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Abstract:

With the rapid development of SAR missions, on-board SAR image processing is required. SAR could obtain much

higher resolution images than ordinary radar, and it is very necessary to compress data before transmission, since the generated
SAR data volume is much higher than the data bandwidth of the satellite downlink. In this paper, an efficient compression algo-
rithm with accurate rate control is proposed based on SAR complex image characteristics. The algorithm applies an adaptive
weighted quantizer on 2D-FFT coefficients, and then uses entropy encoder to code the quantized coefficients. Based on the es-
tablished R-Q and MPE-Q statistical models, an accurate rate control is developed. We measure the compression performance
with PSNR and MSSIM (Mean Structural Similarity) of the magnitude image and MPE (Mean Phase Error). With four SAR
complex images compressed at different ratios, the compression performance is analyzed and compared with other algorithms
including JPEG2000, H.264, etc. Experimental results show that the proposed algorithm outperforms other algorithms, and the

rate control obtains high accuracy.
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1 INTRODUCTION

Space-borne Synthetic Aperture Radars (SAR) are active
microwave imaging systems, and provide high resolution
two-dimensional terrain imageries regardless of weather condi-
tions. Radar systems are widely used in military reconnaissance,
civil field, exploitation of natural resources, topography map-
ping, disaster monitoring (Curlander & McDonough, 1991;
Guo et al., 2007).

Early SAR systems transmit the raw echo data to ground
stations, and then carry out image processing. With the devel-
opment of VLSI and digital signal processing technology, it
becomes possible to process space-borne SAR echo data
on-board in real-time (Guo et al., 2007). On-board SAR
real-time imaging could observe the unexpected events in
real-time, as well as identify and select the regions of interest of
SAR image in real-time and abandon useless image blocks.
SAR image compression can significantly reduce data storage
and data transmission, lighten the burden of satellite download
link, and reduce the download time (Guo et al., 2007). Besides,
it is possible to achieve higher compression ratios for SAR
complex images, since the pixel correlation of the SAR com-
plex image is higher than that of the raw echo data.

With the improvement of SAR resolution and mapping
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bandwidth, complex image data volume is increasing. For ex-
ample, if the PRF (Pulse Repetition Frequency) of a radar satel-
lite is 2000Hz, a 64Kx16K image of 16-bit 1Q channel pro-
duces a data rate of 4Gb/s. At present, the bandwidth of
data-transmission system is generally 100—150Mb/s, and is

much lower than the required data bandwidth. Therefore, it is
necessary to study the efficient SAR complex image compres-
sion algorithm.

Compared to optical images, SAR images consist of 32-bit
complex pixels with large dimensions, possess very high dy-
namic range, and exhibit very little spatial correlation (Eichel &
Ives, 1999). Phase information of such images is necessary for
SAR image applications, such as digital elevation. So far, more
works focus on the compression of SAR magnitude images.
And few researches concentrate on the SAR complex image
compression.

Based on the processing methods of real and imaginary parts
of SAR images, SAR image compression algorithms can be
classified as three categories: independent compression of the
two parts, compressing the two parts together, and independent
compression of the magnitude and phase components. The first
category of methods compresses the real and imaginary parts
independently, such as the real-valued wavelet coding method
(Ives et al., 1998). They could not preserve the phase informa-
tion effectively. The second category of methods is mainly
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FFT-based coding method (Eichel & Ives, 1999; Xia et al.,
2006; Sun & Li, 2006), as well as the complex-valued wavelet
coding method (lves et al., 1998). They could preserve the
phase information much better. The third category of methods
compresses the magnitude and phase components independ-
ently. The magnitude image is generally compressed with the
wavelet or wavelet-packet coding method (Brandfass et al.,
1997), and could obtain higher compression ratios compared to
complex images. The phase information generally follows the
uniform distribution and possesses little correlation (Brandfass
etal., 1997). And it is difficult to compress.

Although the second category method could achieve higher
compression ratios and preserve better phase information, there
are still disadvantages. Previous FFT-based coding algorithms
generally remove the zero-padded region in Fourier domain by
a windowing function or weighted function, and encode the
quantized coefficients by arithmetic or Huffman coding. How-
ever, little coding gain could be achieved by entropy coding the
coefficients directly, since the quantized coefficients generally
follow random distribution. Besides, efficient and accurate rate
control is generally ignored, and it is not fit for the constant
bandwidth transmission. In addition, most of the previous
methods target air-borne SAR images, which has higher signal
noise ratio than space-borne SAR images. Such methods gener-
ally could not achieve good compression performance for
space-borne SAR images with low signal-to-noise ratio and
wide mapping bandwidth.

In this paper, the compression method is studied for the
space-borne SAR complex image. This method processes the
real and imaginary parts together. The complex image is di-
vided into several fixed-size blocks, and then transformed with
2D-FFT. The transform coefficients are quantized by an adap-
tive weighted quantizer, and then entropy coded by the
bit-plane encoder. The relationship between the coding bit rate
R and the quantization step size Q, as well as the relationship
between the Mean Phase Error (MPE) and Q, are established.
Based on the statistical attributes, the quantization step size and
the threshold of the weighted function are adaptively adjusted
to reduce the phase and magnitude distortions. We use PSNR
and MSSIM (Mean Structural Similarity) of the magnitude
image and MPE as the quality metrics. Extensive experimental
results show that the coding system outperforms other algo-
rithms at the same bit rate, including JPEG2000, H.264, HD
Photo, etc. And the rate control method achieves high accuracy
with the bit rate error lower than 0.15%.

2 QUALITY METRICS

Quality metrics measure the performance of a compression
system. Since the SAR complex images contain magnitude and
phase information, the quality metrics are different from the
optical images. The following metrics are used in this paper to
measure the coding performance.

2.1 PSNR of the magnitude image

The magnitude image of the SAR complex image is similar
with the optical image, and reflects the terrain imaginaries of
SAR scanning area. PSNR is used to measure the distortion.
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where, x(i, j) and X(i, j) are the (i, j) pixel values of the mag-
nitude of the original and reconstructed complex images. N;
and N, represent the azimuth number and the range number of
the data respectively. U is the maximal pixel value of the origi-
nal image.

2.2 Mean Structural Similarity (MSSIM) of the
magnitude image

MSSIM (Mean Structural Similarity) (Wang et al., 2004)
measures the compression quality by the distortion of the
structural information. Since human visual perception is sensi-
tive to the structural information, MSSIM can measure the im-
age quality better than the traditional PSNR metrics, especially
for different coding algorithms. In recent years, MSSIM is
widely used in image and video quality evaluation.

MSSIM is used to measure the magnitude image quality of
the reconstructed complex image. The SSIM index is the prod-
uct of the luminance, contrast and structure comparison func-
tions, and is defined as (Wang et al., 2004)

(zﬂx/‘y + Cl)(zo'xy +C2)

SSIM(x,y) = (£ + 445 +C1)(0% + 07 +C2)
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where, x and y are two nonnegative image signals. The con-
stants C; = (K;L)? and C, =(K,L)? are included to avoid
instability when #Xz +y§ is very close to zero. L is the dy-
namic range of the pixel values. K; €1 and K, <1 are
K;=0.01 and
K, =0.03 according to (Wang et al., 2004). An 11x11 circu-

small constants. In this paper, we set

lar-symmetric Gaussian weighting function w={w;|i=

1,2,---,n} is used, with standard deviation of 1.5 samples,

n
normalized to unit sum ZWi =1. x; and y; are the pixels at the
i=1
local window. The estimates of the local luminance statistics
and 14, the contrast information oy and oy, as well as structural
information oy, are calculated as

n , n

2
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SSIM index reflects the local structural similarity. To evalu-
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ate the overall image quality, MSSIM is calculated as the mean
SSIM index (Wang et al., 2004).

MSSIM(X,Y) = — 3 SSIM(Xi, Y1) 3)
K< iYi
=

where, X and Y are the original and reconstructed images. X;
and y; are the image contents at the jth local window. And K is
the number of local windows of the image.

2.3 Mean phase error (MPE)

MPE (Mean phase error) is used to measure the phase dis-
tortion, and is defined as

MPE =

1 Nl N2
Ny N ZJZ‘%—%‘ (4)

2idj=1
where, ¢; and ¢ are the phases of the original and recon-
structed images respectively.

2.4 Bitrate error

Compression bit rate and bit rate error are often used to
measure the compression performance as well. For SAR com-
plex images with 32bits per pixel (bpp), the bit rate fluctuation
is generally required to be lower than 0.5% if the compression
bit rate is at 1—38 bpp. In this paper, we use Reqo to measure the

rate control accuracy.
Rerror = (Rresult = Rtarget)/ Rtarget

where, Riger and Ryeqye are the target bit rate and the actual
compression bit rate respectively.

3 COMPRESSION ALGORITHM

The proposed compression algorithm contains several proc-
essing modules, including 2D-FFT, weighted quantization, rate
control and entropy encoding, as shown in Fig. 1.

Target Rate

- EEEE—

bit rate control
image_[>r err W Weighted | [ Entropy Codestream |code
data quantization| | encoder Organization giream

Encoding

Decoding
Reconstructed
image 2D-IFFT In vcmc Entropy le_rsc
quantization| | decoder codestream

Fig. 1 Flowchart for encoding and decoding systems

3.1 Transform

After computing the 2D Fourier transform of a SAR com-
plex image, there is a region of extremely small coefficients.
This zero-padded region is added at the time of image forma-
tion to accomplish a specified image domain oversample ratio
(Eichel & Ives, 1999). Fig. 2 shows the 128x128 magnitude
images and the Fourier transform of complex images from Bei-
jingArea (RADARSAT) and GoldstoneField (SEASAT). The

zero-padded regions vary with image contents and satellites,
but they represent 1/4 of the coefficients. This characteristic can
be used to compress SAR complex images.

The transform block size would affect compression per-
formance and the coding complexity. Larger block size could
achieve higher compression performance, and increase the
transform complexity. In this paper, the basic transform unit is
composed of 128x128 pixels. The transformed data is quantized
and entropy coded.

3.2 Weighted quantization

To remove the zero-padded region in Fourier domain, a
weighted quantization is proposed. The weighted function is
used to select non-zero coefficients which are quantized with
the dead-zone scalar quantization. The weighted quantizer is
defined as

y = Quan(x) x w(x)
where, x is the real or imaginary part of the transformed
non-zero coefficients. w(x) ={v|ve0,1} is a weighted func-

tion. Quan(x) =sign(x)| [x/Q | is a scalar quantization func-
tion. Q is the quantization step, and sign(x) is the sign of x. |x|
takes the absolute value of X, and |[x|/Q| rounds down

[x)/Q to the nearest integer.

The choice of the weighted function depends on the data
characteristic in frequency domain as well as the bits required
to code the weighted values. Since the zero-padded regions are
generally rectangular, it is much easier to encode the rectangu-
lar regions to reduce the bits required to encode the weighted
values. Our proposed method takes a row or a column as the
basic unit of zero-padded region, and calculates the sums of a
row and a column to select the zero-padded region. Fig. 2
shows the magnitude images in frequency domain, and the
distribution plots of the sums of a row and a column. Adap-
tively selecting appropriate row threshold T, and column
threshold T, based on the frequency coefficients, could effec-
tively discard the zero-padded region.

Denote the row sum and column sum with pixel x as S,(x)

S¢(x). The weighted function is defined as

W(x) = 1, S,(x)=T, & S (x) =T,
0, others

The parameters Q, T, and T, affect the quantization and
compressed bit rate. And they are determined by rate control, as
illustrated in Section 3.4.

3.3 Entropy coding

Entropy coding is applied to the quantized coefficients to
improve coding efficiency. Since the quantized real and imagi-
nary parts generally follow random distribution, little coding
gain could be obtained by directly applying arithmetic or
Huffman coding. And the compression ratio is close to 1. From
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Fig. 2, there are correlations among non-zero coefficients. The
content adaptive embedded block encoder (Taubman, 2000;
Taubman & Marcellin, 2002) can be applied to the quantized
coefficients to improve the coding performance by utilizing the
spatial redundancy.

The embedded block encoder scans the quantized coeffi-
cients by bit-plane, and determines the binary symbols to be
encoded based on the sign and magnitude information of the
neighbor samples. The binary symbols collected at bit plane
coding are then encoded by an adaptive binary arithmetic en-
coder.

3.4 Rate control

As an important part of the compression system, rate control
achieves optimal coding quality whilst meeting the target bit
rate. We analyze the relationship between quantization step size
(Q) and bit rate (R), as well as the relationship between the
MPE and Q. Based on the established R-Q and MPE-Q models,
an accurate rate control method is developed to determine the
parameters of the quantization. The parameters include the

Sum of columnx10’

Magnitude of FFT coefficients
(a)

Magnitude

i

Sum of columnx10

Magnitude Magnitude of FFT coefficients

(b)

w
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threshold of the weighted function, and the quantization step
size from the target bit rate and the encoded block information.
3.4.1 Threshold for weighted function

To remove the zero-padded region in frequency domain of
the SAR complex image, a weighted function is applied. For
different blocks, adaptively selecting the thresholds for row and
column would improve the coding performance.

Experimental results show that for various blocks,
T=max(S,)xT and T.=max(S.)xT. T is adaptively adjusted
based on the bit rate of the current block. T approaches 0 at
higher bit rate, equals 0.1 at middle bit rate, and is set to 0.2
otherwise. To reduce the errors caused by singular points, we
set max(S,) and max(S;) as the mean values of the four maximal
row sums and column sums, respectively.

3.4.2 Quantization step size

With the increasing demand for three-dimensional SAR im-
age applications, it requires lower phase distortion and higher
magnitude accuracy. Magnitude information is easier to com-
press than the phase information, and in practical systems the
phase distortion is generally high when the magnitude distor-

I
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Fig. 2 Magnitude of original image and the FFT transformed image, distribution of the sum of row and sum of column.
(a) BeijingArea; (b) GoldstoneField

Fig. 3 Magnitude images of the tested complex image blocks
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tion meets the target distortion. Therefore, to determine quanti- ¢, k and a, b are the parameters of R-Q and MPE-Q models
zation step size, we give priority to the phase quality. In this respectively.
subsection, the models of R-Q and MPE-Q are proposed, and The rate-distortion function minimizing MPE at a target bit
the rate-distortion function is established to calculate the ideal rate for a complex image of N transform blocks is
quantization step size. In the following, the practical quantiza-
tion step size determination is introduced. mm{ f(4)= z MPE; + 12 Ri}
To study the relationship of R-Q, as well as the relationship '< : @)
of MPE-Q, a set of SAR sample images of 128x128 sizes from R= le Ri/N = Riarget
different radar satellite and contents are selected as shown in
Fig. 3. These images are compressed with the proposed com- f(2) :zi:(aQi/Mi +b)+’12i:(0|092(Qi/Mi)+k)’ MPE; Ri.
pressmn method, and then the compression quality |.s eva.luated. Q; and M; are the MPE, bite rate, quantization step size and
Fig. 4 and Fig. 5 show the R-Q and MPE-Q relationship of a . N . -
. image feature for the ith image block. 4 is the Lagrange multi-
part of the test blocks. For different blocks, R correlates loga- . . X
. . . . plier. Rarger and R are the target bit rate and the actual bit rate.
rithmically with Q, and MPE correlates linearly with Q. To Solving (7), we get
establish the accurate R-Q and MPE-Q models, an image fea- g(f)weg
ture is selected as the model parameter. Since the statistical OMPE; _aln2/M; aln2Q ®)
characteristics of the real and imaginary parts are similar, the R c/Q; c M
mean absolute values of the real parts before transform is cho- (5) and (8) yield
sen as the image feature M. The expressions for R-Q and R :clogz(Qi/Mi)Jrk:clogz(—c/llalln 2)+k o)
MPE-Q models are as follows
R=clog,(Q/M)+k (5) Inserting (9) in (7) yields
MPE = aQ/M +b ©) R :ZRi =Nclog,(—c2/a/In2)+ Nk < NRyyger  (10)
I
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Solving (9) and (10) proves
Q; = M, 2l ResK)/e (11)

In the following, we obtain

MPE; = aQ, /M, + b = a2l R )¢ 12)
Therefore, the mean phase error MPE; of each transform
block equals to each other, and R; is close to each other, and
Qi/M; is similar.
From the above derivations, to minimize MPE, the bit rates
of different blocks should be similar. If the parameters ¢ and k
can be obtained before compression by training, the quantiza-
tion step size can be calculated from equation (11). Since the
parameters ¢ and k would be a little different for various images,
there are estimation errors if Q is calculated with fixed ¢ and k.
In this paper, we use the linear regression method to calculate ¢
and k for the current block with R-Q information of the encoded
blocks. With the similarity between neighbor blocks, the esti-
mation error is reduced compared to fixed ¢ and k. The quanti-
zation step size Q; can be estimated with equation (5). To avoid
Q. is too small or too large, we utilize the relationship between
scalar quantization step size and bit rate (Taubman & Marcellin,

2002) to calculate Q, = Lblkmax/ZRiJ . Blkmax is the maximal
absolute value of the real part in frequency domain. Q, is ad-
justed to the range of [0.5xQ,,2xQ,].

To determine the quantization step size, three procedures are
included, such as quantization parameter initialization, quanti-
zation step size prediction and model parameter update. Fig. 6

Initialize
quantization N l
parameters

I

Transform

|

—

Predict quantization
step size O

Weighted

quantization

!

Entropy coding

Determine
threshold 1

|

|

Update model
paramters

L

Fig. 6 Quantization step decision module vs. the coder

illustrates the encoding flow with the quantization step decision
module.

e Quantization parameter initialization: initialize the model
parameters before quantizing the first block.

e Quantization step size prediction: predict Q; with the pre-
diction model for current block, and calculate Q.. Q; is adjusted
with Q, to avoid the exceptional situations, and guarantees
constant quality between neighbor blocks.

e Model parameter update: with the linear regression
method, the parameters ¢ and k are updated with the R and Q
information of the encoded blocks.

4 EXPERIMENTAL RESULTS

The compression performance of the proposed method and
the accuracy of rate control are analyzed in this section. And the
coding performance is compared with different coding algo-
rithms, including wavelet-based JPEG2000 (Taubman &
Marcellin, 2002), lapped transform based HD Photo (Microsoft
Corporation, 2006), integer block transform based H.264
(Wiegand et al., 2003), and wavelet packet based coding algo-
rithm FWP (Meyer et al, 2000).

4.1 Test images

Four 4Kx4K complex images are selected from
RADARSAT and SEASAT. Fig. 7 shows the magnitude images
of the test images. Each pixel has 16-bit signed integer real and
imaginary parts (32bpp). Image BeijingArea is a scene of an
urban area surrounding Beijing in north China. It contains many
urban and natural features. Image GoldstoneField is a scene

(c) (d)

Fig. 7 The magnitude images of the tested complex images.
(a) BeijingArea; (b)GoldstoneField; (c)Field; (d)Sanxia
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of the goldstone field from SEASAT containing several point
targets on mountains. Image Field is a scene of rivers and fields
with simple contents. Image Sanxia is the scene of the Three
Gorges Dam region, and the ships in the image should be pre-
served.

4.2 Encoder parameters

Since the compared algorithms are real-valued method, we
process the real and imaginary parts of the SAR complex im-
ages separately. An offset of 2'° is added so that the real and
imaginary parts have an unsigned representation, and then they
are compressed at the same bit rate.

Eichel and lves (1999) analyzed the performance of the
real-valued wavelets and complex wavelets. The real-valued
wavelet outperforms the complex wavelet with the same quan-
tization and entropy encoder. Therefore, we select the wave-
let-based JPEG2000 as the representative encoder.
Kakadu_v6.0 (Taubman, 2008) is used as the JPEG2000 en-
coder. 5 levels of 9/7 wavelet transform and 64x64 codeblock
are used. The image is processed as one tile, and the quality
layer information is not added to the COM segment. To obtain
optimal coding performance, all bit planes are encoded and
stored. Besides, the entropy encoder in this paper is similar to
that of JPEG2000.

HD Photo (2006) is developed by Microsoft Corporation in
2007, and is under standardization as JPEG-XR. HD Photo
applies the lapped transform with lower complexity than
JPEG2000. And the coding performance is close to JPEG2000.
HD Photo Device Kit v1.0 (2006) provided by Microsoft Cor-
poration is used to compress images, in this paper. The test
images are processed as the gray image of 16bpp with default
parameters, and the quantization level is adjusted according to
the target bit rate.

H.264 (Wiegand et al., 2003) intra mode performs a variety
of spatial predictions and integer transform of variable block
sizes to improve the coding performance. The reference soft-
ware JM13.2 is used, and High 10 Intra profile is applied in our
experiments. Since JM13.2 can only process images with di-
mensions lower than 4Kx2.5K (Tourapis et al., 2007), we di-
vide the 4Kx4K images into two parts of 4Kx2K sizes. The bit
rate is adjusted by quantization parameters (QPISlice). The
coding parameters for JM13.2 are summarized in Table 1, and
others are default.

Table 1 Coding parameters for JM13.2

ProfileIDC 110 RDPsliceWeightOnly 0
LevelIDC 51 YUVFormat 0 (4:0:0)
RDPictureDecision 1 BitDepthLuma 16
RDPicturelntra 1 YUVFormat 0
RDOptimization 1 EnableIPCM 1

The wavelet packet coding algorithm of Meyer (2000) is
used with the encoder FWP. 5 levels of wavelet packet decom-
position are applied, and the frequency resolution of higher
frequency band is not restricted.

4.3 Coding performance

We use the quality metrics introduced in Section 2 to meas-
ure the coding performance, including PSNR of magnitude
image, MSSIM of magnitude image, and MPE. The target bit
rates are set to 1 to 8bpp. JPEG2000, FWP and the proposed
method could achieve accurate rate control. But HD Photo and
H.264 need to compress images with several quantization levels
to get the compressed bit stream closer to the target bit rate.

Fig. 8 shows the coding performance of the five compres-
sion algorithms for SAR complex images. At 1—8bpp, the

proposed algorithm outperforms other algorithms at PSNR and
MSSIM of magnitude image as well as MPE, especially the last
two quality metrics. For Image BeijingArea, these algorithms
have comparable PSNR performance at different bit rates. The
proposed method performs slightly better. The performance of
H.264 fluctuates a lot, and HD Photo performs worse. The
proposed method outperforms other methods obviously for
other test images, and PSNR is at least 1.5dB higher than other
methods for image Sanxia. The proposed method has better
MSSIM performance than other ones for the four test images.
At lower bit rates, the coding gain is about 0.05—0.1. At higher

bit rates, the distortion of different methods is very little and
MSSIM is close to 1. At the bit rate of 1bpp, the MPE values of
the proposed method are at least 9° lower than those of other
methods on average. With the bit rate increasing, the distortion
of complex image decreases, and the MPE values are close to
each other for different compression methods.

Table 2 summarizes the coding performance of the five
compression algorithm at the bit rate of 2 and 4bpp. The four
values within each table cell from top to bottom represent the
actual bit rate, PSNR of magnitude (dB), MSSIM of magnitude
and MPE (°). The elements in bold indicate the optimal per-
formance of the compression algorithms at the same bit rate for
the current image.

The proposed algorithm outperforms other methods for sev-
eral aspects. Firstly, the adopted FFT transforms the real and
imaginary parts as a whole, and reduces the phase distortion
compared to the independent process of the two parts. For ex-
ample, FWP chooses the optimal wavelet packet basis for real
and imaginary parts, and introduces different quantization er-
rors for the two parts. Thus, it results in higher phase distortion.
Secondly, a weighted quantization is used in the proposed
method, and it can remove the redundancy in frequency domain.
And the bit plane encoder can reduce the spatial redundancy of
the transform coefficients. Finally, the proposed rate control
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method minimizes the phase distortion at the target bit rate.
As shown in Fig. 8, there is an inflexion at 5—6bpp on the

bit rate-PSNR curve of the proposed method. The inflexion is
introduced by the selection of the threshold T for the weighted
function. At the bit rate of 5—6bpp, MPE is lower and MSSIM

is higher with higher threshold T, but PSNR is lower. At these
bit rates, the PSNR value of the magnitude image are generally
higher than 30dB, and the visual distortion is unobvious. Be-
sides, MSSIM reflects the structural distortion better than
PSNR. To obtain lower phase distortion and higher MSSIM, we
choose 5bpp to be the cut-off point. Therefore, there is an in-
flexion at 5—6bpp.

Table 3 illustrates the bit rate error for different images at
various bit rates, and the error unit is 1073, At different target bit
rates, the bit rate error of the proposed method is lower than
10°%. The only exception is —1.2442x107° for Sanxia image at
3bpp. And this bit rate error meets the accurate rate control
requirement.

5 CONCLUSION

This paper analyzes the necessary of space-borne SAR com-
plex image compression and the related works. Based on the
characteristics, a FFT-based coding method is proposed. The
complex image is divided into blocks, and then applies 2D-FFT.
The transform coefficients are quantized with a weighted quan-
tization, and then encoded by the bit-plane encoder. The R-Q
and MPE-Q models are established for SAR complex images,
and an accurate rate control is developed. Experimental results
show that, the proposed method could achieve accurate rate
control, and the bit rate error is lower than 0.15%. And it out-
performs other methods at PSNR and MSSIM of magnitude as
well as MPE.

The proposed method could meet the performance require-
ment for space-borne SAR complex images. Since the satellite
processing system is restricted by the size, weight, limited
computing power and so on, we would optimize the compres-
sion method, and implement it in real time.
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Table 2 Coding performance comparison for different coding algorithms at 2bpp and 4bpp
Test images Target bit rate/bpp JPEG 2000 HD Photo H.264 FWP Proposed
4.0000 3.9254 4.0144 4.0000 3.9998
26.5220 25.9383 27.1655 26.5375 27.3686
* 0.8845 0.8801 0.9048 0.8863 0.9481
22.1757 22.7649 19.8681 23.9125 16.6652
BeijingArea
1.9998 1.9690 1.9589 2.0000 1.9999
21.2126 20.9275 21.1827 21.2910 21.6273
2 0.6723 0.6700 0.6742 0.6930 0.7898
40.9120 41.7184 40.4629 45.2728 32.0314
3.9998 3.9392 4.1102 4.0000 3.9997
34.9795 34.2215 36.5373 36.2442 37.7720
! 0.9379 0.9306 0.9594 0.9541 0.9748
17.9315 18.0992 13.6294 15.3449 10.2871
GoldstoneField
1.9999 1.9273 2.0615 2.0000 1.9998
29.1735 28.5709 29.6163 29.7527 30.4963
? 0.7793 0.7543 0.8041 0.8078 0.8604
38.0230 38.6438 32.8946 35.4749 26.1632
3.9998 3.9723 4.0079 4.0000 3.9996
29.3970 29.1742 29.6360 29.7511 30.6559
* 0.9069 0.9093 0.9235 0.9153 0.9567
. 19.9296 19.2765 17.5143 20.1396 13.7352
Field 1.9998 2.0329 2.0570 2.0000 1.9998
24.0458 24.0386 24,1585 24.2130 24.4161
? 0.7231 0.7269 0.7340 0.7387 0.8044
37.1796 36.5314 35.2944 40.7004 29.4824
3.9998 4.0008 4.1288 4.0000 3.9999
25.9627 24,7181 27.1008 24.3270 30.7386
! 0.8618 0.8317 0.8937 0.8351 0.9636
25.3257 28.0754 21.9809 43.6849 12.8827
Sanxia
1.9999 1.9659 1.8932 1.9999 2.0000
20.7727 20.0529 20.8251 18.4296 23.6654
? 0.6304 0.5803 0.6361 0.5776 0.8157
46.7709 48.5385 44.4519 67.3649 28.5368
Table 3 The bit-rate error for different images and target approaches for efficient compression of complex SAR image data.
bit-rates. The unit for bit-rate error is 10 IEEE International Geoscience and Remote Sensing, 4: 2024—
Target bit rate/bpp ~ BeijingArea  GoldstoneField Field Sanxia 2027
1 _0.0787 0.1584 0.6580  0.4075 Curlander J C and McDonough R N. 1991. Synthetic Aperture Radar,
2 00819 00108 0.7965 01671 Systems and Signal Processing. New York: Wiley
3 00714 0.0025 06765 12442 Eichel P and Ives R W. 1999. Compression of complex-valued SAR
images. IEEE Transactions on Image Processing, 8(10): 1483—
4 -0.0428 0.0131 -0.0232  -0.0219 1487
5 ~0.0451 ~0.0750 01079 -0.0153 Guo M, Jian F J, Zhang Q, Xu B, Wang Z S and Han C D. 2007.
6 -0.0327 0.0361 -0.0483  -0.0172 FPGA-based real-time imaging system for spaceborne SAR.
7 -0.0296 -0.1116 -0.0858  -0.0083 Journal of Computer Research and Development, 44(3): 497—
8 0.0153 -0.2093 -0.0901  -0.0100 502
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F2 BIEE 2 IF/ G 4 BT T, FREZMELERE LR
I / JPEG 2000 HD Photo H.264 FWP Proposed
4.0000 3.9254 4.0144 4.0000 3.9998
26.5220 25.9383 27.1655 26.5375 27.3686
! 0.8845 0.8801 0.9048 0.8863 0.9481
22.1757 22.7649 19.8681 23.9125 16.6652
1.9998 1.9690 1.9589 2.0000 1.9999
21.2126 20.9275 21.1827 21.2910 21.6273
? 0.6723 0.6700 0.6742 0.6930 0.7898
40.9120 41.7184 40.4629 45.2728 32.0314
3.9998 3.9392 4.1102 4.0000 3.9997
34.9795 34.2215 36.5373 36.2442 37.7720
! 0.9379 0.9306 0.9594 0.9541 0.9748
17.9315 18.0992 13.6294 15.3449 10.2871
1.9999 1.9273 2.0615 2.0000 1.9998
29.1735 28.5709 29.6163 29.7527 30.4963
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3.9998 3.9723 4.0079 4.0000 3.9996
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