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Measurement of sown area of winter wheat based on per-field
classification and remote sensing imagery
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Abstract: With the significantly improved data availability in remote sensing technology, mid-resolution images have be-
come the primary data source for crop sown area estimation in large scale. However, it is still difficult to solve the problems of
spectrum heterogeneity in one field and spectra similarity between fields, especially in transitional region by using
mid-resolution images. In order to maximally avoid above motioned problems and accurately measure the sown area of winter
wheat, this paper developed per-field classification method and tested the method in an urban agriculture region with complex
planting structure through several steps: first, digitalizing field boundary from QuickBird image; second, extracting characteris-
tic index including spectrum and texture information as well as vegetation index for each field from the multi-temporal TM im-
ages; third, operating support vector machine (SVM) and maximum likelihood classification (MLC) with different field charac-
teristic index; finally, estimating the accuracy of our method. Results show that the per-field classification method has a higher
accuracy than per-pixel classification both in amount (estimated sown area of winter wheat divide by reference sown area of
winter wheat, Kr) and position (equal to product accuracy, Kp). Although both SVM and MLC could get very high amount and
position accuracy (97% and 90% respectively), the estimations of SVM are more stable. The errors of per-field classification
mainly happened at the fragmentized parcels. Additionally, characteristic information could enhance the performance of
per-field classification. Our method also has an outstanding advantage that no optimum period requires on satellite imagery
which could enhance practicability and operationality of our method.
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1 INTRODUCTION

The winter wheat is an important crop, whose sown area and
yield are only lower than that of paddy in China. Accurate and
real-time information of crop sown area is essential for yield
estimation, agricultural management and national food security
(Chen et al., 2005). The distinct character of the winter wheat
distribution in China includes complex plant structure and
fragmental planting parcel. Limitations on spatial resolution,
availability and measurement accuracy of remote sensing im-
ages are the primary problems for sown area estimation of win-
ter wheat in large-scale (Gu et al., 2007), which impedes the
application of remote sensing on crop sown area investigation
by official department.

Previous researches indicate that integration of multi-reso-
lution images, in which mid-resolution images play the primary
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role, is the main trend to investigate crop sown area in large
scale (Lobell et al., 2004; Van Niel et al., 2003; Langley et al.,
2001). The per-pixel classifications developed on the statistical
theory are the most popular methods used in crop information
extraction from mid-resolution remote sensing image; however,
they all face two common problems contributing on the reduc-
tion of classification accuracy (Smith & Fuller, 2001). First, the
crop canopy reflectivity in farm parcels always occur spectra
variation due to the influences of environmental humidity, nu-
trition, plant diseases and insect pests, which makes the same
object with different spectra, causing omission errors. Second,
mixed pixels on transitional region between different parcels
may have similar spectral character and introduce commission
errors. The lack of considering the context information is the
crucial limitation of per-pixel based classification.

In order to solve the problems of spectrum heterogeneity in
one field and spectra similarity between fields, many researches
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took the parcel as a basic unit and carried out the classification
to minimize the shortage of per-pixel classification. The
per-field classification divides remote sensing image into many
basic units by the parcel boundary vector. For each parcel, the
boundary of a parcel could provide the context information and
label the inside pixels as the same land cover type. Previous
studies have indicated that the accuracy of per-field classifica-
tion is higher than that of traditional per-pixel classifica-
tions(Jassen et al., 1990; Pedley & Curran, 1991; Ban et al.,
1995; Janssen & Molenaar, 1995; Lobo et al., 1996; Shandley
et al., 1996; Aplin et al., 1999; Tso & Mather, 1999; Aplin &
Atkinson, 2001, 2004; Smith & Fuller, 2001). Some relevant
theories and application of per-field classification have been
reported in China (Liu et al., 2000; Cheng et al., 2001; Wu et
al., 2006), but the application of per-field classification on the
estimation of crop sown area has not been paid so much atten-
tion so far.

Hence, in this paper we will test the performance of per-field
classification on the estimation of crop sown area. An urban
agriculture region with complex planting structure was chosen
as study area and parcel boundaries were digitalized from
QuickBird image. After that, we extracted characteristic index
including the information of spectra, vegetation index and tex-
ture from multi-temporal TM images for each parcel, the classi-
fication unit and used support vector machine (SVM) and
maximum likelihood classification (MLC) to distinguish winter
wheat with different characteristic index or the composition of
characteristic index. Finally, by using visual interpretation re-
sult from QuickBird image as the ground-truth, we validated
the accuracy of our method and evaluated the performances of
two classifiers coupled with different characteristic index or
with their composition.

2 STUDY AREAAND MATERIALS

2.1 Study area

A typical urban agricultural region, Fangshan district in Bei-
jing, was selected as the study domain where the majority crops
are winter wheat, clover, corn, and soy bean. QuickBird images
with extent of 100km? in Fangshan district, where the planting
structure of winter wheat is similar to that in south China, were

collected and used in this study.

The same crop has different spectra information in the re-
mote sensing images during different phenological phases. The
discrepancy among the different crop types at the same
phenological stage can be used to select optimal period for crop
area estimation. During November, the winter wheat was in the
tillering stage, and the sown area of alfalfa was very small.
From the middle April to the later May, the winter wheat grows
well and its spectra information is easily distinct from other
objects. Hence, the two periods were considered as the optimal
phases for winter wheat detection in our study area.

2.2 Data preprocessing

A QuickBird image and multi-temporal TM images were
adopted in this research (Fig.1). QuickBird image were col-
lected on May 10, 2007, and TM images were acquired at De-
cember 3, 2006, April 26 and May 28, 2007, respectively. The
QuickBird image was processed by merging pan band into
multi-spectral bands and served as reference map for us to
digitalize the parcel boundary and label the parcel land use type.
The multi-temporal TM images served as the mid-resolution
data source to provide characteristic vector. The preprocessing
of remote sensing data included geometry correction, atmos-
pheric correction and projection transformation.

Other auxiliary data included 1:10000 administrative
boundary data, the distribution of cultivated land in Beijing in
2006, the statistical records of crop sown area from 2002 to
2006 and the field survey data in April 2007.

2.3 Preparation of farmland parcel database

The farmland parcel database is constructed by four steps:
first, we established the classification system including winter
wheat, fallow, woodland, grassland and vegetable land by ana-
lyzing the planting structure of the study area, field survey and
land use data. Secondly, we manually digitalized the parcel
boundary from QuickBird image as long as the area of the par-
cel was bigger than 0.25hm?. Then we labeled land use type for
each parcel by visual interpretation, which could be reviewed as
ground-truth. Finally, we adopted a strict quality control crite-
rion to check parcel boundary and labeled type, and complete
the parcel database.

Fig. 1 QuickBird image and multi-temporal TM images in the study area
(a) 2007-05-10 QB image; (b) 2006-12-03 TM image; (c) 2007-04-26 TM image; (d) 2007-05-28 TM image
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3 RESEARCH METHOD AND TECHNICAL PROCESS

Fig.2 shows our method used in this paper which includes
calculating the coefficient of variation, selecting classifiers,
combining characteristic index, calculating mean characteristic
index for each parcel, choosing training samples, classifying
through both per-field and per-pixel classification, and evaluat-
ing classification accuracy.

3.1 Construction of farmland parcel database

The boundaries of farmland parcels are stable in a long term,
so they could be digitalized from former high-resolution images.
In contrast, the crops type changes both seasonally and annually,
and requires timely updated, which could be derived from the
latest mid-resolution images. This paper just focuses on the
pure parcel while the mixed parcel classification will be studied
in the future by decomposition method. Hence, we firstly define
the pure parcel with the assumption that if the land use type is
homogenous (coefficient of variation (CV) < 0.1), the parcel is

considered as pure parcel, otherwise as mixed parcel.
The function of coefficient of variation (CV) can be de-

scribed as follows.
fZ(Xi - X)?
cv=t 1 )

Where X denotes the average value of the characteristic
vector of all pixels in a parcel; n denotes the amount of pixels
in a parcel; X; denotes the characteristic vector value of one
pixel in the parcel.

The CV indicates the scattering magnitude of the character-
istic index of all pixels in one parcel. The mixed magnitude
inside the parcel increases with CV increasing. Since the pure
parcel also has a certain variance, the CV value could not reach
zero. We calculated the parcel CV using all band of TM image
for three temporal TM images, respectively. If all the CV values
from three temporal TM images in one parcel are below 0.1, the
parcel is regarded as a pure parcel, otherwise as a mixed parcel.
Fig.3 shows the spatial distribution of pure parcels and mixed
parcels.
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Fig. 3 Spatial distribution of pure parcel and mixed parcel

3.2 Selection of the classifier

The current classification methods of remote sensing were
almost concentrated on using spectrum information, such as
clustering criteria of spectrum distance, angle, probability, in-
cluding neural network (Chen et al., 2007). The Maximum
Likelihood Classification (MLC) based on parametric density
distribution was the most commonly statistics method used in
remote sensing supervised classification (Richards & Jia, 1999;
El-Magd & Tanton, 2003). The Support Vector Machine (SVM)
was widely used in image classification, target detection, data
fusion etc. (He, 2007; He, 2006). In this study, we selected the
MLC and the SVM as the typical classifiers for taking com-
parative analysis between per-field and per-pixel classification
with different characteristic vectors combination.

3.3 Characteristic vector combination

In order to combine the application of the information of spectra,
vegetation index and texture feature derived from multi-temporal
TM images, three levels of vector combinations were designed
(Table 1). The spectral feature vectors contained six bands of
multi-temporal TM images. The vegetation index characteristic
vectors included NDVI, RVI, SAVI, GVI, PVI and RDVI. The
texture characteristic vectors covered variance, dissimilarity, en-
tropy and correlation of the first component of TM image.

3.4 Calculation of the characteristic vector of parcel

We calculated the characteristic vector of a parcel by the fol-
lowing steps: first, calculating characteristic vectors from TM
images for each pixel, including spectra reflectivity, vegetation
index, and texture. Second, computing the mean characteristic
vector of a given parcel based on Eqg. (2). Third, assigning the
mean characteristic vector to each pixel within the parcel.

_ 1
F=X==>X; @)

nia
where X denotes the average value of a certain character-
istic vector of all pixels in one parcel; n denotes the amount of

pixels within the parcel; X; denotes the characteristic vector
value of one pixel in the parcel.

Table 1 Three levels of characteristic vector combinations of
spectra, vegetation index and texture

Levels 1D Combination way of characteristic vector

Combination of 1—35,7 bands of TM image on
Dec. 3rd, 2006

Combination of 1—35,7 bands of TM image on
Apr. 26th, 2007

Combination of 1—35,7 band of TM image on
May 28th, 2007

Combination of 1—>5,7 band of three temporal
TM images

Combination of six bands and six VIs of TM
image on Dec. 3rd, 2006

Combination of six bands and six VIs of TM
image on Apr. 26th, 2007

Combination of six bands and six VIs of TM
g image on May 28th, 2007

Combination of six bands and six VIs of three
temporal TM images

Combination of six bands, six VIs and 4 textures
of TM image on Dec. 3rd, 2006

. Combination of six bands, six VIs and 4 textures
) of TM image on Apr. 26th, 2007

Combination of six bands, six VIs and 4 textures
of TM image on May 28th, 2007

Combination of TM image six bands, six VIs
| and

4 textures of three temporal TM images

a

b
Spectra

Spectra + VI

Spectra + VI +
Texture k

3.5 Training samples selection

Considering the complex planting structure of our study area,
it is crucial to choose optimum training samples both in quan-
tity and quality for getting highly accurate classification results.
Here, we adopted stratified proportion sampling method (Eqg.
(3)) to produce training samples from parcel database.

n
S=) N;xa% ©))
i=1
Where S denotes the amount of training samples; n denotes the
amount of land use types; N; denotes the total area of certain
land use type parcel, which is provided by parcel database; a%
denotes the sample proportion for each land use type.

To balance the computing efficiency and classification accu-
racy, we made the multiple tests and finally decided a 5% of
sample proportion for MLC and a 1% of sample proportion for
SVM because of good study ability of SVM for limited samples.

3.6  Method of result assessment

The accuracy assessment of classification is to evaluate the
differences between classified result and reference map (or
ground-truth). In this study, we used the visually interpreted
results from QuickBird image as “ground-truth”, evaluated the
accuracy for both per-field and per-pixel classification from
multi-temporal TM images, and compared the classification
accuracy from different classifiers and different feature vector
combination by overall accuracy and Kappa coefficient derived
from confusion matrix confusion matrix. We also estimated the
measurement accuracy of sown area of winter wheat under
different feature vector combination in two ways: amount ac-
curacy and pixel accuracy (also called position accuracy).
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(1) Position accuracy
The position accuracy is the ratio of correctly classified pix-
els/parcels to the total pixels/parcels in study area. For the
per-field classification, the position accuracy is based on parcel
units. As for per-pixel classification, the accuracy is based on
pixel units. The formula of position accuracy is shown as follows.

p

_2LRxA '1: A 100% @)

where P; denotes the number of correctly classified winter
wheat parcels or pixels associated to a given feature vector
combination; A; denotes the acreage of correctly classified par-
cels or pixels of winter wheat; Ay denotess the total acreage of
all parcels of winter wheat from the parcel database.

(2) Amount accuracy

The amount accuracy of sown area of winter wheat is the ra-
tio of estimated acreage to the true value in a given district or
natural region (Eq. (5)).

K, =1—Mx100% (5)
Ay

where A; denotes the estimated total acreage of winter wheat in
the study region derived from per-parcel or per-pixel classifica-
tion with certain characteristic vector combinations; A, denotes
the total acreage of winter wheat from the parcel database.

4 RESULTS AND DISCUSSION

In this study, we extracted the training samples from high
resolution parcel database by stratified random sampling and
carried out both the per-field and per-pixel classification with
twelve types of characteristic vector combinations and two
classifiers (SVM and MLC). In order to reduce random errors
and test the stability of classifiers, we carried out ten times
classification for both SVM and MLC respectively, and each
time with different training samples. The results are shown in
Fig. 4. Furthermore, we used visual interpretation results from
the QuickBird image as reference map, and evaluated our results
from both position and amount perspectives (Fig.5 and Fig.6).
Our results show:

(1) The per-field classification method has a higher accuracy

A _','l ,ﬂ‘“ .!'
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_’*\“l{ l...-.-l I..

(c)

d

Grassland - Forest I:l Vegetable - Winter wheat - Fallow

Fig. 4 Classified results from per-field and per-pixel using spectral, vegetation index and texture
(a) Per-field classification by MLC; (b) Per-field classification by SVM; (c) Per-pixel classification by MLC; (d) Per-pixel classification by SVM
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Fig. 5 Comparison of total accuracy and kappa coefficient between per-field and per-pixel classification by MLC and SVM algorithm
(The meaning of a—I is shown in Table 1.)

(a) Comparison of total accuracy between MLC and SVM algorithm in per-field and per-pixel classification; (b) Comparison of Kappa coefficient between
MLC and SVM algorithm in per-field and per-pixel classification
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Fig. 6 Comparison of amount accuracy and position accuracy of winter wheat planting area between per-field and
per-pixel classification by MLC and SVM algorithm
(The meaning of a—I is shown in Table 1.)

(a) Position accuracy; (b) Account accuracy

than per-pixel classification both in amount and position. The
overall accuracy and Kappa coefficient of per-field classification
was 10% and 0.1 higher than those of per-pixel classification for
the most of characteristic vector combinations. The amount and
position accuracy of per-field classification were 95% and 90%
respectively, which means the per-field classification could re-
duce the commission. It also indicates that the omission and
commission errors of per-field classification are far below than
those of per-pixel classification in complex planting area. Hence,
it is potential to use per-field classification to estimate the sown
area of winter wheat in different regions.

(2) The overall accuracy and Kappa coefficient of per-field
classification increased faster than those of per-pixel classifica-
tion with the characteristic vector increasing which means the
information of vegetation index and texture could improve the
accuracy of per-field classification, but not the accuracy of
per-pixel classification. However, for the winter wheat sown
area estimation, the information of vegetation index and texture
could only improve the position accuracy.

(3) The accuracy of per-field classification from
multi-temporal images is higher than that of a single image,
which indicates that the difference of crop phenology could

improve the overall accuracy and Kappa coefficient. When the
periods of TM images were increased, the amount accuracy of
winter wheat kept stable but the position accuracy was im-
proved gradually. That is to say the peculiar phenology of win-
ter wheat does not improve the amount accuracy of sown area
estimation of winter wheat but does improve the position accu-
racy in our study area. As for the per-field classification with a
single image, the amount accuracy and position accuracy in
jointing period are higher than that in overwintering and
grain-filling period.

In order to analyze the error source in the per-field classifi-
cation of winter wheat, we divided the winter wheat parcels
into ten different intervals based on the parcel acreage, kept the
number of parcel consistent in each interval, and then took the
combination of three temporal spectra, vegetation index and
texture with high accuracy as an example to analyze the spatial
distribution of commission and omission errors by calculating
the correct rate, commission rate and omission rate of winter
wheat parcel within all kinds of intervals.

With the parcel area expanding, the correct rate of winter
wheat parcel with per-field classification was improved, while
the commission rate and omission rate were decreased (Fig. 7).
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Fig. 7 Accuracy of winter wheat by per-field classification with
different parcel area interval

It is because the spectra of fragmentized parcels were more
likely to be mixed and difficult to distinguish, causing the
commission errors. In contrast, the omission in large parcel
tends to be lower. The error rate of winter wheat parcel by MLC
was higher than by SVM. Since the better learning ability of the
SVM algorithm, it had a lower omission rate of winter wheat
parcels than MLC did when using the same size of samples.
Hence, the SVM is more robust for per-field classification than
MLC in sown area estimation of winter wheat.

The commission and omission of winter wheat based on
per-field classification mostly happens in the fragmental parcels,
but the acreage of fragmental parcels is very small. Therefore,
the errors caused by fragmental parcels didn’t influence the
overall accuracy at all, and it is reasonable to conclude that the
per-field classification could obtain higher accuracy in both
amount and position than per-pixel classification in the whole
study area. When conducting practical measurement, if a small
quantity of commission and omission classification occurring in
a large winter wheat parcels, we could modify them through
field investigation with small workload.

5 CONCLUSION AND PERSPECTIVE

In order to estimate the sown area of winter wheat accurately,
this paper took an urban agricultural zone with complex plant-
ing structure as study area, and carried out the comparative
analysis between the per-field and per-pixel classifications
based on multi-temporal TM images. Our results show that
firstly the per-field classification method has a higher accuracy
than per-pixel classification both in amount and position. Sec-
ond, although both SVM and MLC could get very high amount
and position accuracy (97% and 90%, respectively), the estima-
tion of SVM is more stable and requires less training samples,
which indicate the SVM is more robust for per-field classifica-
tion than MLC in sown area estimation of winter wheat. Third,
the information of vegetation index and texture improved the
precision of per-field classification. Fourth, the estimation of
winter wheat based on per-field classification has no limitation
on the period of TM image. Howerve, it gets both higher

amount and position accuracy in the jointing period of winter
wheat. Finally, the errors of per-field classification mainly hap-
pen at the fragmentized parcels.

The basic idea of crop per-field classification is to segment
the whole study area into small homogeneous classification unit
(parcel) and label land use type based on classification unit
instead of pixel, which makes spatial texture information in-
volved into the process of classification, reducing omission
errors caused by the problem of same object with different
spectrum. Furthermore, the parcel boundary is stable for a long
term, which could be easily digitized from previous
high-resolution images. With the improvement of availability of
high-resolution image as well as the expanding application of
the second land use survey production, the boundary of farm-
land parcel is easier to obtain. The crops of farmland parcels
vary year by year, so that we should define and update the land
cover type for each parcel every year. Then, the current
mid-resolution images could be a useful tool. For example, in
this paper, considering the size of farmland parcels is much
larger than the pixel size of mid-resolution image, we distin-
guished the pure parcel and mixed parcel by calculating the CV
of pixels inside of each parcel, carried out the per-field classifi-
cation for pure parcels, and got a high accuracy. Considering
our study area is in urban agricultural region with fragmental
planting parcel, the accuracy could be expected to improve in
regions with simple planting structure or less fragmental parcels.
To sum, our method has potential applicability to accurately
estimate the sown area of winter wheat in different planting
structure regions.

This study still needs to be improved in future. First, the pa-
per carried out the per-field classification in 100km? region; we
need to test our result in larger scale. Second, the separability of
different land use types affects the classification accuracy. The
land use type in our study included winter wheat, fallow land,
forest, grassland and vegetable. The classification accuracy of
vegetable and grassland is lower; moreover, both of them are
easy to be confused with fallow land in December. If we find
higher efficient classification algorithm in the future, the accu-
racy of per-field classification will be further improved.
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