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Analysis of aerosol characteristics over the China
Sea by remote sensing
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Abstract: MODIS Collection 005(MODIS_C005) aerosol product is validated over the China Sea. Aerosol optical thickness
at 550nm (AOT550) and fine mode fraction (FMF) are used to analyze spatial-temporal distribution of aerosol over the China
Sea. Then meteorological data are used to discuss formation mechanism of aerosol characteristics. The results show that firstly
MODIS _C005 aerosol product has a good quality over the China Sea. Secondly, AOT550 and FMF have a notable spa-
tial-temporal distribution feature. AOT550 reaches maximum in spring and winter, and minimum in summer and fall; oppositely,
FMF reaches maximum in summer and fall, and minimum in spring and winter. Meanwhile, AOT550 and FMF have marked
longitudinal variation. AOT550 appears maximum between 30°N—40°N and decreases towards north and south. And FMF in-
creases from south to north and the tendency of increase becomes slow at 30°N. In addition, they have an obvious meridional
variation. AOTS550 and FMF both decrease with the increase of longitude. Finally, based on meteorological data, the source is
the continent aerosol and wind and rainfall are the two most important factors.
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1 INTRODUCTION

Atmospheric aerosol is usually defined to be liquid or solid
suspended particles with a diameter smaller than 10pm (Zhang,
1995). Tropospheric aerosol is an important part of earth-
atmosphere-ocean system, which effects radiation budget by
direct forcing and indirect forcing so as to influences global
climate and environment, so aerosol is a crucial factor in global
climatic fluctuations (Patadia et al., 2008).

Researches of climatologists showed that climatic fluctua-
tions may be closely associated with aerosol, such as the cool-
ing of Sichuan province (Li et al., 1995) and precipitation pat-
tern of south flood and north drought in China (Menon et al.,
2002). Increased atmospheric stability and decreased precipita-
tion in east China may be related with high aerosol density and
large aerosol absorption (Zhao et al., 2006), which suggests that
aerosol act upon regional and global climate by its radiative
forcing.

China offing is the main fishery region and an important part
in China climate system, so understanding the distribution of
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aerosol over the China Sea is of great significance for national
economy. Aerosol over the China Sea has obvious mixed char-
acteristic, including marine aerosol and continental aerosol, so
it is very complex. In order to explain its feature, many scien-
tists have done much research. Aerosol optical thickness (AOT)
is measured by sun photometer over the Yellow Sea (Li et al.,
2003). AOT is 0.2—0.4 in clear sky, while it is markedly in-

creasing to 0.8 under atmospheric haze over the Yellow Sea and
East China Sea (Zhao et al., 2005).

Though a lot of vessel surveys, preliminary characteristic of
aerosol distribution can be known. But because of small time
scale and swift spatial variation of aerosol, ship-based meas-
urement can not meet aerosol observe requirement which is
long time scale and great spatial region. Since 1990, Scientists
began to analyze aerosol by remote sensing. Aerosol distribu-
tion over the North Africa is studied by MIRS data (Christopher
et al., 2008). Aerosol radiative forcing is analyzed over global
ocean by remote sensing (Bellouin et al., 2008). Aerosol distri-
bution over the China Sea is discussed by SeaWiFS data (Hao
etal., 2007).

Foundation: State Key Laboratory of Satellite Ocean Environment Dynamics (Grant No.SOED0911); Anhui Provincial Natural Science Foundation
(Grant No.090415216); Wuhan Regional Meteorologic Center (Grant No.QY-Z-200902).
First author biography: DENG Xueliang (1981— ), male, doctor. He got doctor degree from Nanjing University of Information Science & Technology

in 2008, now researches on marine aerosol. E-mail: dengxueliang9989@yahoo.com.cn



DENG Xueliang et al.: Analysis of aerosol characteristics over the China Sea by remote sensing 295

In this paper we present aerosol distribution by MODIS
aerosol product and discuss the reason with weather data.

2 STUDY AREA AND DATA

The study region is between 10°N—50°N and 110°E—
150°E, including the China Sea. The area of study and Aerosol
Robotic Network (AERONET) stations is shown in Fig. 1. The
data sets include MODO04 L2, AERONET data and NCEP re-
analysis data. These data are acquired for the period between
December 2000 and December 2006.
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Fig. 1 Research area and AERONET stations

2.1 MODIS aerosol product

The second-generation MODIS aerosol retrieval (Collection
005) from EOS-Terra (2000—2006) have been used in this

study. This new version is released during 2007 (Remer &
Kaufman, 2005) and modification has been made in the algo-
rithm to improve the aerosol data product.

Acrosol optical thickness (AOT) expresses atmospheric tur-
bidity and aerosol concentration, which is an crucial factor in
aerosol climate effect and atmosphere model. The higher aero-
sol concentration is, the larger AOT (Zhang, 2007).

Fine mode fraction (FMF) is defined as the fraction of
the total optical thickness attributed to the selected fine mode
(diameter < 1um) as Eq. (1). The higher FMF is, the larger frac-
tion of fine mode aerosol, and vice versa. Anthropogenic aero-
sol is almost fine mode such as sulfate and natural aerosol is
always large mode such as dust and sea salt, so FMF can dis-
tinguish anthropogenic component and natural compo-
nent from aerosol.

- 7550, fine )

7550
2.2 AERONET database

AERONET is a federation of well calibrated ground based

sun-photometers that provide spectral AOT and other aerosol
properties from hundreds of locations around the world. The
cloud-cleared level 2.0 data was used from 4 stations for
2000—2004 (Fig. 1). The estimated uncertainty in AERONET
AOT is about 0.01—0.02 (Holben et al., 1998). The program
provides a long-term, continuous and readily accessible public
domain database of aerosol optical, mircrophysical and radia-
tive properties for aerosol research and characterization, and
validation of satellite retrievals. Aerosol optical depth data are
computed for three data quality levels: Level 1.0 (unscreened),
Level 1.5 (cloud-screened), and Level 2.0 (cloud-screened and
quality-assured). AERONET data were compared against the
MODIS AOT values for 2000—2004. It is not the purpose of
this paper. This only prepares data validation for analysis of
aerosol distribution over the China Sea.

2.3 NCEP/NCAR Reanalysis data

Monthly mean, 850hp wind speed and direction, and rainfall
data were obtained from National Centers for Environmental
Prediction (NCEP) Reanalysis data. NCEP Reanalysis contains
meteorological conditions with a 2.5 degree horizontal resolu-
tion at 6h time intervals.

3 MODIS COLLECTIONO005 AOT VALIDATION

MODIS Collection005 AOT has not been validated over the
China Sea, so firstly it must be validated before analyzing
aerosol distribution. Hiren et al. (2007) prove that MODIS
Collection 005 AOT has better quality than Collection 004,
compared with AERONET data at Kanpur, India. Now this is
not found over the China Sea.

AOTS550 derived from MODIS and AERONET must be
matched on space and time. Window size on space and time are
set as 50kmx50km and 1h in the anterior research. But Larger
window size could introduce undesirable errors due to topog-
raphic or aerosol type heterogeneity, so three space box size
(30kmx30km, 50kmx50km and 70kmx70km) have been com-
pared. The result shows that 30kmx30km box can improve
validation effect and expresses aerosol regional characteristic.

AERONET stations are showed in Fig.1, which represent
different sea areas. Fig.2 shows the scatter plots of MODIS
AOTS550 against AERONET AOTS550 in different stations over
the China Sea. The correlation and regression coefficients show
excellent agreement with AERONET measurements over the
China Sea (Fig. 2(a)—Fig. 2 (e)). Meanwhile, the relationship
in Fig.2 are all good and their correlation coefficients are
greater than 0.9. The largest value reaches 0.9662 at Noto and
correlation coefficient of total stations is 0.9307. Errors of 65%
points are under £0.05+0.057 based on NASA standard (62%),
so MODIS AOTS550 is fit to the China Sea and can be used to
research aerosol distribution over the China Sea (Cheng, 2005).
FMF is validated over the ocean (Anderson, 2005; Remer,
2005), whose error is about 20%.
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Fig. 2 Scatter plot between AOT550 derived from MODIS and AERONET from 2001 to 2004 with their corresponding equations and
correlation coefficients in different sites over the China Sea

(a) Gosan_SNU; (b) NCU_Taiwan; (¢)Anmyon; (d) Noto; (e) Sum of the 4 sites

4 RESULTS AND DISCUSSIONS

4.1 Temporal variation

4.1.1 Seasonal change

Fig.3 shows six years mean spatial distribution of MODIS
AOT550 in different seasons over the China Sea. AOT550 has
notable seasonal change. Maximum AOTS550 appears in spring.
Minimum AOT550 is in summer. In winter, distribution of
AOTS550 is along the coast. AOT550 decreases obviously with
increase in distance far from continent. Maximum AOT550 has

been observed in coastal region and the value of it is larger than
0.5, meanwhile, minimum AOT550 appears in open ocean and
value of it is 0.1. AOT550 around 30°N reaches maximum,
where human activity is active. AOT550 over the north of 25°N
is all larger than 0.17 and it over the south of 25°N is smaller
than 0.17. In spring, distribution pattern of AOT550 is similar
with it in winter. Because of dust prevailing, AOT550 increases
obviously and is all larger than 0.17 over the whole China Sea.
In summer, distribution pattern of AOT550 changes remarkably.
AOTS550 is large in the north of the China Sea and is small in
the south. Maximum appears over the Yellow Sea and Bohai
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Fig. 3 Seasonal distribution of AOT550 over the China Sea
(a) Winter; (b) Spring; (c) Summer; (d) Fall

Sea. Value of AOT550 becomes the least in four seasons. In fall,
the pattern of AOTS50 returns to the one in winter.

Fig.4 shows six years mean spatial distribution of MODIS
FMF in different seasons over the China Sea. FMF also has an
obvious seasonal change as AOT550. Maximum FMF appears
in summer and Minimum FMF is in spring. In winter, distribu-
tion pattern of FMF is similar as AOTS550. Isoline is related
with distance far from the coast. Regions with high FMF is
coast and region of low FMF is open sea, which suggests that

human activity influences aerosol scale. In spring, FMF has
similar pattern while it increased over the sea area of Philip-
pines and Japan due to frequent human events. In summer,
FMF has a distinct feature, which is the largest in the north and
the least in the south. Maximum value appears over the Yellow
Sea and Bohai Sea when FMF is larger than 0.8. In fall, the
pattern returns to the one in winter.
4.1.2 Time list

Fig.5 shows time list of monthly area mean AOT550 and
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Fig. 4 Seasonal distribution of FMF over the China Sea
(a) Winter; (b) Spring; (c) Summer; (d) Fall

FMF from 2000 to 2006 over the China Sea. AOT550 and FMF
over the China Sea exists a clear periodic variety and has an
annual cycle. Firstly, AOT550 appears maximum in spring and
it is almost larger than 0.4. On the contrary, AOT550 reaches
minimum in summer and it is less than 0.25. Similarly, FMF
also has a periodic oscillation. But the tendency of FMF is
opposite to AOT550. FMF reaches maximum in summer and it
is almost larger than 0.6. In the meantime, FMF gets minimum
in spring and it is less than 0.5.

Fig.6 shows month variety of six years (2000—2006) area
mean AOT550 and FMF over the China Sea. It also proves the
temporal tendency of them. AOT550 is largest in April and is
least in September. At the opposition, FMF is largest in Sep-
tember and is least in April.

Based on the above analysis, we can find that AOT550 and
FMF does exist significant temporal variety over the China Sea.
There is an annual cycle of them and seasonal change is obvi-
ous.

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
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4.2 Spatial variation

Besides temporal variety, AOT550 and FMF over the China
Sea also exists prominent spatial pattern. Because aerosol over
the China Sea is mainly influenced by continent source, it
represents a spatial characteristic related with the distance far
from the coast and important industry regions. Fig.7 shows
latitude-time and longitude-time diagrams of AOT550 and FMF
over the China Sea. Fig.8 shows spatial distribution of six years
mean AOT550 and FMF along longitude and latitude direction.

Firstly, at latitude direction, there are main industry regions
between 30°N and 40°N, so AOT550 appears the highest value.
At the same region, FMF also reaches the highest value. How-
ever, on the south 30°N, due to lack of industry pollution,
AOTS550 and FMF both get less and less. In six years mean
situation (Fig.8), spatial characteristic of aerosol is much more
remarkable. In latitude direction, AOT550 is highest between
30°N and 40°N and decreases towards north and south. FMF

gradually increases from south to north.

Secondly, at longitude direction, anthropic influence is very
evident. China coast is around 120°E, at the same longitude
AOTS550 is highest. And AOT550 gradually decrease away
from the coast. FMF has the similar pattern. In Fig.8, AOT550
decreases from west to east. Maximum value appears at the
coast and minimum value is in the remote ocean. FMF has the
same tendency as AOT550. The decrease tendency of AOT has
an affinity with the distance far from the continent, which sug-
gests AOT over the East China Sea should be influenced by
continental sources and long-range aerosol transport.

Aerosol spatial distribution over the China Sea is very
prominent. Continental source may be an important factor for
aerosol over the China Sea. The reason of these features will be
discussed in the below.

4.3 Reason analysis

The East China is an important aerosol source in the world,
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Fig. 9 Sesonal distribution of wind field at 850hp over the China Sea(2000—2006)
(a) Winter; (b) Spring; (c) Summer; (d) Fall

so it must influence the China Sea. Continental aerosol is car-
ried to the China Sea. But aerosol’s transport depends on wind,
so seasonal change of wind maybe lead to the spatial and tem-
poral distribution pattern of aerosol over the China Sea. Fig.9
shows distribution of mean wind field at 850hp averaged from

2000—2006. There are the similar patterns in winter and spring

that northwestern wind control the north of 20°N and eastern

wind control the south of 20°N. In summer and fall, eastern
wind prevails at most of region, while southwestern wind exist
between 30°N—40°N. Meanwhile, rainfall is the highest in

summer and fall and is the least in winter and spring. Meteoro-
logical condition can effect aerosol distribution.

In winter, continental aerosol is brought to sea region by
northwestern wind. High wind speed over the ocean causes that
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aerosol is carried and not bank up onto the China Sea, so AOT
is not the largest during the year. Besides, big particles of ma-
rine aerosol are created by big wind, which lead to the smallest
FMEF. In spring, dust aerosol is carried to the China Sea by
northwestern wind and wind speed becomes weaker than in
winter, so aerosol builds up onto the China Sea. AOT reach
maximum value and FMF is little due to dust particles. In
summer, wind direction changes very visibly. East wind pre-
vails, so continental aerosol can not be transported onto the sea.
And rainfall in summer is the largest, big particle aerosol is
almost brought down by rain. So AOT is the least and FMF is
the largest. In fall, wind field changes. The north of 30°N is
controlled by west wind, so AOT550 is larger than summer.
Rainfall in fall is next below in summer, so FMF in fall is
smaller than in summer, but larger than the other seasons.
Based on the above analysis, meteorological condition plays an
important role on distribution of AOT and FMF.

5 CONCLUSION

(1) MODIS Collection 005 AOT has a good quality com-
pared with AERONET data and fits NASA standard over the
China Sea, so it can be used about the study of the China Sea.

(2) AOT550 and FMF have a notable temporal variation
over the China Sea. AOT550 reaches maximum in spring and
winter, and minimum in summer and fall, oppositely, FMF
reaches maximum in summer and fall, and minimum in spring
and winter. Meanwhile, AOT550 and FMF have marked peri-
odic oscillation of one year.

(3) AOT550 and FMF have an obvious spatial distribution
over the China Sea. At latitude direction, AOT550 appears
maximum between 30°N—40°N and decreases towards to north
and south. And FMF increase from south to north and the ten-
dency of increase becomes slow at 30°N. At longitude direction,
AOTS550 and FMF both decrease with longitude increasing.

(4)Based on meteorological data, wind and rainfall are the
two most important factors. Continent aerosol is carried to the
China Sea by wind.
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