely sensed target recognition (Ming 
et al., 2005) (RSTR) is to determine whether interesting targets 
exist or not, and to find out what is the target and where it is. 
Mainly focusing on recognition of artificial geo-objects, RSTR 
relies on not only targets’ spectral features and shape index, but 
also their spatial semantic relations with surrounding 
geo-objects. Generally, the main purpose of RSTR is to 
recog-nize small-scale geo-objects, and high spatial resolution 
aerial images and satellite images are often utilized as data 
source (Li et al., 2006). Since the advent of remote sensing 
technology in the sixties of last century, RSTR has always been 
a hot topic in this field. In recent years, there are many re-
searches conducted on target recognition of artificial 
geo-objects like building, road and bridge from remotely sensed 
imagery. However, how to improve the accuracy of these re-
searches remains to be solved. 

Generally speaking, RSTR includes the following three 
stages: image processing (including image segmentation), fea-
ture extraction, classification and recognition. As to feature 
extraction, spectral features, shape index and texture features 
are commonly used. Due to the multiband property of remotely  
sensed images, hundreds of features can be extracted from them 
if needed. However, positive features correlation will result in 

redundancy and increase the computation cost of recognition 
respectively, while negative correlation may lead to a strange 
phenomenon-more features, lower accuracy. To recognize dif-
ferent kinds of targets, different combination of features are 
used. However, too much features are not necessary for recog-
nition, and will probably reduce the recognition accuracy. That 
is why feature selection-finding a small number of key features 
from the feature set to well represent target, becomes one of the 
most important topic of RSTR researches (Niu & Ni, 2005; 
Zhang et al., 2005). 

At present, the empirical approach or principal component 
analysis are always used to find the best combination of fea-
tures for target representation. However, such combination of 
features are not capable of distinguishing targets from 
non-targets, recognition accuracy is therefore not guaranteed. In 
consideration of the facts stated above, we proposed a coupling 
method named GA-SVM (coupling GA with SVM) for feature 
selection, through which, a small number of key features were 
selected. By inputting these features into classifier, building 
targets can be recognized from quickbird images. The experi-
mental results showed that this method can improve recognition 
accuracy obviously. 

2  COUPLING OF GA AND SVM  

GA is a probabilistic search algorithm based on the principle  
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of biological evolution-the survival of the fittest, which was 
initially proposed by Holland ( Holland, 1973, 1975) in the 
early 1970s. In pattern recognition domain, GA is famous for its 
strong robustness and adaptability, and is often used to solve 
complex optimization problems. However, GA does not have 
the ability to calculate the optimal direction. Due to the fact that 
recognition accuracy mainly relies on the classification results, 
it will be very helpful to feature selection and recognition ac-
curacy improvement subsequently if GA is coupled with a good 
classifier such as SVM. SVM uses a hypothetical space of lin-
ear functions in a high dimensional feature space trained with a 
learning algorithm based on optimization theory. The advantage 
of SVM is as follows, robustness, good learning abilities and 
suitability for high dimensional data classification (Xu & Li, 
2004; Zhang, 1997). In this paper, GA and SVM were coupled 
for feature selection (coupling structure shown in Fig. 1), that is 
to use genetic mechanism of GA to find a subset of features, 
construct the fitness function by the classification accuracy 
using SVM, and recognize all targets through SVM classifier 
by utilizing the optimized subset of features once they were 
obtained. Specifically, the coupling is reflected in the following 
three stages: feature dimensionality reduction, fitness calcula-
tion and target recognition. 

2.1  Feature dimensionality reduction phase 

In this paper, GA’s population evolution was used to reduce 
the dimension, then vectors with reduced dimension were put 
into SVM and mapped to the new linear feature space, through 
which feature dimensionality reduction in GA and feature space 
mapping in SVM were combined. 
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2.2  Fitness calculation phase 

To improve SVM classifier’s discrimination between differ-
ent objects and the recognition accuracy for specific target, 
training sample set (Strn) as well as testing sample set (Stest) 
were utilized. Strn should include different types geo-objects and 
each sample should be representative. Stest consists of two cate-
gories, objects to be identified and the other ones. Because of 
the complexity of remote sensing images, an appropriate in-
crease in the number of samples can be considered to improve 
recognition accuracy.  

Strn was trained in the new feature space in order to find the 
hyperplane that can classify Strn correctly, then this hyperplane 
was used to classify Stest. By returning the fitness based on clas-
sification results to GA, the next evolution direction was well 
guided. Thus, the final obtained feature subset being the best 
combination of features for target recognition was ensured. 

Here, SVM uses the following decision function: 
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where, K(xi, x)is the Kernel function. 

2.3  Results of genetic identification phase 

When the population met the convergence conditions, indi- 
vidual with the highest fitness was outputted, feature informa- 
tion from the individual was read and mapped to a linear  

 

 
 

Fig. 1  Structure diagram of how to couple GA with SVM 
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feature space to recognize all targets, and recognition results 
were obtained finally. 

3  IMPROVEMENT OF GA 

GA is a global random optimization algorithm by simulating 
the species evolution. It uses binary-coded chromosome to form 
the population, controls the genetic process through operators 
like mutation and crossover. To ensure GA’s reasonable evolu-
tion direction, the fitness function and convergent condition 
were set. On the premise of maximizing the accuracy of RSTR, 
the fewer features used, the better. In order to achieve this goal, 
the coupling of GA and SVM should not only guarantee the 
genetic direction to improve the recognition accuracy, but also 
avoid the risk of premature convergence the traditional GA 
brings. Therefore, some improvement on traditional GA was 
made by introducing the individual optimization of the selec-
tion mechanism and foreign individuals’ access mechanism, 
and the final recognition accuracy was controlled or affected by 
the fitness function and population reset mechanism. 

3.1  Individual choice  

Individual is the basic unit that carries feature information in 
the genetic process. The heterogeneity and fitness of the indi-
vidual in the same generation is the key factor that determines 
whether the final feature scheme is the best one. In order to 
ensure the diversity of the highest fitness of the population, 
Individual optimization and the foreign individual access 
mechanism were applied for individual selection based on bi-
onics. 
3.1.1  Individual optimization of the selection mechanism 

In the population initialization phase, in order to reduce fea-
ture dimension obviously, the various components of chromo-
somes were randomly set to 1 with a small probability. To op-
timize the genetic process, reduce the possibility falling into a 
local minimum during the evolution, the chromosome was 
evaluated in the initialization process. If its fitness is less than a 
certain threshold value, then a new chromosome was 
re-generated to replace the old one. 

During the genetic process, optimal string retention strategy 
was applied to ensure that the highest fitness of individual was 
directly passed to the next generation. Meanwhile, according to 
the individual fitness, a number of individuals were selected by 
the expectation selection mechanism to form the breeding herd, 
among which, two parents were selected randomly to complete 
the hybridization. Single-dot blot hybridization was used, that is, 
breakpoint was randomly selected, and two parts of the parents 
were exchanged to form new individuals. For two parents x1, x2, 
and two offspring x3, x4, fitness was calculated according to Eq. 
(4). Then, individual xi with the highest fitness was found, 
hamming distance between xi and other three individuals were 
computed in order to find xk that had the greatest distance to xi, 
xi and xk were then passed into the next generation. 
3.1.2  Foreign individual access mechanism 

To avoid local individual homogenization phenomena after 

several times of evolution, foreign individual was introduced. 
The probability of all individuals was calculated according to 
Eq. (3), where F(x) was the fitness obtained by Eq. (4), fitmax 
was the largest population fitness, and fitmin was the smallest 
one. 
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Based on the above probability, an individual was randomly 
selected and then deleted from the population, and a new one 
was re-initialized and added. To ensure the overall population 
quality, the foreign individual’s fitness should be larger than 
0.4. 

3.2  Accuracy control  

The ultimate goal of feature optimization is to improve the 
recognition accuracy. So, based on accuracy evolution, a fitness 
function was constructed by coupling GA with SVM, and 
population reset mechanism was introduced for convergence 
judgment in order to escape from the local minimum state. 
3.2.1  Construction of the fitness function  

To meet target recognition request, the fitness function was 
constructed based on recognition error and feature dimension of 
the training sample set: 
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where, Emiss(x) is the proportion of missed targets, Eerror(x) is the 
proportion of misclassified targets, d(x) is the number of di-
mensions the chromosome contains, dmax is the maximum 
number of dimensions x may contain, while dmin is the mini-
mum number. w1 and w2 correspond to the weights of target 
recognition accuracy and feature dimension respectively, where 
w1+w2 =1. 
3.2.2  Convergence condition and population reset mechanism 

Three kinds of convergence conditions are set in the algo-
rithm: the individual’s largest fitness is greater than 0.95, and 
this fitness has not been improved during five generations; the 
individual’s largest fitness is greater than 0.9, and this fitness 
has not been improved during ten generations; algorithm has 
reached 100 generation evolution. 

If the individual’s largest fitness has not been improved 
during ten generations, and this fitness is smaller than 0.9, it 
can be assumed that the algorithm falls into a local minimum 
state. In such situation, population reset mechanism should be 
launched, the individual with the largest fitness in the genera-
tion was kept, other individuals were randomly retained, the 
remaining individuals was reset by initialization process, then 
the genetic process was restarted. 

4  BUILDING TARGET RECOGNITION EXPERIMENTS 
IN HIGH-RESOLUTION REMOTE SENSING IMAGE 

4.1  Experimental data and platform  

Two subset of Quickbird image covering part of Wu’han  
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City were selected as experimental data, which consisted of 
four bands – blue, green, red and near-infrared band with spa-
tial resolution as 0.6 meters. The sizes of test images are 1600 × 
1600 and 1200 × 800 respectively. The experimental platform 
used in this paper was SINCE2008 developed by the Institute of 
Remote Sensing Application, Chinese Academy of Sciences. 

4.2  Feature extraction  

At the very beginning, test images were segmented by mean 
shift algorithm in the proper scale. In this experiment, when the 
scale (minimum region size) was 100 or 200 pixels, building 
primitives can be segmented well. For more details on Mean 
Shift algorithm, one can refer to (Comaniciu & Meer, 2002). 
Segmentation results, with 3236 and 1435 image objects respec- 
tively (Table 1), were used as input data of the classifier. In-
cluding spectral features, geometric features and texture fea-
tures from the original data, 31 features were extracted. Quick-
bird images used in this experiment include four bands. With 
the increase of the number of image bands, the number or the 
weight of geometrical features can be increased to avoid the 
decrease of the contribution of the geometric features to the 
final recognition results. 
 

Table 1  Feature list 

Feature name Feature number 

Mean brightness 4 

Standard deviation of brightness 4 Spectral 
features 

Subtotal 8 

ASM 4 

IDM 4 

Entropy 4 

Contrast 4 

Texture 
features 

Subtotal 16 

Perimeter 1 

Area 1 

Bounding rectangle width 1 

Bounding rectangle length 1 

Bounding rectangle’s principal direction 1 

Shape index 1 

Compactness 1 

Geometric 
features 

Subtotal 7 

Total 31 

 
Spectral features’ computation was omitted because of its 

simplicity. Based on gray - gradient co-occurrence matrix, the 
following texture features were extracted:  
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spectral value of the center pixel, 
inp  was that of its four 

neighborhood pixel. 
The main geometric features were calculated as follows:  

Compactness: Compact= 2 π×area perim×  

Shape Factor: ShapeIndex=0.25 perim area×  

4.3  Experimental samples and experimental parameters’ 
specification 

The training sample set and test sample set were selected 
separately (Table 2). For two test images, the former had 276 
and 256 objects respectively, which were put into four catego-
ries (building, shadow, green, road), while the latter 537 objects 
and 365 objects respectively, which were put into two catego-
ries (building and non-building). 
 

Table 2  Sample set 

Training sample set 

Object number 
Categories name 

1st image 2nd image 

Building 67 78 

Shadow 63 34 

Green 77 87 

Road 69 57 

Test sample set 

Object number 
Categories name 

lst image 2nd image 
Building 123 110 

Non-building 414 255 
 

GA’s parameters were set as follows: population size was 50; 
in initialization phrase, each chromosome was set to 1 with a 
probability of 0.3; the weight of target recognition accuracy (w1) 
was set to 0.9 since the ultimate goal was to maximize the tar-
get recognition accuracy.  

Because of the uncertainty of GA, and in consideration that 
different order of features may lead to a different result, the 
experiment had been conducted for 20 times using the same 
data, and the average results were utilized for evaluation of the 
performance of the proposed coupling method (GA-SVM). 

As to SVM algorithm, third-order Gaussian kernel function 
was used, the value of s parameters and c parameters were 1.0 
in simmoid function, the epsilon in loss function of epsi-
lon-SVR was set to 0.9, c-parameter of epsilon-SVR 25, and 
threshold for terminating training 0.01. The process of coupling 
GA and SVM methods is shown in Fig. 2 and Fig. 3). 
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Fig. 2  Building recognition process using the coupling method GA-SVM (Ⅰ) 
(a) 1st Quickbird test image; (b) Segmentation results; (c) Training sample set; (d) Test sample set; (e) Building recognition results with the highest accuracy 

 

 
 

Fig. 3  Building recognition process using the coupling method GA-SVM (Ⅱ) 
(a) 2nd Quickbird test image; (b) Segmentation results; (c) Training sample set; (d) Test sample set; (e) Building recognition results with the highest accuracy 
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4.4  Methods for comparison and some relevant 
specification 

To verify the effectiveness of the proposed method, the fol-
lowing methods were used for comparison: (1) GA coupled 
with minimum distance classifier; (2) PCA (principle compo-
nent analysis) method; classical GA coupled with SVM; (3) 
empirical method. For PCA, the principal components extracted 
should at least represent 95% of original data information. The 
difference between (3) and the proposed method was as follows, 
the former did not use the individual optimization of the selec-
tion mechanism, the foreign individual access mechanism, and 
the population reset mechanism as well. Except (1), all methods 
utilized SVM as classifier. 

4.5  Experimental results and analysis  

Experimental results Table 3 and Table 4 showed that for 
two test images the optimal feature subset obtained from the 
proposed method contains averagely 9.65 and 8.25 features 
respectively, common features that all 20 times experiments 
outputted were listed in Fig. 4 (b) and Fig. 5 (b) respectively, 
recognition accuracy varied from 98.48% to 96.59%, and from 
93.31% to 90.66% respectively, with an average accuracy as 
97.86% and 92.24%, the standard deviation as 0.41% and 

0.64% accordingly. From the above results, we can learn that 
our proposed method was a robust one with high accuracy at 
least for building recognition. The result are shown in Table 5 
and Table 6. 

Comparison of the proposed GA-SVM method with classi-
cal ones was shown in Table 7. From this table, we note that 
recognition accuracy was quite low—from 50.76% to 68.08% 
while using all the features. This number was slightly higher 
when utilizing PCA for feature dimension reduction. Because 
of the presence of premature convergence effect, and the rela-
tive homogeneous characteristic of targets, the classical GA 
method did not have an obvious advantage over the empirical 
method (using spectral features by experience). Comparing 
methods listed in Table 3 and Table 4, we can learn that by 
utilizing the proposed method recognition accuracy was im-
proved significantly. When coupling GA with the minimum 
distance classifier, the recognition accuracy was lower com-
pared with the proposed GA-SVM method, which means that 
SVM is a good classifier for coupling. In addition, the proposed 
one outperformed the method by coupling classical GA with 
SVM because the improved GA (used in the former) can always 
guide GA’s evolution direction towards the improvement of 
target recognition accuracy, and reduce its risk of premature 
convergence as well. 

 
Table 3  Final recognition accuracy and corresponding feature number of twenty experiments (1st test image) 

Experiment No. 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Optimal features number 11 9 9 12 12 11 10 8 9 8 
Recognition accuracy/% 97.73 97.73 98.30 98.48 98.11 98.11 98.11 97.73 97.73 98.30 

Experiment No. 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 
Optimal features number 8 10 6 10 10 11 10 8 12 9 
Recognition accuracy/% 97.54 98.30 96.59 97.54 97.54 97.54 98.11 97.73 98.11 97.92 

 
Table 4  Final recognition accuracy and corresponding feature number of twenty experiments (2nd test image) 

Experiment No. 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Optimal features number 9 12 8 8 9 10 7 8 7 12 
Recognition accuracy/% 93.03 92.68 92.61 92.20 93.17 92.13 91.99 91.50 93.17 93.31 

Experiment No. 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 

Optimal features number 6 7 9 9 6 9 10 4 8 7 
Recognition accuracy/% 91.64 92.20 91.57 92.47 92.61 92.06 91.92 91.78 92.13 90.66 

 

 
 

Fig. 4  Feature selection result of 1st test image 
(a) Feature list with the highest accuracy; (b) Features included in over 10 

experiments results 

 
 

 

Fig. 5  Feature selection result of 2nd test image 
(a) Feature list with the highest accuracy; (b) Features included in over 10 

experiments results 
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Table 5  List of selected features in each experiment using 1st test image 
Experiment No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mean brightness_Band1 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

Mean brightness_Band2 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

Mean brightness_Band3 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

Mean brightness_Band4 ◎ ◎ ◎ ◎ ◎ ◎ ◎  ◎  ◎ ◎    ◎  ◎  ◎

Standard deviation of brightness_Band1 ◎  ◎                  
Standard deviation of brightness_Band2 ◎    ◎                
Standard deviation of brightness_Band3     ◎                
Standard deviation of brightness_Band4                     

Perimeter          ◎           
Area ◎ ◎ ◎ ◎ ◎ ◎ ◎  ◎    ◎ ◎ ◎ ◎ ◎  ◎  

Bounding rectangle width                     
Bounding rectangle length     ◎                

Bounding rectangle’s principal direction  ◎       ◎ ◎  ◎        ◎

Shape index  ◎     ◎       ◎     ◎  
Compactness             ◎     ◎   
ASM_Band1 ◎ ◎ ◎ ◎ ◎ ◎  ◎   ◎ ◎ ◎ ◎ ◎ ◎     
ASM_Band2    ◎           ◎  ◎  ◎  
ASM_Band3 ◎  ◎   ◎  ◎         ◎  ◎  
ASM_Band4      ◎  ◎      ◎       
IDM_Band1       ◎ ◎  ◎ ◎   ◎   ◎ ◎  ◎

IDM_Band2 ◎          ◎          
IDM_Band3  ◎  ◎   ◎  ◎   ◎   ◎  ◎    
IDM_Band4    ◎    ◎           ◎ ◎

ENTROPY_Band1   ◎ ◎ ◎ ◎ ◎         ◎ ◎   ◎

ENTROPY_Band2     ◎      ◎ ◎   ◎    ◎  

ENTROPY_Band3    ◎     ◎      ◎ ◎   ◎  

ENTROPY_Band4       ◎            ◎  

CONTRAST_Band1          ◎        ◎   

CONTRAST_Band2      ◎    ◎  ◎    ◎ ◎  ◎ ◎

CONTRAST_Band3    ◎ ◎       ◎  ◎ ◎ ◎     

CONTRAST_Band4 ◎     ◎ ◎  ◎     ◎  ◎  ◎   

◎ denotes the feature is selected in the corresponding experiment. 

 
Table 6  List of selected features in each experiment using 2nd test image 

Experiment No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mean brightness_Band1 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

Mean brightness_Band2 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

Mean brightness_Band3 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

Mean brightness_Band4                     
Standard deviation of bright-

ness_Band1                     

Standard deviation of bright-
ness_Band2                     

Standard deviation of bright-
ness_Band3                     

Standard deviation of bright-
ness_Band4         ◎            

Perimeter            ◎         
Area ◎    ◎  ◎       ◎       

Bounding rectangle width                     
Bounding rectangle length                     

Bounding rectangle’s principal 
direction  ◎ ◎ ◎ ◎ ◎  ◎  ◎      ◎ ◎    

Shape index   ◎         ◎ ◎      ◎ ◎

Compactness ◎    ◎   ◎  ◎ ◎  ◎  ◎ ◎ ◎  ◎  

ASM_Band1    ◎  ◎ ◎ ◎ ◎ ◎  ◎ ◎  ◎  ◎ ◎   

ASM_Band2  ◎    ◎    ◎   ◎        

ASM_Band3         ◎ ◎ ◎     ◎     

ASM_Band4 ◎    ◎ ◎ ◎       ◎       

IDM_Band1 ◎ ◎          ◎  ◎  ◎     

IDM_Band2 ◎     ◎           ◎   ◎

IDM_Band3             ◎ ◎       

IDM_Band4  ◎ ◎ ◎      ◎       ◎  ◎  

ENTROPY_Band1              ◎       

ENTROPY_Band2  ◎ ◎  ◎              ◎  

ENTROPY_Band3    ◎      ◎   ◎    ◎    

ENTROPY_Band4       ◎         ◎     

CONTRAST_Band1  ◎       ◎      ◎      

CONTRAST_Band2 ◎ ◎  ◎  ◎  ◎  ◎      ◎ ◎  ◎ ◎

CONTRAST_Band3  ◎      ◎  ◎ ◎         ◎

CONTRAST_Band4  ◎ ◎  ◎ ◎        ◎       

◎ denotes the feature is selected in thea corresponding experiment. 
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Table 7  Comparison of GA-SVM and other feature selection methods 
/% 

1st test image 2nd test image 
Feature selection method 

Undetected Wrong detected Error rate Accuracy Undetected Wrong detected Error rate Accuracy 
Empirical method 

(using spectral features by experience) 3.03 9.85 12.88 87.12 3.76 6.97 10.73 89.27 

No selection (using all features) 46.21 3.03 49.24 50.76 11.92 20.00 31.92 68.08 

Principle component analysis 11.36 26.52 37.88 62.12 8.36 12.26 20.63 79.37 

Classical GA coupled with SVM 3.03 11.36 14.39 85.61 2.72 6.62 9.34 90.66 

GA-SVM 0.00 1.52 1.52 98.48 2.72 3.97 6.69 93.31 
GA coupled with minimum distance 

classifier 9.45 11.74 21.19 78.81 7.69 6.76 14.45 85.55 

 

5  CONCLUSION AND DISCUSSION  

In this paper, a feature optimization method was proposed 
for target recognition from high spatial resolution remote sens-
ing images. Experimental results showed that the proposed 
method, having obvious advantages compared with other fea-
ture selection methods, can effectively reduce the dimension of 
feature space, and improve target recognition accuracy. Besides, 
some modification had been made to improve the classical GA. 
Thus, the risk of premature convergence of GA had been re-
duced greatly, and better genetic evolution results can be ob-
tained. 

It should be pointed out that, the above experiments only 
chose quickbird data as the test image, and the building type in 
the test image were relatively simple. So, how to improve the 
universality of the proposed GA-SVM method so that it can be 
applied to other type of high-resolution remotely sensed im-
agery, and how to successfully recognize different type of 
buildings from the image will be further studied in the near 
future. 
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面向遥感目标识别耦合 GA与 SVM的特征优选方法 
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摘  要:  提出了GA-SVM耦合用于高分遥感目标识别的特征优选方法, 将GA中的特征降维和适应度函数构建与

SVM中的特征空间映射、样本训练以及分类结果在内容上耦合, 利用 SVM的识别结果指导 GA的进化方向。同时, 

为减小未成熟收敛风险, 对传统 GA做了改进。实验表明, 该方法在高分遥感影像目标识别中效果较好。 
关键词:  遗传算法, 支持向量机, 目标识别, 特征优选 

中图分类号:  TP751.1       文献标志码:  A  
 
 
 
 

 
1  引  言 

遥感目标识别(明冬萍等, 2005)的主要任务是确
定遥感影像中是否存在感兴趣的目标, 并给目标以
合理的解释, 即判断目标是什么并确定它(们)的位
置。遥感影像目标识别一般针对人工地物进行, 不
仅依据其光谱特征、还很大程度上依据目标形状、空

间语义关系等, 其落脚点往往是小尺度的目标类别
归属, 一般其数据源为高空间分辨率的航空影像和
卫星影像(李军梅等, 2006)。自 20世纪 60年代遥感
技术问世以来, 遥感目标识别技术一直是遥感研究
领域的热点。近年来, 针对建筑物、道路、桥梁等
人工地物的遥感目标识别研究方兴未艾。但是如何

提高该类研究的识别精度仍然是有待解决的难题。 
遥感影像目标识别一般包括 3 个阶段: 影像处

理(包括影像分割)、特征提取和分类识别。其中, 特
征提取是目标识别的关键。通常认为, 描述遥感影
像的特征有光谱特征、纹理特征、结构特征和形状

特征。由于遥感影像通常是多波段影像, 可以藉此 
 

提取几十乃至上百个影像特征。但是, 特征间普遍
存在的相关性(正相关)将造成特征冗余, 增加识别 
时的计算开销; 而特征间的负相关可能导致特征越
多精度越低的现象。不同地物目标的提取对应于不

同的最优特征组合, 过多的冗余特征会降低识别方
法的性能, 减弱目标识别与提取效果。为提高识别
精度, 如何进行特征优选——即从众多的特征中寻
找到最能反映待识别目标特性的少量关键特征, 在
保证识别精度的同时, 提高识别的效率, 便成为遥
感目标识别研究的-项重要内容(牛丽红 & 倪国强, 
2005; 张耀波 & 张迁, 2005)。 

目前, 高分辨率遥感影像目标识别过程中通常
是根据经验提取最优特征组合, 或用主成分分析法
进行降维, 由于这些特征并不一定能表达目标区分
于非目标的本质特性, 因而识别精度难以保证。基
于以上考虑, 本文提出并使用一种耦合 GA 和 SVM
的特征优选方法来提取用以描述待识别目标的最优

特征组合, 利用该特征组合识别 Quickbird影像中的
建筑物目标。实验结果表明, 该特征优选方法明显
地提高了目标识别的精度。 

引用格式: 孙  宁, 陈秋晓, 骆剑承, 沈占锋, 胡晓东. 2010. 面向遥感目标识别耦合 GA 与 SVM 的特征优选方法. 遥感学报,
14(5): 928—943 
Sun N, Chen Q X, Luo J C, Shen Z F and Hu X D. 2010. Coupling GA with SVM for feature selection in high-resolution
remote sensing target recognition. Journal of Remote Sensing. 14(5): 928—943 
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2  耦合 GA和 SVM的特征优选方法 

遗传算法(genetic algorithm, GA)(陈国良 & 王
煦法, 1999)是 Holland(Holland, 1973, 1975)于 20世
纪 70年代初创建的一种概率搜索算法, 体现了优胜
劣汰、适者生存的生物进化原理。在模式识别的解

决上具有较强的鲁棒性和自适应性, 常用解决复杂
的优化问题。然而, GA本身并不具备计算最优方向
的能力, 由于目标识别的精度主要是依靠分类结果
进行评价的, 需要将 GA 与一个优秀的分类器如支
持向量机结合以进一步优选特征并提高识别精度

(何爱香等, 2007)。支持向量机(support vector ma-
chine, SVM)是在高维特征空间使用线性函数假设空
间的学习系统(Nello & John, 2004;  Vapnik, 1998), 
具有较强的稳健性和学习能力, 在处理高维数据的
分类上有优势(许建强 & 李高平, 2004;  章新华, 
1997)。本文将 GA 与 SVM方法进行耦合(图 1), 通
过 GA 的遗传机制从候选特征集中选择满足条件的
最优组合, 利用 SVM算法构建GA中的适应度函数, 
使用 GA 优选出的最优特征组合识别全体对象。具
体地, 耦合体现在以下 3个阶段: 特征降维、适应度
计算、目标识别。 

2.1  特征降维阶段 

原 N 维特征空间是非线性空间, 本文将 GA 的

特征降维与 SVM 的特征空间映射相结合, 利用 GA
的种群进化对原 N 维特征向量实现降维, 将降维后
的特征向量传入 SVM 分类器并映射到新的线性特

征空间。 

 

GA
1 1
SVM

1

( , , ) ( , , )

    ( ) ( ( ), , ( ))     
n d

d

x x x x x

x x x d nφ φ φ

= ⎯⎯⎯→

⎯⎯⎯→ = <  
(1) 

2.2  适应度计算阶段 

为提高不同地物间的区分度, 同时提高分类模
型对特定地物的识别精度, 本文为分类器选择两类
样本集, 训练样本集 Strn和测试样本集 Stest。训练样

本集要能反映数据的各种类型并且有代表性; 测试
样本集分两类 , 分别为待识别目标和非待识别目
标。由于高分遥感影像类型复杂, 数据量大, 考虑适
当增加样本数以提高识别精度。在新的特征空间中

对训练样本集 Strn 进行训练, 寻找能够将训练样本
集正确分类的最优超平面。本文的支撑向量机采用

如下的决策函数:  

 1
( ) sgn ( , )

d

i i i
i

f x y K x x bα
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

 
(2) 

式中, K(xi, x)为核函数。 
利用训练后规则分类测试样本集 Stest, 依据该

结果计算适应度反馈回 GA, 指导下一回的进化方
向, 从而保证最终得到的特征子集为该类目标识别
的最优特征组合。 

 

 
 

图 1  GA与 SVM耦合结构图 
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2.3  遗传结果识别阶段 

当种群满足收敛条件后, 输出适应度最高个体, 
从个体中读取特征信息, 将该特征子集映射到 SVM
的线性特征空间中对全体对象进行识别, 得到最终
识别结果。 

3  遗传算法改良 

遗传算法是一种模拟生物界进化的全局随机优

化算法 , 它利用二进制编码染色体组成遗传种群 , 
通过三类算子控制遗传过程, 并设置适应度函数和
收敛条件保证 GA 的遗传向最优化发展。高分辨率
遥感目标识别要求特征方案中应包含尽可能少又有

针对性的特征 , 能够最大限度的提高最终识别精
度。这就要求 GA-SVM既能够保证遗传向提高识别
精度方向发展, 又能改善传统 GA 带来的未成熟收
敛的风险, 针对该特性本文在 GA-SVM耦合算法中
对传统 GA 进行了一些改进, 添加了个体优化选择
机制和外来个体进入机制, 通过适应度函数和种群
重置机制的构建控制最终识别精度。 

3.1  个体选择 

遗传个体是遗传操作中携带特征信息的基本单

位, 同一代遗传个体的异质性和适应度是决定最终
获得特征方案是否最优的重要因素。为保证群体的

多样化, 提高群体最高适应度, 本文依据仿生学原
理, 在个体选择中添加个体优化选择机制和外来个
体准入机制。 
3.1.1  个体优化选择机制 

在群体初始化阶段, 由于待选特征集较大, 为
达到显著降维的目的, 初始化时以较小的概率将染
色体的各分量随机设置为 1。为优化遗传进程, 减少
在进化过程中陷入局部极小的概率, 在初始化过程
中对染色体进行判断, 若适应度小于一定阈值, 则
重新生成染色体。 

在遗传过程中, 附加最优串保留策略, 保留适
应度最高的个体直接进入下一代。同时, 根据个体
的适应度, 用期望值选择机制从上一代中选择用于
繁殖的若干个体组成繁殖群, 然后从繁殖群中随机
选择两父代进行杂交。杂交选择单点杂交的方式 , 
即随机选择断点, 在断点处交换两父代的尾部形成
新的个体。对两父代 x1、x2, 以及两子代 x3、x4, 根
据式(4)计算适应度, 找到适应度最高的个体 xi, 对
xi 与其他 3 个个体计算汉明距离, 找到距离最大的
xk, 将 xi和 xk进入下一代。 

3.1.2  外来个体准入机制 
为抑制本地个体在经历多次进化后产生的同质

化现象, 在进化中引入外来个体。根据式(3)对全体
个体计算概率, 其中 F(x)为适应度函数, 依据式(4)
求得, fitmax为种群中最大适应度, fitmin为种群中最小

适应度。  

 

max

max min

fit ( )
( )

fit fitm
F x

p x
−

=
−

 
(3) 

依据该概率从种群中随机选取一个个体删除 , 
并重新初始化一个个体补充进该种群。为保证种群

整体质量, 限制外来个体的适应度宜大于 0.4。 

3.2  精度控制 

提高目标识别精度是特征优选的最终目标, 通
过GA-SVM耦合算法构建基于精度评价的适应度函
数, 在收敛判断中引入种群重置机制逃离局部极小
状态, 提高最终特征方案的识别精度。 
3.2.1  适应度函数的构建 

针对目标识别的要求, 根据训练样本集的识别
误差和特征维数两个方面构建适应度函数:  

 

1

2 min max min

( ) (1 ( ) ( ))
(1 ( ( ) ) /( ))

F x w E x E x
w d x d d d

= × − − +

× − − −
漏分 误分

 
(4) 

式中, E 漏分(x)为训练样本集中漏分对象所占比重, 
E 误分(x)为错分对象所占比重。d(x)为染色体 x所包含
特征的维数, dmax为 x可能包含的最大维数, dmin为种

群染色体中所含最小特征维数。w1和 w2分别为目标

识别精度和特征维数在适应度计算中所占权重, 满
足 w1+w2=1。 
3.2.2  收敛条件和种群重置 

算法中的收敛条件设置 3 种, 分别为: 种群中
最佳个体的适应度大于 0.95, 且连续 5 代最佳个体
的适应度没有改善; 种群中最佳个体的适应度大于
0.9, 且连续 10代最佳个体的适应度没有改善; 算法
已经进化了 100代。 

若连续 10 代种群中最佳个体的适应度没有改
善, 且该适应度低于 0.9, 则认为算法陷入局部极小, 
启动种群重置机制。保留种群中适应度最高的个体, 
对其他个体, 根据个体的适应度随机保留, 利用初
始化算法重置剩余个体, 再次启动遗传过程。 

4  高分辨率遥感建筑物目标识别实验 

4.1  实验数据和平台 

实验选取某景覆盖武汉部分城区的 Quickbird 
融合影像的两部分做建筑物识别, 影像的空间分辨
率为 0.6m, 测试影像的大小分别为 1600×1600 以及 
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1200×800, 影像包含 4个波段, 分别对应可见光蓝、
绿、红波段和近红外波段。所用的实验平台为中国

科学院遥感应用研究所开发的 SINCE2008。 

4.2  特征提取 

将测试影像用 MeanShift 方法在合适的尺度下
进行分割, 实验选择影像在尺度上分别为 100(最小
区域的大小为 100)与 200 时能够保证建筑物基元被
较完整的分隔, 并且不与周边地物基元相混淆, 关
于 MeanShift 方法的更多内容请参考相关文献
(Comaniciu & Meer, 2002)。利用其分割结果作为分
类原数据, 分割结果分别包含对象 3236个以及 1435
个(表 1)。从原数据中提取包含波谱特征、形状特征、
纹理特征在内的 31 个特征。实验使用的 Quickbird
影像包含 4 个波段, 随着波段数目的增多, 可以适
当增加几何特征的数量或提高权重以保证几何特征

在最终识别中的贡献度。 
 

表 1  特征列表 
特征名 特征个数

各波段亮度均值 4 
各波段亮度标准差 4 光谱特征 

小计 8 
各波段 ASM 4 
各波段 IDM 4 

各波段 ENTROPY 4 
各波段 CONTRAST 4 

纹理特征 

小计 16 
周长 1 
面积 1 
矩形宽 1 
矩形长 1 

矩形主方向 1 
形状指数 1 
紧凑度 1 

几何特征 

小计 7 
总计 31 

 

光谱特征的计算简单。纹理特征是基于灰度-梯
度共生矩阵提取的, 所提取的特征包括:  

逆差矩: 
1 1
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式中, Pij为共生矩阵 C 的第(i, j)个元素的值 Cij在灰

度值为 i 梯度值为 j 处的共生矩阵的概率 ,  即 
/ij ij ij

i j
P C C= ∑∑ 。另, 梯度图像是通过以下方法得 

到: 中心像元与上下左右 4 个像元的差值求和, 再
取绝对值。 
主要的几何特征的计算方法如下:  

紧凑度: Compact 2 π×area perim= ×  

形状因子: ShapeIndex 0.25 perim area= ×  
式中, area为对象面积, perim为周长。 

4.3  实验样本和参数说明 

针对该遥感影像选择训练样本集和测试样本集

(表 2)。训练样本集分为 4类, 总计 276个对象。测
试样本集分为建筑及非建筑两类, 包含对象 537个。 
 

表 2  样本集 
训练样本集 

对象数量 
类别名称 

影像Ⅰ 影像Ⅱ 
建筑 67 78 
阴影 63 34 
绿地 77 87 
路面 69 57 

测试样本集 
对象数量 

类别名称 
影像Ⅰ 影像Ⅱ 

建筑 123 110 
非建筑 414 255 

 

遗传算法参数设定如下: 种群规模为 50; 初始
化时各染色体设置为 1的概率为 0.3; 在适应度函数
构建中, 本文认为最大限度提高识别精度是特征优
选的最重要目标, 目标识别精度权重系数W1设定为

0.9。 
由于遗传算法具有遗传结果的不确定性, 而且

相同特征子集, 不同排列顺序的特征向量对支持向
量机的分类结果也有影响。实验用 GA-SVM耦合的
方法对相同的原数据进行 20次实验, 将 20次实验的
平均结果作为评价 GA-SVM耦合方法性能的依据。 

SVM 算法采用三阶高斯核函数, simmoid 函数
的 s参数与 c参数均为 1.0, epsilon-SVR损失函数的
epsilon值为 0.9, epsilon-SVR的 c参数值为 25, 训练
结束门限值为 0.01。 

4.4  比较方法及相关说明 

使用以下几种方法进行特征优选并进行目标识

别实验, 包括 PCA 特征降维方法、常规 GA 方法和
经验方法等。在目标分类阶段, 这些对比方法均采
用 SVM 分类器。PCA 特征降维时抽取若干个主成
分, 这些主成分应表征 95%以上的信息量。常规 GA
方法与本文方法的区别在于: 前者不采用个体优化
选择机制、外来个体进入机制和种群重置机制。另

外, 还选用最小距离分类器与 GA 耦合, 以比较该
耦合方法与 GA-SVM耦合方法的优劣。GA-SVM耦
合方法识别过程见图 2、图 3。 
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图 2  使用 GA-SVM耦合方法的建筑物识别过程(Ⅰ) 
(a) Quickbird测试影像; (b) 多尺度分割结果; (c) 训练样本集; (d) 测试样本集; (e) 最优精度目标识别结果 

 

 
 

图 3  使用 GA-SVM耦合方法的建筑物识别过程(Ⅱ) 
(a) Quickbird测试影像; (b) 多尺度分割结果; (c) 训练样本集; (d) 测试样本集; (e) 最优精度目标识别结果 
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4.5  实验结果与分析 

实验结果显示(表 3、表 4), 使用 GA-SVM耦合
方法输出的最优特征子集平均包含的特征分别为

9.65 个和 8.25 个, 其中, 20 个输出子集均包含的特
征有 6个和 7个(图 4(b)及图 5(b)), 最大识别精度为
98.48%和 93.31%, 最小识别精度为 96.59%和
90.66%, 平均精度为 97.86%和 92.24%, 标准差为
0.41%和 0.64%。这说明 GA-SVM 耦合方法在处理
建筑物目标识别上具有较好的稳健性。优选特征结

果见表 5表 6。 
将GA-SVM耦合后方法与常规建筑物目标识别

的特征选择方法作比较, 结果如表 7。我们注意到, 
当使用所有特征进行识别时, 识别精度最低, 仅为 

50.76%和 68.08%, 使用 PCA 降维后得到的最终识
别精度略有提高, 由于未成熟收敛效应的存在, 并
且实验所选区域光谱特征均较为明显, 常规 GA 与
按经验仅使用光谱特征所得结果差别不大。对比各

种方法发现, GA-SVM 耦合方法应用于建筑物目标

识别后识别精度有明显的提高。通过与 GA 耦合最
小距离分类器的分类结果的比较看出, 选择 SVM作
为耦合用分类器的优越性。与常规 GA方法相比, 本
文所提出的、耦合了改进的遗传算法和 SVM的特征
优选方法能保证 GA 的进化始终向提高目标识别精
度的方向演进, 有效减低 GA 算法未成熟收敛的风
险, 进而提高目标识别精度。同时, 优化后的结果可
为同类遥感影像的识别提供借鉴。 

 
表 3  测试影像Ⅰ的 20 次实验的识别精度列表 

实验序号 1 2 3 4 5 6 7 8 9 10 

优选出特征数/个 11 9 9 12 12 11 10 8 9 8 

分类精度/% 97.73 97.73 98.30 98.48 98.11 98.11 98.11 97.73 97.73 98.30 

实验序号 11 12 13 14 15 16 17 18 19 20 

优选出特征数/个 8 10 6 10 10 11 10 8 12 9 

分类精度/% 97.54 98.30 96.59 97.54 97.54 97.54 98.11 97.73 98.11 97.92 

 
表 4  测试影像Ⅱ的 20 次优选结果列表 

实验序号 1 2 3 4 5 6 7 8 9 10 

优选出特征数/个 9 12 8 8 9 10 7 8 7 12 

分类精度/% 93.03 92.68 92.61 92.20 93.17 92.13 91.99 91.50 93.17 93.31 

实验序号 11 12 13 14 15 16 17 18 19 20 

优选出特征数/个 6 7 9 9 6 9 10 4 8 7 

分类精度/% 91.64 92.20 91.57 92.47 92.61 92.06 91.92 91.78 92.13 90.66 

 

 
 

图 4  测试影像Ⅰ的特征优选结果 
(a) 最优精度下的优选结果; (b) 10次以上优选结果均包含的特征 

 
 

图 5  测试影像Ⅱ的特征优选结果 
(a) 最优精度下的优选结果; (b) 10次以上优选结果均包含的特征 
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表 5  测试影像Ⅰ的 20 次实验特征优选结果 
实验编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

平均亮度值__波段 1 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

平均亮度值__波段 2 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

平均亮度值__波段 3 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

平均亮度值__波段 4 ◎ ◎ ◎ ◎ ◎ ◎ ◎  ◎  ◎ ◎    ◎  ◎  ◎

标准差__波段 1 ◎  ◎                  

标准差__波段 2 ◎     ◎                

标准差__波段 3      ◎                

标准差__波段 4                      

周长           ◎           

面积 ◎ ◎ ◎ ◎ ◎ ◎ ◎  ◎    ◎ ◎ ◎ ◎ ◎  ◎  

矩形宽                      

矩形长      ◎                
矩形主方向  ◎        ◎ ◎  ◎        ◎

形状指数  ◎      ◎       ◎     ◎  
紧凑度              ◎     ◎   

ASM__波段 1 ◎ ◎ ◎ ◎ ◎ ◎  ◎   ◎ ◎ ◎ ◎ ◎ ◎     

ASM__波段 2     ◎           ◎  ◎  ◎  

ASM__波段 3 ◎  ◎   ◎  ◎         ◎  ◎  

ASM__波段 4       ◎  ◎      ◎       

IDM__波段 1        ◎ ◎  ◎ ◎   ◎   ◎ ◎  ◎

IDM__波段 2 ◎           ◎          

IDM__波段 3  ◎   ◎   ◎  ◎   ◎   ◎  ◎    

IDM__波段 4     ◎    ◎           ◎ ◎

ENTROPY__波段 1   ◎ ◎ ◎ ◎ ◎         ◎ ◎   ◎

ENTROPY__波段 2      ◎      ◎ ◎   ◎    ◎  

ENTROPY__波段 3     ◎     ◎      ◎ ◎   ◎  

ENTROPY__波段 4        ◎            ◎  

CONTRAST__波段 1           ◎        ◎   

CONTRAST__波段 2       ◎    ◎  ◎    ◎ ◎  ◎ ◎

CONTRAST__波段 3     ◎ ◎       ◎  ◎ ◎ ◎     

CONTRAST__波段 4 ◎      ◎ ◎  ◎     ◎  ◎  ◎   

◎表示特征包含在特征优选结果中 
表 6  测试影像Ⅱ的 20 次实验特征列表 

实验编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
平均亮度值__波段 1 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

平均亮度值__波段 2 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

平均亮度值__波段 3 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎

平均亮度值__波段 4                     

标准差__波段 1                     

标准差__波段 2                     

标准差__波段 3                     

标准差__波段 4         ◎            

周长            ◎         

面积 ◎    ◎  ◎       ◎       
矩形宽                     

矩形长                     
矩形主方向  ◎ ◎ ◎ ◎ ◎  ◎  ◎      ◎ ◎    

形状指数   ◎         ◎ ◎      ◎ ◎

紧凑度 ◎    ◎   ◎  ◎ ◎  ◎  ◎ ◎ ◎  ◎  

ASM__波段 1    ◎  ◎ ◎ ◎ ◎ ◎  ◎ ◎  ◎  ◎ ◎   

ASM__波段 2  ◎    ◎    ◎   ◎        

ASM__波段 3         ◎ ◎ ◎     ◎     

ASM__波段 4 ◎    ◎ ◎ ◎       ◎       

IDM__波段 1 ◎ ◎          ◎  ◎  ◎     

IDM__波段 2 ◎     ◎           ◎   ◎

IDM__波段 3             ◎ ◎       

IDM__波段 4  ◎ ◎ ◎      ◎       ◎  ◎  

ENTROPY__波段 1              ◎       

ENTROPY__波段 2  ◎ ◎  ◎              ◎  

ENTROPY__波段 3    ◎      ◎   ◎    ◎    

ENTROPY__波段 4       ◎         ◎     

CONTRAST__波段 1  ◎       ◎      ◎      

CONTRAST__波段 2 ◎ ◎  ◎  ◎  ◎  ◎      ◎ ◎  ◎ ◎

CONTRAST__波段 3  ◎      ◎  ◎ ◎         ◎

CONTRAST__波段 4  ◎ ◎  ◎ ◎        ◎       

◎表示特征包含在特征优选结果中 
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表 7  GA-SVM 耦合特征优选方法与其他优选方法的比较 
/% 

测试影像Ⅰ 测试影像Ⅱ 
特征选择方式 

漏检 错检 错误率 正确率 漏检 错检 错误率 正确率

按经验仅使用光谱特征 3.03 9.85 12.88 87.12 3.76 6.97 10.73 89.27 

使用全部特征 46.21 3.03 49.24 50.76 11.92 20.00 31.92 68.08 

使用 PCA降维 11.36 26.52 37.88 62.12 8.36 12.26 20.63 79.37 

常规 GA降维 3.03 11.36 14.39 85.61 2.72 6.62 9.34 90.66 

使用 GA-SVM耦合方法 0.00 1.52 1.52 98.48 2.72 3.97 6.69 93.31 

使用 GA-最小距离分类器耦合方法 9.45 11.74 21.19 78.81 7.69 6.76 14.45 85.55 

 

5  结论与讨论 

提出了将 GA 中的特征降维和适应度函数构建
与 SVM中的特征空间映射、样本训练以及分类结果
在内容上耦合后应用于高空间分辨率遥感影像目标

识别的特征优选方法。实验结果表明, 该方法能够
有效降低特征空间维数 , 提高地物目标识别精度 , 
同其他特征优选方法相比具有明显的优势。对遗传

算法的改进能够改善未成熟收敛现象, 获得更优化
的遗传结果。对高分辨率遥感影像目标识别的特征

选择有一定的参考价值。 
需要指出的是, 本文仅选用了Quickbird数据作

为测试影像, 且实验数据中建筑类型相对单一。如
何提高 GA-SVM方法的普适性, 将该方法扩展应用
到其他高分辨率数据及多种类型建筑物共存的影像

数据中将是今后研究的重点。 
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