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Multi-source remote sensing image matching based on
contourlet transform and Tsallis entropy
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Abstract: There are a lot of differences in multi-source remote sensing images from various sensors about the same scene.
Maximization of mutual information can be used for the multi-source image matching, but the accuracy and efficiency of image
matching need to be further improved. Therefore, an algorithm for multi-source remote sensing image matching was proposed in
this paper, based on contourlet transform, Tsallis entropy based mutual information and improved particle swarm optimization.
Firstly, the target image and reference image were decomposed to the low resolution image using contourlet transform, respec-
tively. Then, a new image similarity measure criterion, the Tsallis entropy based mutual information, was used to achieve the
global optimization. Meanwhile, a modified extremum disturbed and simple particle swarm optimization algorithm was applied
to match the lowest resolution remote sensing images. Based on the preliminary result, the matching between the higher resolu-
tion images could be implemented stepwise up to the full resolution images. The experimental results show that, compared with
those of other existing remote sensing image matching methods, the proposed algorithm has the high accuracy, strong robustness
and requires much fewer operations.
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1 INTRODUCTION

Image matching, one of the key technologies in image un-
derstanding and computer vision, has a wide application pros-
pect in many fields, such as the vehicle cruise guidance, mov-
ing object tracking and recognition, aerial photogrammetry,
video motion estimation, image retrieval and so on. In remote
sensing image processing, image matching technology is ap-
plied to positioning and registration (Brown, 1992; Barbara &
Jan, 2003; Zhang et al., 2005; Li et al., 2006). The region in
reference image which corresponds to target image is deter-
mined by calculating the similarity. Usually, image matching
methods are divided into two categories, pixel-based matching
and feature-based matching. Due to the different imaging prin-
ciples of multi-source remote sensors, the gray scale gap among
the images of the same scene becomes large. If using the nor-
malized cross-correlation which has high requirement on gray
correlation, the matching result can hardly be satisfied, and is
vulnerable to noise. If using the feature-based matching algo-
rithm by exacting the image edges, it will generate matching
errors, or even can not match for homogenous region, such as
water area, because of the inconsistent edges and contours.

Received: 2009-07-23; Accepted: 2009-11-09

Foundation: National Natural Science Foundation of China (N0.60872065).

Since 1994, mutual information measure criterion has been
used in medical image registration, and has received a wide
range of research and application. It doesn’t need to make any
assumption about the relationship of image gray scale. No pre-
treatment is required. Because of the high precision and
strong robustness, mutual information measure criterion is
suitable for multi-modal image matching, and therefore it is
considered to apply to multi-source remote sensing image
matching. Cole-Rhodes et al. (2003) introduced a multi-resolution
registration of remote sensing imagery by optimization of mu-
tual information using a stochastic gradient. The experimental
results show that mutual information is more suitable than
cross-correlation for multi-source image matching. Tian et al.
(2006) adopted the similarity of regional mutual information in
matching algorithm, to solve the issue of weak correlation
among the gray spectrum. However, when applying mutual
information to image matching, the precision needs to be fur-
ther improved. Furthermore, estimation of mutual information,
which is iteratively required, is a time-consuming process.

In view of the matching precision, Tsallis entropy (Martin et
al., 2001; Furuichi, 2006; Waleed & Ben, 2009) based mutual
information is considered to solve the problem. The system
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description of conventional Shannon entropy is extensive, yet
practical systems have time and space correlation more or less,
which are nonextensive. As a result, Tsallis proposed nonexten-
sive entropy, namely Tsallis entropy, which is more universal,
accurate and effective than Shannon entropy. According to this,
we use Tsallis entropy based mutual information as similarity
measure criterion, to further improve the matching precision,
instead of conventional mutual information based on Shannon
entropy.

Aiming at the operation efficiency, improved algorithms
have been proposed in succession recently. Some (You & Bhat-
tacharya, 2001; Yamamura et al., 2007) reduced the computa-
tion load through compressing searching space, for example,
multi-resolution structure based on wavelet transform was used
to match from coarse to fine. Some (Prachya et al., 2001; Xu et
al., 2005; Yang & Zhang, 2006; Zhang et al., 2008) accelerated
the matching speed by various optimization algorithms, and one
of the most typical methods was genetic algorithm (GA), which
was a non-ergodic optimization search strategy. Contourlet
transform, proposed in recent years (Donoho & Vetterli, 2005),
has the characteristics of multi-resolution, localization, critical
sampling, directionality and anisotropy. Thus, we can use these
characteristics in image matching, especially multi-resolution.
As for the latter, basic genetic algorithm has poor ability of
local optimization, and parameters have a great impact on the
results. Particle swarm optimization (PSO) achieves swarm
intelligence optimal search by studying and updating (Sjahput-
era & Keller, 2005; Li & Ji, 2007). Compared with genetic
algorithm, PSO is simple and easy to implement, and is a
highly efficient parallel search algorithm which needs less ad-
justable parameters. Therefore, it is expected to reduce the
computation time significantly.

Taken together, a multi-source remote sensing image
matching algorithm based on contourlet transform, Tsallis en-
tropy and improved particle swarm optimization was intro-
duced. The algorithm mainly contains the following aspects: (1)
Decompose the target image and reference image to low resolu-
tion with contourlet transform, respectively. Match the lowest
resolution remote sensing images. Based on the preliminary
result, the matching between the higher resolution images can
be implemented stepwise up to the full resolution images. (2)
For two same size images, target image and the sub-reference
image, use Tsallis entropy based mutual information as similar-
ity measure criterion to advance the matching precision. (3)
Apply a modified extremum disturbed and simple particle
swarm optimization algorithm (mtsPSO) to image matching, so
that the operation speed can be further improved.

2 PRINCIPLE OF CONTOURLET TRANSFORM,
PSO AND MUTUAL INFORMATION

2.1 Contourlet transform

Discrete Contourlet transform, also called Pyramidal Direc-
tion Filter Bank (PDFB), mainly has two stages: subband de-

composition and directional transform. The Laplacian Pyramid
is first to capture the point discontinuities, and then followed by
a directional filter bank to link point discontinuities into a coef-
ficient. Fig.1 shows the decomposition scheme of contourlet
transform. The original image is decomposed into a lowpass
image and several high frequency components, which distrib-
uted on multiple scales and multiple directions.

Lp
Directional
subbands
Image Directional
subbands
B ———
DFB

Fig. 1 Contourlet filter bank

2.2 Basic particle swarm optimization algorithm

For an n-dimensional search space, the position and velocity
of the i-th particle are represented as Xi=(Xi1,Xiz, ,Xin) and
Vi=(Viy,Viz,
tion of the problem, and corresponds to the objective function
value which is used to evaluate the fitness of particles. The
latter denotes the new velocity of a particle from the current
position to its next position. At first, initialize the particle
swarm; and then search for the optimal solution by iterating.
Suppose that, in the t-th iteration, pi(t) is the best previous posi-
tion of the i-th particle, named individual extremum; g(t) is the
best previous position discovered by the whole swarm, named
global extremum. In the (t+1)-th iteration, the particles are ma-
nipulated according to the following equations:

Vi(t+1) =wV; () +cn [ pi (1) - X (0)] +
coh[9(t) - X; ()]

Xi(t+1) = X;t)+V;(t+D) (2
where ¢; and c, are two acceleration constants that regulate the
relative velocities with respect to the best global and local posi-
tions, respectively. In this paper, ¢;=c,=2; r; and r, are random
variables drawn from a uniform distribution in the range (0,1);
w is the weight coefficients, which is usually reduces linearly as
interaction time:

Vi), respectively. The former stands for the solu-

@

W, — Wi
W = Wiy —t X max min ©)

tmax
where Wpay and Wi, denote the maximum and minimum inertia
weight, respectively; ty.x stands for the total iteration time. In
the iteration update process, the velocity is restricted to the
range Vie[Vmin,Vmaxl, the position is limited in permissible
range, the final output g is the global optimal solution.

2.3 Shannon entropy based mutual information

Mutual information usually describes the statistical correla-
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tion between two systems, which can be expressed by entropy.
Shannon entropy of system A is defined as,

H(A) =~ pa(@)log pa(a) (4)

The joint entropy of system A and B is given as
H(A,B)=-) pag(ab)logpsg(a,b) 5)
a,b

where aeA, beB; pa(a) denotes the probability density of sys-
tem A; pag(a,b) is the joint probability density of system A and
B. If H(A|B) denotes conditional entropy of A, when system B is
known. The mutual information of two systems is described as:
I1(A,B)=H(A)+H(B)-H(A,B) ©)
=H(A)-H(A|B)
Use generalized distance of probability distribution to esti-
mate the mutual information,
(AB) = ps(ab)log2s &0
a,b

;
pa(a)pg(b) 0

3 REALIZATION PROCESS OF THE PROPOSED
ALGORITHM

A novel image matching algorithm for multi-source remote
sensing images based on contourlet transform, Tsallis entropy
and improved particle swarm optimization is proposed. In the
algorithm, images are matched from coarse to fine, using the
multi-resolution of contourlet transform; and Tsallis entropy
based mutual information is introduced as a new image similar-
ity measure criterion; meanwhile, the mtsPSO is used to over-
come the shortcomings of bPSO, such as relapsing into local
extremum, slow convergence velocity and low convergence
precision in the late evolutionary. The detail realization process
of the proposed algorithm is as following:

(1) The target image and reference image are decomposed
by contourlet transform. Where, we use “9-7” pyramid filter,
since the linear phase and approximate orthogonality make it
more suitable for image signal processing. We choose “pkva”
directional filter, and the number of directional subbands in
each scale is 4. The decomposition levels are determined by
target image, and the low resolution image shouldn’t be too
small, or it will generate matching errors for too little informa-
tion it contains. In this paper, L=2.

(2) Initialize the particle swarm in the low resolution of ref-
erence image: Generate random positions of m particles X,
which is the position offset of target image relative to reference
image (Ax, Ay). Set p as the current position of each particle,
and g as any of p. Set parameters: ty,,=500, t=0, m=50

(3) Calculate the fitness function. For target image A and the
subimage of reference image B which is as the same size as
target image. Use Tsallis entropy based mutual information
14(A,B) as the fitness function. Evaluate each particle’s fitness
Fp according to the position X. The derivation is given as fol-
lowing:

For any non-negative real number ¢ and the probability dis-

tribution p(x) of the random variable x, Tsallis entropy is de-
fined as,

P q
sq<X)-q_1[1 L } ®)

In particular, Tsallis entropy converges to Shannon entropy, as
g—1.
Deprive Tsallis entropy based mutual information as fol-
lowing:
14(AB) =S4(A) -S4 (A[B)
=Sq(A) +54(B) - S4(AB)
=Sq(A) +S4(B) —[Sq(A) +Sq(B) + 9)
1-a)Sq(A)S4(B)]
=(q-1S4(A)S4(B)
Considering Eq.(8) and Eq.(9), we can get

1(AB) = lq—l_H[l— 2 0@ -3 o0+

2. p(@) pb)]
a b

In the multi-source remote sensing image matching, target
image and reference image are taken from different imaging
devices, but they are based on the same scene. So when they are
perfectly matched, the mutual information of corresponding
pixels expressed in one image about the other image must be
maximum.

(4) Update individual extremum p and global extremum g. If
the particle’s fitness is better than that of the current individual
extremum, then set p as the particle’s position, and update indi-
vidual extremum. If the fitness of the best individual extreme of
all the particles is better than that of the current global extre-
mum, then set g as the particle’s position, and update global
extremum.

(5) Update X. The mtsPSO discards the particle velocity and
reduces the bPSO from the second order to the first order dif-
ference equation. The evolutionary process is only controlled
by the variables of the particles position, which avoids the de-
merits caused by particle velocity, such as relapsing into local
extremum, slow convergence velocity and low convergence
precision in the late evolutionary. Meanwhile, it accelerates the
particles to overstep the local extremum, and improves the
practicality of the particle swarm optimization. The update
process of the algorithm is given as following:

X (t+1) = wX; (1) + ey re "™ py — X; (0] +

(10)

ty>T, (11)
coh[r’ ™ ° 9= X ()]

where t; and ty stand for the numbers of stagnation steps of
individual extremum and global extremum, respectively. T, and
Tq represent the thresholds of stagnation steps when the indi-

vidual extremum and global extremum need to be disturbed.
5T, _{ 1 $(h<T, nd rlo>Ta _{ 1 tg<Ty are
8 U@ ty>To 4 U1 tg>T,

uniform random numbers with condition. U(0,1) denotes ran-
dom variables drawn from a uniform distribution in the range
(0,1). Let To=T,=10.
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Considering large inertia weight is benefit to the ability of
global search, when small inertia weight is benefit to the ability
of local search, mtsPSO proposed in this paper is modified
based on the extremum disturbed and simple particle swarm
optimization (Hu & Li, 2007). Inertia weights achieve the best
balanced inertia factors adaptively, using the strategy of de-
creasing inertia weight (Chen et al., 2006):

2
t 2t
W= (Wstart — Wend ) (t] + (Wend - Wstart)[t] + Wetart (12)

max max

In this paper, we set Wgzt=0.95,Weng=0.4.

(6) Iteration. Let t=t+1. Check whether it meets the end of
the condition: If t=t,, or satisfy the terminating criteria which
is problem-dependent, stop iterating and output the best solu-
tion, else go to step (3).

(7) According to the position of the best solution gy, the best
offset in low resolution image Ax_ Ay, can be determined and
output.

(8) In the scale of L1, continue to search in the neighbor-
hood of point (2Ax., 2Ay,), and find the best offset position
(AX__1, Ay, 1) in the current scale. Repeat the process, until the
best offset position (Ax,, Ayp) in full resolution image is found.

4 EXPERIMENTAL RESULTS AND ANALYSIS

We carried out the experiments on 200 groups of remote
sensing images, and chose three of them to illustrate, that were
SPOT image (256x256, Fig. 2(a)) and TM image (50x50,

(h)

Fig. 2 Images of the three experiments
(a) Reference image of experiment 1; (b) Target image of experiment 1;
(c) Result of experiment 1; (d) Reference image of experiment 2; (e) Target
image of experiment 2; (f) Result of experiment 2; (g) Reference image of
experiment 3; (h) Target image of experiment 3; (i) Result of experiment 3

Fig.2(b)), visible image (256x256, Fig.2(d)) and SAR image
(50x50, Fig.2(e)), visible image (256x256, Fig.2(g)) and infra-
red image (5x50, Fig.2(h)). The platform used for the experi-
ments was Matlab 7.1 on a PIV-based 2. 78GHz PC with 512M
memory. The results are shown in Fig.2(c) (f) (i).

4.1 Comparison with the experimental results for
different decomposition levels L

The decomposition level L is determined by target image.
Take the experiments on the above images, and run the pro-
gram 50 times, compute the average values as matching points.
The results are shown in Table 1, where point coordinates are
subject to the left corner coordinates of matching images.

Table 1 Matching results for different decomposition levels

L Matching position Matching error Average time/s

0 (122,80) (-4,-2) 10.47238
Experiment 1 1 (126,82) (0,0 5.99021
2 (126,82) 0,0 3.38824
0 (37,46) 0,0 10.01475
Experiment 2 1 (37,46) (0,0) 5.78250
2 (37,46) (0,0 3.22392
0 (114,120) (-1,2) 10.75026
Experiment 3 1 (115,118) (0,0 6.10187
2 (115,118) 0,0 3.40373

Tabel 1 shows that, when L gets smaller, there exists minor
matching errors and is quite time-consuming; when L gets lar-
ger, fewer operations are needed. However, due to the less in-
formation that low resolution image contains, when the number
of decomposition levels increases, there will be error matching.

4.2 Comparison with the experimental results of
different algorithms

To prove the superiority, we did some contrast experiments
using different algorithms, that were: (a) image matching algo-
rithm based on cross correlation and PSO (Sjahputera & Keller,
2005); (b) image matching algorithm based on mutual informa-
tion and PSO (Li & Ji, 2007); (c) image matching algorithm
based on wavelet transform, mutual information and GA (Yang
& Zhang, 2006); (d) image matching algorithm based on wave-
let transform, mutual information and PSO (Zhang et al., 2008);
(e) image matching algorithm proposed in this paper, based on
contourlet transform, Tsallis entropy based mutual information
and mtsPSO. Where L=2, q=0.8, and each program of algo-
rithm run 50 times. Only when matching error equals to (0,0),
the solution is correct. The results are shown in Table 2, where
correct matching ratio is defined as the number of correct solu-
tions to total operation time ratio.

Since the resolutions of optimization algorithm, such as GA
and PSO, have some uncertainty, we executed the programs for
multiple times. It is seen that, algorithm (a) can hardly get the
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Table 2 Matching results of different algorithms

Matching Average Correct matching
algorithm time/s ratio/%
(a) 4.99721 0
(b) 50.01207 8
Experiment 1 (c) 19.3839%4 46
(d) 14.14857 42
(e) 3.38824 92
(a) 4.68990 2
(b) 50.92149 10
Experiment 2 () 19.28786 60
(d) 14.87391 60
(e) 3.22392 98
€] 4.66313 0
(b) 50.69498 6
Experiment 3 (c) 18.85430 40
(d) 14.00925 38
(e) 3.40373 96

correct matching position. Because of the different imaging
principles of multi-source remote sensors, the gray scale gap
among the images is large. As a result, the gray linear relation-
ship can not be established and correct matching position can
not be found based on cross-correlation. Compared with algo-
rithm (a), algorithm (b) applies mutual information to similarity
measure criterion, so that it overcomes the matching errors
caused by gray scale to a certain extent. However, the search
range is still too large to decrease the computational complexity
efficiently. Algorithm (c) and (d) bring in wavelet transform
based on algorithm (b), in order to accelerate the search speed
while keep the accuracy. Algorithm (c) is more time-consuming
than algorithm (c), due to the more steps of GA, such as cross-
over and mutation. Using contourlet transform, Tsallis entropy
based mutual information and mtsPSO, the precision of algo-
rithm (e) is obviously higher than that of other four algorithms,
besides it has the best stability and the computation speed is
above four times faster than algorithm (b), (c) and (d).

4.3 Anti-noise ability of algorithm

Add Gaussian noise into the given images, whose mean is 0,
variance is 0.01. Matching results using the proposed algorithm
are shown as Fig.3.

The matching positions are (126, 80), (38, 46) and (115,
118), with the matching errors (0, —2), (1, 0) and (0,0), respec-
tively. The results show that, the proposed algorithm has a cer-
tain anti-noise ability. For the noisy images, it can still get ac-
curate solution. It is proved by many experiments that, when
target image gets larger, the anti-noise ability gets stronger.
That’s because the larger image is, the more information it con-
tains, and the stronger anti-noise ability it has.

Fig. 3 Noisy images of the three experiments
(a) Reference image of experiment 1; (b) Target image of experiment 1;
(c) Result of experiment 1; (d) Reference image of experiment 2; (e) Target
image of experiment 2; (f) Result of experiment 2; (g) Reference image of
experiment 3; (h) Target image of experiment 3; (i) Result of experiment 3

5 CONCLUSION

An image matching algorithm for multi-source remote sens-
ing images was proposed, based on contourlet transform, Tsallis
entropy based mutual information and improved particle swarm
optimization. The target image and reference image were firstly
decomposed by contourlet transform, and Tsallis entropy based
mutual information was applied to similar measure criterion.
Meanwhile an extremum disturbed and simple particle swarm
optimization algorithm was introduced to match the
multi-resolution images from coarse to fine. We analyzed the
results through different decomposition levels and different
algorithms. The results show that, compared with those of other
existing remote sensing image matching methods, the proposed
algorithm has high accuracy, strong robustness and requires
much fewer operations. Next we consider working on the image
matching problem of large angle rotation.
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