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Coupling GA with SVM for feature selection in high-resolution
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Abstract: As one of the key techniques for high-resolution remote sensing target recognition, feature selection focused on

how to find the critical features in the feature set to represent the target. Generally, the classical methods for feature selection

were as follows, principal component analysis, empirical method, etc. When using these classical methods, recognition accuracy

was not guaranteed. In this paper, a new method was proposed, the main idea of which was to couple GA (Genetic Algorithm)

and SVM (Support Vector Machine) for feature selection, and using recognition results to guide the revolution direction of GA.

Meanwhile, to reduce the risk of premature convergence of the traditional GA, some modification had been made. The experi-

ment demonstrated the effectiveness of the proposed method.
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1 INTRODUCTION

The main task of remotely sensed target recognition (Ming
et al., 2005) (RSTR) is to determine whether interesting targets
exist or not, and to find out what is the target and where it is.
Mainly focusing on recognition of artificial geo-objects, RSTR
relies on not only targets’ spectral features and shape index, but
also their spatial semantic relations with surrounding
geo-objects. Generally, the main purpose of RSTR is to
recog-nize small-scale geo-objects, and high spatial resolution
aerial images and satellite images are often utilized as data
source (Li et al., 2006). Since the advent of remote sensing
technology in the sixties of last century, RSTR has always been
a hot topic in this field. In recent years, there are many re-
searches conducted on target recognition of artificial
geo-objects like building, road and bridge from remotely sensed
imagery. However, how to improve the accuracy of these re-
searches remains to be solved.

Generally speaking, RSTR includes the following three
stages: image processing (including image segmentation), fea-
ture extraction, classification and recognition. As to feature
extraction, spectral features, shape index and texture features
are commonly used. Due to the multiband property of remotely
sensed images, hundreds of features can be extracted from them
if needed. However, positive features correlation will result in
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redundancy and increase the computation cost of recognition
respectively, while negative correlation may lead to a strange
phenomenon-more features, lower accuracy. To recognize dif-
ferent kinds of targets, different combination of features are
used. However, too much features are not necessary for recog-
nition, and will probably reduce the recognition accuracy. That
is why feature selection-finding a small number of key features
from the feature set to well represent target, becomes one of the
most important topic of RSTR researches (Niu & Ni, 2005;
Zhang et al., 2005).

At present, the empirical approach or principal component
analysis are always used to find the best combination of fea-
tures for target representation. However, such combination of
features are not capable of distinguishing targets from
non-targets, recognition accuracy is therefore not guaranteed. In
consideration of the facts stated above, we proposed a coupling
method named GA-SVM (coupling GA with SVM) for feature
selection, through which, a small number of key features were
selected. By inputting these features into classifier, building
targets can be recognized from quickbird images. The experi-
mental results showed that this method can improve recognition
accuracy obviously.

2 COUPLING OF GA AND SVM

GA is a probabilistic search algorithm based on the principle
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of biological evolution-the survival of the fittest, which was
initially proposed by Holland ( Holland, 1973, 1975) in the
early 1970s. In pattern recognition domain, GA is famous for its
strong robustness and adaptability, and is often used to solve
complex optimization problems. However, GA does not have
the ability to calculate the optimal direction. Due to the fact that
recognition accuracy mainly relies on the classification results,
it will be very helpful to feature selection and recognition ac-
curacy improvement subsequently if GA is coupled with a good
classifier such as SVM. SVM uses a hypothetical space of lin-
ear functions in a high dimensional feature space trained with a
learning algorithm based on optimization theory. The advantage
of SVM is as follows, robustness, good learning abilities and
suitability for high dimensional data classification (Xu & Li,
2004; Zhang, 1997). In this paper, GA and SVM were coupled
for feature selection (coupling structure shown in Fig. 1), that is
to use genetic mechanism of GA to find a subset of features,
construct the fitness function by the classification accuracy
using SVM, and recognize all targets through SVM classifier
by utilizing the optimized subset of features once they were
obtained. Specifically, the coupling is reflected in the following
three stages: feature dimensionality reduction, fitness calcula-
tion and target recognition.

2.1 Feature dimensionality reduction phase

In this paper, GA’s population evolution was used to reduce
the dimension, then vectors with reduced dimension were put
into SVM and mapped to the new linear feature space, through
which feature dimensionality reduction in GA and feature space
mapping in SVM were combined.

GA
Xn) (X1, Xg)

¢4 (X))

X:(Xb'"

S (%) = (¢4 (),

(M

d<n

2.2 Fitness calculation phase

To improve SVM classifier’s discrimination between differ-
ent objects and the recognition accuracy for specific target,
training sample set (Sy,) as well as testing sample set (Sie)
were utilized. S, should include different types geo-objects and
each sample should be representative. S consists of two cate-
gories, objects to be identified and the other ones. Because of
the complexity of remote sensing images, an appropriate in-
crease in the number of samples can be considered to improve
recognition accuracy.

Syn Was trained in the new feature space in order to find the
hyperplane that can classify Sy, correctly, then this hyperplane
was used to classify Si. By returning the fitness based on clas-
sification results to GA, the next evolution direction was well
guided. Thus, the final obtained feature subset being the best
combination of features for target recognition was ensured.

Here, SVM uses the following decision function:
d
f(x)=sgn| D ayiK(4.X)+b (2)
i=l

where, K(X;, X)is the Kernel function.

2.3 Results of genetic identification phase

When the population met the convergence conditions, indi-
vidual with the highest fitness was outputted, feature informa-
tion from the individual was read and mapped to a linear
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Structure diagram of how to couple GA with SVM
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feature space to recognize all targets, and recognition results
were obtained finally.

3 IMPROVEMENT OF GA

GA is a global random optimization algorithm by simulating
the species evolution. It uses binary-coded chromosome to form
the population, controls the genetic process through operators
like mutation and crossover. To ensure GA’s reasonable evolu-
tion direction, the fitness function and convergent condition
were set. On the premise of maximizing the accuracy of RSTR,
the fewer features used, the better. In order to achieve this goal,
the coupling of GA and SVM should not only guarantee the
genetic direction to improve the recognition accuracy, but also
avoid the risk of premature convergence the traditional GA
brings. Therefore, some improvement on traditional GA was
made by introducing the individual optimization of the selec-
tion mechanism and foreign individuals’ access mechanism,
and the final recognition accuracy was controlled or affected by
the fitness function and population reset mechanism.

3.1 Individual choice

Individual is the basic unit that carries feature information in
the genetic process. The heterogeneity and fitness of the indi-
vidual in the same generation is the key factor that determines
whether the final feature scheme is the best one. In order to
ensure the diversity of the highest fitness of the population,
Individual optimization and the foreign individual access
mechanism were applied for individual selection based on bi-
onics.

3.1.1 Individual optimization of the selection mechanism

In the population initialization phase, in order to reduce fea-
ture dimension obviously, the various components of chromo-
somes were randomly set to 1 with a small probability. To op-
timize the genetic process, reduce the possibility falling into a
local minimum during the evolution, the chromosome was
evaluated in the initialization process. If its fitness is less than a
certain threshold value, then a new chromosome was
re-generated to replace the old one.

During the genetic process, optimal string retention strategy
was applied to ensure that the highest fitness of individual was
directly passed to the next generation. Meanwhile, according to
the individual fitness, a number of individuals were selected by
the expectation selection mechanism to form the breeding herd,
among which, two parents were selected randomly to complete
the hybridization. Single-dot blot hybridization was used, that is,
breakpoint was randomly selected, and two parts of the parents
were exchanged to form new individuals. For two parents X;, X,,
and two offspring X3, X4, fitness was calculated according to Eq.
(4). Then, individual x; with the highest fitness was found,
hamming distance between X; and other three individuals were
computed in order to find X, that had the greatest distance to X;,
X; and X, were then passed into the next generation.

3.1.2 Foreign individual access mechanism
To avoid local individual homogenization phenomena after

several times of evolution, foreign individual was introduced.
The probability of all individuals was calculated according to
Eq. (3), where F(x) was the fitness obtained by Eq. (4), fity.
was the largest population fitness, and fit,,;, was the smallest
one.

fit,... — F(X)
X — max
P (x) =

T )

max min

Based on the above probability, an individual was randomly
selected and then deleted from the population, and a new one
was re-initialized and added. To ensure the overall population
quality, the foreign individual’s fitness should be larger than

0.4.

3.2 Accuracy control

The ultimate goal of feature optimization is to improve the
recognition accuracy. So, based on accuracy evolution, a fitness
function was constructed by coupling GA with SVM, and
population reset mechanism was introduced for convergence
judgment in order to escape from the local minimum state.
3.2.1 Construction of the fitness function

To meet target recognition request, the fitness function was
constructed based on recognition error and feature dimension of
the training sample set:

F(X) =W x (1= By oo (%) = Egpron (X)) +
Wy x (1= (d (%) = diyin ) /(Amay = Apmin )
where, E ;s(X) is the proportion of missed targets, E.(X) is the

4

proportion of misclassified targets, d(X) is the number of di-
mensions the chromosome contains, 0y, is the maximum
number of dimensions X may contain, while d;, is the mini-
mum number. W; and W, correspond to the weights of target
recognition accuracy and feature dimension respectively, where
Witw, =1.

3.2.2 Convergence condition and population reset mechanism

Three kinds of convergence conditions are set in the algo-
rithm: the individual’s largest fitness is greater than 0.95, and
this fitness has not been improved during five generations; the
individual’s largest fitness is greater than 0.9, and this fitness
has not been improved during ten generations; algorithm has
reached 100 generation evolution.

If the individual’s largest fitness has not been improved
during ten generations, and this fitness is smaller than 0.9, it
can be assumed that the algorithm falls into a local minimum
state. In such situation, population reset mechanism should be
launched, the individual with the largest fitness in the genera-
tion was kept, other individuals were randomly retained, the
remaining individuals was reset by initialization process, then
the genetic process was restarted.

4 BUILDING TARGET RECOGNITION EXPERIMENTS
IN HIGH-RESOLUTION REMOTE SENSING IMAGE

4.1 Experimental data and platform

Two subset of Quickbird image covering part of Wu’han
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City were selected as experimental data, which consisted of
four bands — blue, green, red and near-infrared band with spa-
tial resolution as 0.6 meters. The sizes of test images are 1600 x
1600 and 1200 x 800 respectively. The experimental platform
used in this paper was SINCE2008 developed by the Institute of
Remote Sensing Application, Chinese Academy of Sciences.

4.2 Feature extraction

At the very beginning, test images were segmented by mean
shift algorithm in the proper scale. In this experiment, when the
scale (minimum region size) was 100 or 200 pixels, building
primitives can be segmented well. For more details on Mean
Shift algorithm, one can refer to (Comaniciu & Meer, 2002).
Segmentation results, with 3236 and 1435 image objects respec-
tively (Table 1), were used as input data of the classifier. In-
cluding spectral features, geometric features and texture fea-
tures from the original data, 31 features were extracted. Quick-
bird images used in this experiment include four bands. With
the increase of the number of image bands, the number or the
weight of geometrical features can be increased to avoid the
decrease of the contribution of the geometric features to the
final recognition results.

Table 1 Feature list

Feature name Feature number

n-1n-1
Contrast: Contrast = z Z (i— j)2 Ri
i=0 j=0
where, Bj =Cj; /ZZC”— , and Cj; was the element (i, j) of the
i
co-occurrence matrix C. Gradient image was obtained through

4
z Pc — Pn;
i=1

spectral value of the center pixel, Pn, was that of its four

the following method: g = , where p; was the

neighborhood pixel.
The main geometric features were calculated as follows:

Compactness: Compact=2 x+/mxarea / perim
Shape Factor: Shapelndex=0.25 x perim / “area

4.3 Experimental samples and experimental parameters’
specification

The training sample set and test sample set were selected
separately (Table 2). For two test images, the former had 276
and 256 objects respectively, which were put into four catego-
ries (building, shadow, green, road), while the latter 537 objects
and 365 objects respectively, which were put into two catego-
ries (building and non-building).

Table 2 Sample set

Mean brightness 4 Training sample set
?p cotral Standard deviation of brightness 4 Object number
catures Categories name
Subtotal 8 Ist image 2nd image
ASM 4 Building 67 78
IDM 4 Shadow 63 34
Texture
features Entropy 4 Green 77 87
Contrast 4 Road 69 57
Subtotal 16 Test sample set
Perimeter 1 Object number
Categories name
Area 1 Ist image 2nd image
Bounding rectangle width 1 Building 123 110
Geometric Bounding rectangle length 1 Non-building 414 255
features Bounding rectangle’s principal direction 1
Shape index 1 GA’s parameters were set as follows: population size was 50;
Compactriess 1 in initialization phrase, each chromosome was set to 1 with a
Subtotal 7 probability of 0.3; the weight of target recognition accuracy (W)
Total 31 was set to 0.9 since the ultimate goal was to maximize the tar-

Spectral features’ computation was omitted because of its
simplicity. Based on gray - gradient co-occurrence matrix, the
following texture features were extracted:

n—-1n-1 P
: . _ 1)
Inverse difference moment: IDM = z z —
i=0j=0l+(—1])

n-1n-1
2
Angular second moment: ASM = Z Z p.
iz0j=0 "
n-1n-1
Entropy: Entropy = Z z RjlogR;
i=0 j=0

get recognition accuracy.

Because of the uncertainty of GA, and in consideration that
different order of features may lead to a different result, the
experiment had been conducted for 20 times using the same
data, and the average results were utilized for evaluation of the
performance of the proposed coupling method (GA-SVM).

As to SVM algorithm, third-order Gaussian kernel function
was used, the value of s parameters and ¢ parameters were 1.0
in simmoid function, the epsilon in loss function of epsi-
lon-SVR was set to 0.9, c-parameter of epsilon-SVR 25, and
threshold for terminating training 0.01. The process of coupling
GA and SVM methods is shown in Fig. 2 and Fig. 3).
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Fig. 2 Building recognition process using the coupling method GA-SVM ()

(a) 1st Quickbird test image; (b) Segmentation results; (c) Training sample set; (d) Test sample set; (e) Building recognition results with the highest accuracy

Fig. 3  Building recognition process using the coupling method GA-SVM ()

(a) 2nd Quickbird test image; (b) Segmentation results; (c) Training sample set; (d) Test sample set; (¢) Building recognition results with the highest accuracy
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4.4 Methods for comparison and some relevant

specification

To verify the effectiveness of the proposed method, the fol-
lowing methods were used for comparison: (1) GA coupled
with minimum distance classifier; (2) PCA (principle compo-
nent analysis) method; classical GA coupled with SVM; (3)
empirical method. For PCA, the principal components extracted
should at least represent 95% of original data information. The
difference between (3) and the proposed method was as follows,
the former did not use the individual optimization of the selec-
tion mechanism, the foreign individual access mechanism, and
the population reset mechanism as well. Except (1), all methods
utilized SVM as classifier.

4.5 Experimental results and analysis

Experimental results Table 3 and Table 4 showed that for
two test images the optimal feature subset obtained from the
proposed method contains averagely 9.65 and 8.25 features
respectively, common features that all 20 times experiments
outputted were listed in Fig. 4 (b) and Fig. 5 (b) respectively,
recognition accuracy varied from 98.48% to 96.59%, and from
93.31% to 90.66% respectively, with an average accuracy as
97.86% and 92.24%, the standard deviation as 0.41% and

0.64% accordingly. From the above results, we can learn that
our proposed method was a robust one with high accuracy at
least for building recognition. The result are shown in Table 5
and Table 6.

Comparison of the proposed GA-SVM method with classi-
cal ones was shown in Table 7. From this table, we note that
recognition accuracy was quite low—from 50.76% to 68.08%
while using all the features. This number was slightly higher
when utilizing PCA for feature dimension reduction. Because
of the presence of premature convergence effect, and the rela-
tive homogeneous characteristic of targets, the classical GA
method did not have an obvious advantage over the empirical
method (using spectral features by experience). Comparing
methods listed in Table 3 and Table 4, we can learn that by
utilizing the proposed method recognition accuracy was im-
proved significantly. When coupling GA with the minimum
distance classifier, the recognition accuracy was lower com-
pared with the proposed GA-SVM method, which means that
SVM is a good classifier for coupling. In addition, the proposed
one outperformed the method by coupling classical GA with
SVM because the improved GA (used in the former) can always
guide GA’s evolution direction towards the improvement of
target recognition accuracy, and reduce its risk of premature
convergence as well.

Table 3 Final recognition accuracy and corresponding feature number of twenty experiments (1st test image)

Experiment No. Ist 2nd 3rd 4th Sth 6th 7th 8th 9th 10th
Optimal features number 11 9 9 12 12 11 10 8 9 8
Recognition accuracy/% 97.73 97.73 98.30 98.48 98.11 98.11 98.11 97.73 97.73 98.30

Experiment No. 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
Optimal features number 8 10 6 10 10 11 10 8 12 9
Recognition accuracy/% 97.54 98.30 96.59 97.54 97.54 97.54 98.11 97.73 98.11 97.92

Table 4 Final recognition accuracy and corresponding feature number of twenty experiments (2nd test image)

Experiment No. Ist 2nd 3rd 4th Sth 6th 7th 8th 9th 10th
Optimal features number 9 12 8 8 9 10 7 8 7 12
Recognition accuracy/% 93.03 92.68 92.61 92.20 93.17 92.13 91.99 91.50 93.17 93.31

Experiment No. 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
Optimal features number 6 7 9 9 6 9 10 4 8 7
Recognition accuracy/% 91.64 92.20 91.57 92.47 92.61 92.06 91.92 91.78 92.13 90.66
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Fig. 4 Feature selection result of 1st test image

(a) Feature list with the highest accuracy; (b) Features included in over 10

experiments results
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Fig. 5 Feature selection result of 2nd test image

(a) Feature list with the highest accuracy; (b) Features included in over 10

experiments results
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Table 6 List of selected features in each experiment using 2nd test image
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Table 7 Comparison of GA-SVM and other feature selection methods

1%
1st test image 2nd test image
Feature selection method
Undetected Wrong detected Error rate Accuracy | Undetected  Wrong detected Error rate Accuracy

_ Empirical method 3.03 9.85 12.88 87.12 3.76 6.97 10.73 89.27

(using spectral features by experience)
No selection (using all features) 46.21 3.03 49.24 50.76 11.92 20.00 31.92 68.08
Principle component analysis 11.36 26.52 37.88 62.12 8.36 12.26 20.63 79.37
Classical GA coupled with SVM 3.03 11.36 14.39 85.61 2.72 6.62 9.34 90.66
GA-SVM 0.00 1.52 98.48 2.72 3.97 6.69 93.31
GA coupled with minimum distance 9.45 11.74 21.19 78.81 7.69 6.76 14.45 85.55

classifier

5 CONCLUSION AND DISCUSSION

In this paper, a feature optimization method was proposed
for target recognition from high spatial resolution remote sens-
ing images. Experimental results showed that the proposed
method, having obvious advantages compared with other fea-
ture selection methods, can effectively reduce the dimension of
feature space, and improve target recognition accuracy. Besides,
some modification had been made to improve the classical GA.
Thus, the risk of premature convergence of GA had been re-
duced greatly, and better genetic evolution results can be ob-
tained.

It should be pointed out that, the above experiments only
chose quickbird data as the test image, and the building type in
the test image were relatively simple. So, how to improve the
universality of the proposed GA-SVM method so that it can be
applied to other type of high-resolution remotely sensed im-
agery, and how to successfully recognize different type of
buildings from the image will be further studied in the near
future.
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R7 GA-SVM BEFEMIE S E 5 HMMIEF ER LR
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GA 3.03 11.36 14.39 85.61 2.72 6.62 9.34 90.66
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GA- 9.45 11.74 21.19 78.81 7.69 6.76 14.45 85.55
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