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Rice canopy biochemical concentration retrievals based
on Hyperion data
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Abstract: The method of plot experiment with field application was used in this research. The variations of rice foliage and
canopy spectra with corresponding biochemical concentration field-measured in jointing, heading and filling stages were ana-
lyzed. Through the analysis of absorption characteristic and vegetation index, the best spectral features for rice nitrogen and
chlorophyll concentration estimation were obtained. Based on the Hyperion image of Jiangyan, we built the models of rice can-
opy nitrogen and chlorophyll estimation. At last, rice canopy nitrogen and chlorophyll concentration were retrieved from Hype-
rion image and their distribution maps were obtained. The results showed that: (1) Nitrogen concentration can be retrieved accu-
rately using the area of absorption feature centered at 670nm based on band depth normalized to band depth (BNC) analysis; (2)
Based on reversional normalized spectrum, NDVI using 560nm and 670nm was strongly correlated with chlorophyll concentration.
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1 INTRODUCTION

Precision agriculture is the world trend of agricultural de-
velopment, and also an important way for agricultural sustain-
able development (Liu, 2002). Through the application of 3S
technology, the space and time difference information of envi-
ronmental factors related with crop growth can be collected and
processed, and the management can be accurately adjusted, and
then the maximum yield and economic efficiency can be ob-
tained without environmental damage (Zhu et al., 2000).

Rice is one of the main food crops in China. Biochemical
parameters are good indicators of rice growth status. For exam-
ple, nitrogen concentration is the important guiding factor of
rice fertilization, while chlorophyll concentration can reflect the
situation of rice photosynthesis. Real-time monitoring of
changes in rice canopy biochemical concentration can help us
to understand the growth of large area rice in time, and it is an
important aspect of precision agriculture (Li, 2003).

Hyperspectral remote sensing has the characters of high
spectral resolution and good continuity of bands, which can
provide more spectral information. The development of hyper-
spectral remote sensing provides a powerful tool for quantita-
tively analyzing the relationship of biochemical concentration
and spectral features. At present there are many methods for
biochemical concentration retrievals, but most of them are
based on the field measured spectra. Even if the remote sensing
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images were used, most of them are aerial images such as Hy-
Map, AVIRIS, OMIS and so on. There are not many articles
describing the rice biochemical concentration quantitative re-
trieval and mapping based on hyperspectral satellite imagery.

This study was based on spaceborne hyperspectral remote
sensing technology and take precision agriculture as the appli-
cation target. Rice foliage, canopy spectra and biochemical
concentration (nitrogen & chlorophyll) of different species,
growth conditions and at different growth stages were analyzed
to research on the correlation model between spectral features
and biochemical concentration. Furthermore, quantitative ex-
traction and mapping technologies of rice canopy biochemical
concentration based on hyperspectral remote sensing informa-
tion were studied.

2 DATA SOURCES

2.1 Research area

The method of plot experiment with field application was
used in this research. The study site is located at Yangzhou
University (119°24'52.9"E, 32°23'36.9”N), in Jiangsu province,
China. The total area is 715m?. Yangzhou is located in the cen-
tre of Jiangsu province, the north shore of the Yangtze River
and the southern end of the Jianghuai plain. Yangzhou has high
index of land reclamation. The soil fertility and productivity of
Yangzhou are relatively high in Jiangsu province. Rice planted
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in this field included two typical varieties: Changyou 1 and
Wujing 15. Nitrogen application from 0 to 25 kg was divided
into 8 levels. There are two same series and 32 plots.

The field covered by Hyperion image for application was
located in Jiangyan area, Jiangsu province. Jiangyan has been
called granary since ancient times. Jiangya teemed with rice
and it is the commodity grain base of China. We selected eight
paddy fields of image covering area as sampling sites. Syn-
chronously with the image acquisition, field-based canopy re-
flectance spectra, nitrogen and chlorophyll concentration were
recorded at those eight sites. The latitudes and longitudes of
those sites were accurately measured by GPS, in order to
precisely locate the sites in the image. Fig. 1 shows the image
coverage and sampling sites distribution.
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Fig. 1 The image coverage and sampling sites distribution

2.2 Field spectra measurement

The foliage and canopy reflectance spectra were collected
with ASD FieldSpec Pro FR spectroradiometer. The wavelength
range is from 350 to 2500 nm. Sampling interval between 350
and 1000 nm is 1.4 nm, between 1000 and 2500 nm is 2 nm.

Rice canopy reflectance spectra were collected when the sky
was clear. Probe perpendicular to the canopy, and the distance
between probe and rice canopy was about 0.5 m, 25<visual

field was used. We selected 3—5 sample points in every plot
and collected 2—3 spectra for every sample point. All of the

spectra collected in one plot were averaged to obtain the canopy
spectrum of that plot.

We collected 5 rice leaves of every plot in Yangzhou ex-
perimental field, 10 rice leaves of every plot in Jiangyan field
for foliage spectra measurement. The foliage spectra were col-
lected in darkroom. The reflectance spectrum of every leaf was
acquired by averaging the spectra of 4—6 measurements.

This study was from August 15 to September 30, 2005, in-

volved jointing, heading and filling stages. 1225 canopy spectra
and 2925 foliage spectra were collected. As shown in Table 1,
we measured the canopy and foliage reflectance spectra in
Yangzhou experimental field on August 15, September 6 and
September 30, 2005. Synchronously with the image acquisition,
field-based canopy reflectance spectra were recorded at 8 sam-
ple plots in Jiangyan field on September 7, 2005.

Table 1 Spectra field-measurement in 2005

Date August 15 September 6 September 7 September 30
Yangzhou Yangzhou Jiangyan Yangzhou
Location  experimental  experimental field experimental
field field field
Growth Jointing Heading Heading Filling stage.
stage stage stage stage
Sample 160 192 — 160
number
Canopy
spectra 324 289 128 484
number
Foliage
spectra 960 1000 — 965
number

2.3 Nitrogen and chlorophyll concentration meas-
urement and treatment

Nitrogen and chlorophyll concentration was immediately
measured after the spectra acquisition. Nitrogen concentration
was measured through kjeldahl nitrogen method. Chlorophyll
concentration was measured by using the SPAD-502 instrument.
The SPAD-502 instrument can measure foliage chlorophyll
concentration without destruction. It determines foliage chlo-
rophyll relative concentration according to the absorptivity of
two wavelength ranges (Pu & Gong, 2000). The chlorophyll
concentration was acquired by averaging the values of 6 to 10
measurements. The nitrogen and chlorophyll concentration of
every plot was determined by averaging all the values of leaves
sampled from the plot.

2.4 Hyperion data acquisition

The Hyperion sensor is the first civilian spaceborne hyper-
spectral instrument. It acquire visible near-infrared (VNIR) and
shortwave infrared (SWIR) spectra by push broom technique.
Hyperion data have 242 bands and the main characteristics are
shown in Table 2.

The Hyperion data was acquired at 10:20 A.M. on Sep 7,
2005, with a size of 255x3471 pixels. The image covered Jian-
gyan area, Jiangsu province and was centered at 120°8'2"E,
32°29'6"N.

Table 2 Main characteristics of Hyperion data (Richard, 2003)

Wavelength range/nm 356—2577
Number of bands 242
Spatial resolution/m 30
VNIR bands 1—70 (356—1058nm)
SWIR bands 71—242 (852—2577nm)
Data type 2-byte singed integer
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3 HYPERION IMAGE PROCESSING

3.1 Hyperion image preprocessing

Hyperion image preprocessing included eliminating uncali-
brated and atmospheric water vapor affected bands, absolute
radiometric calibration, stripes and “smile” effect removal,
atmospheric correction and spectrum smoothing. At last, the
reflectance image was obtained.

A number of bands were uncalibrated and others had low
sensitivity of the spectrometer materials. Because of this, only
166 bands were used in this study. The remain bands and
wavelengths are shown in Table 3.

Table 3 The remain wavelengths of Hyperion image

Hyperion original bands Wavelengths/nm

8—54 426—895
80—119 943—1336
131—164 1457—1790
180—224 1952—2396

The SWIR bands have a scaling factor of 80 and the VNIR
bands have a scaling factor of 40 applied (Richard, 2003).
Every band dividing by the scaling factor can generate the ab-
solute radiometric calibrated image.

Global equalization was used to remove the stripes and
“smile” effect. It thought that the mean value and standard de-
viation of each column in each band were the same. The mean
value and standard deviation of each column were modified to
match those for the whole image for each band.

The image was corrected for atmosphere with the Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) to retrieve the ground reflectances. FLAASH is a
first-principles atmospheric correction modeling tool for re-
trieving spectral reflectance from hyperspectral images. It made
the obscuring effects of the atmosphere accurately removed.

After a series of processing, the deficiencies and uncertain-
ties of every step lead to the continuous noise of atmospheric
corrected image spectra. The noise may exert an adverse effect
on the quantitative application of image. An inverse minimum
noise fraction (MNF) transformation was applied to the
FLAASH-derived surface reflectance image to separate noise
from the data (Datt et al., 2003).

The atmospheric corrected image reflectances were quite
similar to the field measured canopy reflectances (Fig. 2). The
result of spectral rebuilt was satisfactory.

3.2 Geometric correction

The geometric correction was through applying 22 GCPs
collected from 1:50000 relief maps covering the study area to
the reflectance image. The total error was less than one pixel.

3.3 Discrimination of paddy rice fields

The research subject of this paper is rice, so we discrimi-
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Fig. 2 Comparison between Hyperion reflectance spectrum and
field measured canopy spectrum

nated paddy rice field from the image for rice biochemical
concentration analysis and retrieval. It was also help for identi-
fying the results more easily.
Firstly, vegetation was extracted with normalized difference
vegetation index (NDVI). NDVI is given by the formula:
NDVI = £NIR ~ PRED 1)
PNIR t PRED
where prep and pwir are the reflectance of red and near infrared
bands. We applied the threshold (NDVI=0.7) to identify vege-
tation pixels.
Then we calculated Enhanced Vegetation Index (EVI) and
Surface Water Index (LSWI) of the image (Huete et al., 2002).
EVI and LSWI are given by the formulas:

EVI = 2.5x PNIR ~ PRED @)
PNIR 6% prep — 7-5% pgLyE +1
LSWI = PNIR ~ ASWIR ©)
PNIR t PSWIR

where pg|ue, Preps Pnir @Nd pswir are the reflectance of blue,
red, near infrared and shortwave infrared bands. The Hyperion
image was acquired at the heading stage of rice and the leaf
area index was relatively higher at that time. As we know when
the vegetation coverage more than 80%, the NDVI values in-
crease with delay and become saturation, so in this study we
chose Enhanced Vegetation Index (EVI) to identify rice from
other vegetation. EVI directly adjusts the reflectance in the red
band as a function of the reflectance in the blue band, and it
accounts for residual atmospheric contamination and variable
soil and canopy background reflectance (Huete et al., 1997,
2002). The EVI values of paddy rice fields were lower than
other vegetation fields. The distinct differentiate between paddy
rice fields and other vegetation fields is that the rice is grown
on flooded soils, so we used LSWI which was sensitive to the
leaf water and soil moisture. The LSWI values of paddy rice
fields were higher than other vegetation fields. Thus it can be
seen as to paddy rice fields, the values of EVI-LSWI were
lower than other vegetation fields. In this study, the paddy rice
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field pixels were identified by using the threshold of
EVI-LSWI=0.24.

Fig. 3 shows the comparison between original pseudo-color
composite image and paddy rice image. As the original
pseudo-color composite image of Fig. 3(a) shows, paddy rice
fields are presented as dark red and other vegetation fields are
presented as bright red. Paddy rice fields are presented as white
in Fig. 3(b). The accuracy of paddy rice field discrimination
was evaluated with 3812 non-vegetation samples, 272 rice
samples and 2483 other vegetation samples. We established
confusion matrix and computed some correlative data. The
accuracy of paddy rice field discrimination is shown in Table 4.
The overall accuracy of paddy rice field discrimination is
92.89% and the kappa is 0.8915. The result showed that the
method of paddy rice field discrimination was relatively accu-
racy and feasible.

Fig. 3 Comparison between original pseudo-color composite image
and paddy rice image
(a) Original pseudo-color composite image; (b) Paddy rice image

Table 4 Rice discrimination accuracy

Non-veget- . Other User
Type ation Rice vegetation Sum accuracy/%
Non-veget- 3701 16 15 3732 99.17
ation
Rice 70 236 353 2986 85.83
Other 4 146 2115 2302 91.88
vegetation
Sum 3812 2;2 2483 9020 —
Producer 94.0
accuracy/% 97.09 6 85.18 - -
Overall accuracy=92.89% Kappa coefficient=0.8915
4 METHODS

4.1 Method based on spectral absorption feature

The method was based on the thought of continuum removal
can remove those background influence and thus to isolate in-
dividual absorption features. The continuum is a straight line
fitted over the top of a spectrum that connects local spectral
maxima. The continuum-removed reflectance is calculated by
dividing the original reflectance values by the reflectance of
continuum at the corresponding wavelength (Shi et al., 2005).
Based on the continuum removal, the spectral transformation of
band depth normalized to band depth at the centre of the ab-

sorption feature (BNC) and the area of absorption feature (BNA)
were used.
4.1.1 Band depth normalized to band depth at the centre of
the absorption feature (BNC)
The normalized band depths (BNC) are calculated by divid-
ing the band depth of each band by the band-depth at the band
center:

BNC = (1— (R/R?)) /(- (R, /R.)) (4)

where R is the reflectance of each wavelength, R’ is the reflec-

tance of continuum at the corresponding wavelength, R; is the

reflectance of the absorption feature centre wavelength, R’ is

the reflectance of continuum at the absorption feature centre

wavelength.

4.1.2 Band depth normalized to area of absorption feature
(BNA)

The band depths normalized to area (BNA) are calculated by
dividing the band depth of each band by the area of the absorp-
tion feature:

BNA=(1-(R/R"))/A (5)
where A is the area of the continuum-removed absorption fea-
ture.

4.1.3 Selection of spectral absorption feature band

In this study, we used two band selection methods:

(1) We applied continuum-removal analysis to the whole
spectrum of each sample. As shown in Fig. 4 and Fig. 5, the
continuum-removal spectrum produced four isolated wave-
length ranges centered at 670, 980, 1160 and 1950nm.

(2) We selected 6 wavelength ranges according to the rice
original reflectance spectrum and the known chlorophyll and
nitrogen absorption feature (Table 5). We consulted the result
of absorption features listed by Curran (1989). The nitrogen
absorption feature bands are 910, 1020, 1510, 1980, 2060, 2130,
2180, 2240, 2300 and 2350nm, the chlorophyll absorption fea-
ture bands are 460, 640 and 660nm.

In this study, we analyzed the correlation of nitrogen and
chlorophyll concentration with the depth, width and area of
BNC and BNA absorption feature.
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Fig. 4 A reflectance spectrum and its continuum
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1.0 dices shown in Table 6 according to the rice spectral features.
: We used the spectral transformation of 1 minus contin-
L 08 o80nm - uum-removed spectra and reversional normalized spectra were
é 1160nm obtained. We calculated the 6 vegetation indices based on
Cé 06 original spectra, normalized spectra and reversional normalized
‘_'; spectra. The correlation coefficients between biochemical con-
g 0.4 centration (nitrogen and chlorophyll) and vegetation indices can
£ be obtained.
E 0.2 1950mm Table 5 Selected wavelength ranges and their associated absorp-
§70mm : tion features for nitrogen and chlorophyll
0.0400 8:30 Iztl)O I(;IOO 10'00 24IOG Knov;'g;:;:;:gﬁ*ggtjpei /r:}lrtT:ogen Selected wavelength/nm
Wavelength/nm 460 436.99—548.92
640, 660 569.27—762.6
Fig. 5 A continuum-removed spectrum and the band centers
910, 1020 894.7—1083.99
1510 1285.76—1648.91

4.2 Method based on vegetation indices

We consulted some literatures and selected 6 vegetation in-

1980, 2060, 2130, 2180 1961.66—2203.83

2240, 2300, 2350 2224.02—2395.5

Table 6 Vegetation indices employed in this study

Vegetation index Full name

Formula Reference

NDVI1560_670 Normalized difference vegetation index
RV1560_670 Ratio vegetation index
NRI Nitrogen reflectance index
CARI Chlorophyll absorption ratio index
VARI_green Visible atmospherically resistant index
VARI_700 Visible atmospherically resistant index

NDV|560_670:M

Rouse et al., 1974
560 + Rezo

RV|560_670:@
70

Pearson & Miller, 1972
NRI = Rs70 — Reno
Rs70 + Re7o

~ |ax 670+ Rgzg +b|Rygg

- \laz+1><R670

a=(Rygo — Rsgp)/150,b = Rggy —550x a

Schleiche et al., 2001

CARI
Kim et al., 1994

Rse0 — Rs1o
560 + Rezo + Raso
Rygo —1.7 % Rezo +0.7 x Rygg
R0 +2.3% Rerg —1.3% Rygg

VARI_green = Anatoly et al., 2002

VARI_700=

Anatoly et al., 2002

5 RESULT ANALYSIS

5.1 Selection of best spectral feature for rice nitro-
gen and chlorophyll concentration estimation

We analyzed the correlation between field spectra measured
on August 15, September 6 and September 30 with biochemical
concentration. The correlation coefficients between biochemi-
cal concentration with spectral features and vegetation indices
were calculated.

Table 7 shows the spectral features significantly correlated
with nitrogen concentration in the 3 growth stages. The spectral
feature with maximum correlation coefficient is 670Area
(BNC), which means the area of absorption feature centered at
670nm based on BNC analysis. So the 670Area (BNC) was
chosen to be the best spectral feature for nitrogen concentration
retrieval.

Table 8 shows the spectral features significantly correlated
with chlorophyll concentration in the 3 growth stages. The
spectral feature with maximum correlation coefficient is
NDVI560_670 (reversional normalized spectrum), which

means NDVI used 560nm and 670nm based on reversional
normalized spectrum. So the NDVI560_670 (reversional nor-
malized spectrum) was chosen to be the best spectral feature for
chlorophyll concentration retrieval.

5.2 Rice canopy nhitrogen and chlorophyll concentration
retrievals and mapping based on Hyperion data

The above best spectral features for nitrogen and chlorophyll
concentration retrievals based on field measured spectra study
were applied to the Hyperion image reflectance of 8 fields. The
rice canopy nitrogen and chlorophyll concentration retrieval
models are:

N =0.0357 x 670Area(BNC) — 7.0023 (6)

CHL=207.16xNDVI560_670(reversional normalized spec-
trum)+ 15.772 (7

The quadratic polynomial multiple correlation coefficient
(R? between the 670Area (BNC) and nitrogen concentration is
0.79 (Fig. 6). The R? between the NDVI560_670 (reversional
normalized spectrum) and chlorophyll concentration is 0.77
(Fig. 7).
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Table 7 Spectral features significantly correlated with nitrogen concentration and the correlation coefficients

August 15 September 6 September 30
Spectral features
Foliage Canopy Foliage Canopy Foliage Canopy

PSSRb (original spectrum) 0.55 0.55 0.56 0.44 0.74 0.61
PSNDb (original spectrum) 0.55 0.56 0.61 0.50 0.74 0.71
CARI (normalized spectrum) 0.67 0.61 0.62 0.52 0.77 0.74
NDVI560_670 (reversional normalized spectrum) 0.71 0.56 0.61 0.55 0.72 0.72
RVI1560_670 (reversional normalized spectrum) 0.71 0.58 0.61 0.55 0.76 0.74
NRI (reversional normalized spectrum) 0.69 0.58 0.62 0.56 0.72 0.72
CARI (reversional normalized spectrum) 0.67 0.59 0.62 0.48 0.77 0.72
VARI_green (reversional normalized spectrum) 0.69 0.56 0.61 0.53 0.72 0.72
VARI_700 (reversional normalized spectrum) 0.69 0.55 0.66 0.49 0.76 0.74
670Area (BNC) 0.72 0.56 0.62 0.56 0.76 0.74
670Depth (BNA) 0.66 0.56 0.64 0.50 0.71 0.72
640, 660Depth (BNA) 0.64 0.61 0.49 0.55 0.83 0.74

Table 8 Spectral features significantly correlated with chlorophyll concentration and the correlation coefficients

August 15 September 6 September 30
Spectral features
Foliage Canopy Foliage Canopy Foliage Canopy
PSNDb (original spectrum) 0.64 0.56 0.62 0.44 0.94 0.77
CARI (original spectrum) 0.71 0.67 0.66 0.53 0.96 0.85
NDVI560_670 (reversional normalized spectrum) 0.76 0.62 0.71 0.58 0.96 0.86
RVI1560_670 (reversional normalized spectrum) 0.76 0.59 0.71 0.58 0.96 0.85
NRI (reversional normalized spectrum) 0.76 0.62 0.71 0.56 0.96 0.86
CARI (reversional normalized spectrum) 0.74 0.62 0.61 0.48 0.94 0.83
VARI_green (reversional normalized spectrum) 0.76 0.61 0.72 0.56 0.96 0.86
VARI_700 (reversional normalized spectrum) 0.76 0.53 0.66 0.48 0.96 0.85
670Depth (BNA) 0.74 0.58 071 0.52 0.96 0.86
640, 660Area (BNC) 0.76 0.61 0.67 0.48 0.94 0.79
640, 660Depth (BNA) 0.76 0.64 0.67 0.49 0.96 0.83
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Fig. 6 Correlation between 670Area (BNC) based on image

) ) Fig. 7 Correlation between NDVI560_670 (1-Normalized spectrum)
spectrum and nitrogen concentration

based on image spectrum and rice canopy chlorophyll concentration

We applied the two models on the Hyperion paddy rice concentration in nitrogen concentration distribution map ranged
image and produced the chlorophyll and nitrogen concentration from 0.06 % to 4.46 % and the values of chlorophyll concentra-
distribution maps (Fig. 8, Fig. 9). The values of nitrogen tion in chlorophyll concentration distribution map ranged from
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Fig. 8 Rice canopy nitrogen concentration distribution map
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Fig. 9 Rice canopy chlorophyll concentration distribution map

31.04 to 68.44. They were quite consistent with those of field
measurements. The pixel values in each field were relatively
uniform. The distribution agreed highly with the growth status
distribution. Therefore to some extent, the estimation equations
were validated.

6 CONCLUSIONS

In this study, we analyzed the correlation between rice bio-
chemical concentration (nitrogen and chlorophyll) with field
measured foliage and canopy spectra of different species and

different growth stages. Then we obtained the universal spectral
features with high precision for rice nitrogen and chlorophyll
concentration estimation based on field measured spectra
analysis. The result of field measured spectra analysis was ap-
plied to Hyperion image and the nitrogen and chlorophyll
concentration estimation models were established. The study
investigated the feasible of nitrogen and chlorophyll concentra-
tion retrieval based on Hyperion image and retrieved the rice
canopy nitrogen and chlorophyll concentration of research area.
At last, the rice canopy nitrogen and chlorophyll concentration
distribution maps were produced. The results include as follow:

(1) The area of absorption feature centered at 670nm based
on BNC analysis was found to be strongly correlated with the
nitrogen concentration of jointing, heading and filling stages
both at foliage and canopy level. The rice canopy nitrogen con-
centration retrieval model was built based on spaceborne hy-
perspectral remote sensing image spectra using the spectral
feature. The results showed that the correlation coefficient (R?)
between the area of absorption feature centered at 670nm based
on BNC spectra and rice canopy nitrogen concentration was
0.79. The result of rice canopy nitrogen concentration retrieval
was quite accurate and reliable.

(2) Based on the reversional normalized spectrum, 560nm
and 670nm were used to establish NDVI560_670. The spectral
feature was found to be strongly correlated with the chlorophyll
concentration of jointing, heading and filling stages both at
foliage and canopy level. The rice canopy chlorophyll concen-
tration retrieval model was built based on spaceborne hyper-
spectral remote sensing image spectra using the spectral feature.
The results showed that the R? between NDVI560_670 based
on the reversional normalized spectra and rice canopy chloro-
phyll concentration was 0.77. The result was satisfactory.

The study taken rice as the research object, investigated the
methods for nitrogen and chlorophyll concentration retrievals.
Other vegetation types and biochemical parameters can be
taken as the research objects in future. The results of this study
can provide reference for estimation of crop yield and pests
detection with hyperspectral remote sensing.
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